
Social Networks and Social Choice Lecture Date: September 2, 2010

Condorcet’s theorem (continued)

Lecturer: Elchanan Mossel Scribes: J. Neeman, N. Truong, and S. Troxler

We concluded the last lecture by proving that the best aggregation function is majority vote.
Next, we will look at the worst aggregation function.

1 The worst aggregation function

Proposition 1.1. The worst fair, monotone aggregation function are the dictator functions
x 7→ xi.

To prove Proposition 1.1, we need to develop some results about the influence of single voters
on the behavior of the aggregation function. First, we define a function that represents the
influence of a single voter:

fi(x) = f(x1, . . . , xi−1,+, xi+1, . . . , xn)− f(x1, . . . , xi−1,−, xi+1, . . . , xn). (1)

Recall that C(f, p) is the probability that the aggregation function f reaches the correct
conclusion when each voter independently comes to the correct answer with probability p.
Then we can write the derivative of C(f, p) in terms of the functions fi:

Claim 1.2.
∂

∂p
C(f, p) =

1

2

n∑
i=1

Epfi =
n∑
i=1

vari,p(f)

4p(1− p)
,

where
vari,p(f) = Ep varp(f |x1, . . . , xi−1, xi+1, . . . , xn).

Proof. Without loss of generality, let’s condition on the event that the true signal is +. Note
that if x ∈ {−1, 1} then ∂

∂p
p(1+x)/2(1− p)(1−x)/2 = x. Suppose we allow the voters to see the

1



Condorcet’s theorem (continued) 2

true signal with different probabilities and set pi = P (xi = +). Then

∂C(f, p)

∂p1
=

∂

∂p1

∑
x∈{±1}n

P (x)1{f(x)=+}

=
∂

∂p1

∑
x∈{±1}n

P (x)
f(x)− 1

2

=
∑

x∈{±1}n
P (x2, . . . , xn)

∂P (x1)

∂p1

f(x)− 1

2

=
∑

x∈{±1}n
P (x2, . . . , xn)x1

f(x)− 1

2

=
∑

x2,...,xn∈{±1}

P (x2, . . . , xn)
f(+, x2, . . . , xn)− f(−, x2, . . . , xn)

2

= Ep
f1
2
.

A similar computation works for i 6= 1 and hence,

∂C(f, p)

∂p
=

n∑
i=1

∂C(f, p)

∂pi
=

1

2

n∑
i=1

Epfi.

For the second inequality, condition on x2, . . . , xn and note that

varp(f |x2, . . . , xn) =

{
4p(1− p) if f1(x2, . . . , xn) = 2

0 otherwise.

It follows that
E varp(f |x2, . . . , xn) = 2p(1− p)Epf1.

Repeating this for i 6= 1 yields the second equality.

We will also use the following Efron-Stein-type inequality:

Claim 1.3. If f is a function of n variables, then

var(f) ≤
n∑
i=1

vari(f),

where vari(f) = E var(f(x)|x1, . . . , xi−1, xi+1, . . . , xn).

Exercise 1.4. Prove Claim 1.3. Two possible proofs involve Fourier analysis or a decompo-
sition of variance by martingale differences.
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Now we are ready to prove that the worst aggregation function is a dictatorship.

Proof of Proposition 1.1. First of all, note that for all fair, monotone functions g, C(g, 0.5) =
0.5 and C(g, 1) = 1. Now, let f be a dictator function and suppose, for a contradiction, that
f is not the worst aggregation function. That is, suppose there is some function g and some
p > 1/2 such that C(f, p) > C(g, p). Let q = inf{p : C(f, p) > C(g, p)}. Since C(·, p) is
continuously differentiable with respect to p, C(f, q) = C(g, q) and ∂

∂q
C(f, q) ≥ ∂

∂q
C(g, q).

Thus,

varq(g) = varq(f) =
∑
i

vari,q(f) ≥
∑
i

vari,q(g)

where the first equality holds because C(f, q) = C(g, q), the second equality holds because
f is a function of only one variable and the inequality comes from Claim 1.2 and the fact
that ∂

∂q
C(f, q) ≥ ∂

∂q
C(g, q). Looking at the two ends of the above inequality, we conclude

(by Claim 1.3) that g is a function of one variable. Since g is fair and monotone, it must be
a dictator function also.

2 Other aggregation functions

So far, we have only seen 3 examples of aggregation functions. We saw that a simple majority
is the best aggregation function and that dictatorship is the worst (at least, when we restrict
to “reasonable” aggregation functions) and that it doesn’t aggregate at all. We saw that a
simplified “electoral college” aggregation aggregates well, and that it performs at the same
asymptotic rate as simple majority (that is, it aggregates provided that

√
n(p− 1/2) tends

to infinity). Let’s consider two more examples:

Example 2.1. Given a number of “levels”, k say, we can define a recursive majority function
by drawing a tree of depth k and assigning a voter to each leaf. The vote is determined by
proagating majority votes upward. That is, each node determines its vote by taking the
majority of its children. For example, each city determines its vote by the majority of people
living in that city, each county determines its vote by allocating a single vote to each city
within it and taking the majority, and so on. Apparently, the USSR has such a system with
up to 5 levels.

It’s not hard to see that this is different from simple majority voting. In fact, it is a gen-
eralization of the electoral college. If k is fixed, it aggregates at the same rate as the simple
majority.

Example 2.2. Suppose we have three judges. If they come to a unanimous conclusion, then
that is the final decision. If not, we add two more judges and try again. The process will
stop when there are n judges, in which case we revert to a simple majority if they still can’t
agree. This decision procedure is called “extensive forum” and it doesn’t aggregate: there is
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a (1− p)3 chance that the first three judges will get it wrong straight away, regardless of how
large n is.

3 The effect of a voter

It turns out that there are some general techniques, based on quantifying the influence of a
single voter, for studying aggregation functions.

Definition 3.1. The influence of voter i is Epfi.

The following theorem was due to Talagrand in 1994 and it says, roughly speaking, that if
no voter has a large influence then an aggregation function performs well.

Theorem 3.2 (Talagrand [3]). Let f be a monotone function and suppose that p < q. If
δ = maxr maxi Erfi then

Ep(f |s = +)(1− Eq(f |s = +)) ≤ exp(c(q − p) ln δ)

for an absolute constant c > 0.

In particular, if f is fair and monotone and we set p = 1/2 in the above theorem, then
Ep(f |s = +) = 1/2 and so the probability of aggregating correctly is at least 1− exp(c′(q −
1/2) ln δ). If δ is very small, then the exponent is very large and negative, so we aggregate
well.

An important special case was studied by Friedgut and Kalai [1]. They considered the case
where f is invariant under the action of a transitive group G on [n], in which case we say
that f is transitive. (Recall that a group acting on [n] is said to act transitively if for every
i, j ≤ n there exists some σ ∈ G such that σ(i) = j. Saying that f in invariant under this
action means that f(x) = f(xσ), where xσ(i) = x(σ(i)), for every σ ∈ G.) This says that
each voter is “equal” in some sense, or at least that no voter is more powerful than any other
voter.

Theorem 3.3. If f is transitive and monotone and Ep(f |s = +) > ε then Eq(f |s = +) >
1− ε, where

q = p+ c
log(1/(2ε))

log n
.

If we assume, additionally, that f is fair, then we can set p = 1/2 in the above theorem
and conclude that the aggregation function is correct with probability at least 1 − ε and
q = 1/2 +x log(1/(2ε))/(log n). In other words, aggregation works provided that each signal
is correct with probability of the order 1/2 + c log−1 n. This is not as sharp as the threshold
of 1/2 + cn−1/2 that is provided by simple majority and friends, but it still allows us to send
the quality of a single voter to zero.
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4 Non-independent signals

All of the previous material assumed that the voters chose their votes independently. Of
course, we would not expect this to be true in real life, so we would like to discuss the
possibility of dependent signals. As before, we will assume that each voter receives the
correct signal with probability at least p. However, we will be switching notation (so as not
to deviate too far from the PowerPoint slides) so that the correct signal is always 1 and the
incorrect signal is 0.

Clearly the Condorcet jury theorem cannot hold in general for the case of dependent voters.
For example, we could assume that all the voters give the same vote: 1 with probability p
and 0 otherwise. Then any fair, monotone aggregation function will have probability p of
getting the correct answer, no matter what n is. Motivated by this example, we would like
to have some parameter which quantifies the dependence of the outcome on a single voter i.

Definition 4.1. The effect of voter i on the aggregation function f : {0, 1}n → {0, 1} for a
probability distribution P is

ei(f,P) = E(f |Xi = 1)− E(f |Xi = 0).

If we set EXi = p, we have

cov(f,Xi) = E(f ·(Xi−p)) = pE((1−p)f |Xi = 1)+(1−p)E(−pf |Xi = 0) = p(1−p)ei(f, P ).

Theorem 4.2 (Haggstrom, Kalai, Mossel [2]). Suppose that P (Xi = 1) ≥ p > 1/2 for all i.
Let f be the simple majority function and assume that ei(f,P) ≤ ε for all i. Then majority
aggregates correctly with probability at least 1− cε/(p− 1/2), for some constant c > 0.

Proof. Let pi = EXi and set Yi = pi −Xi and g = 1− f . Then

Eg
n∑
i=1

Yi = (Eg)E

(
n∑
i=1

Yi|f = 0

)
≥ n(p− 1/2)Eg

because f = 0 implies that
∑

iXi < n/2 and pi ≥ p. On the other hand,

Eg
n∑
i=1

Yi =
n∑
i=1

EYig =
∑
i

cov(Xi, f) =
∑
i

pi(1− pi)ei(f) ≤ np(1− p)ε

because the function q 7→ q(1 − q) is decreasing on the interval (1/2, 1]. Combining these
two inequalities yields n(p − 1/2)Eg ≤ np(1 − p)ε, from which we deduce that Ef ≥ 1 −
εp(1− p)/(p− 1/2). Since p(1− p) ≤ 1/4, we are finished.

It turns out that the proof also works if f is a weighted majority function. What’s more
surprising, perhaps, is that only weighted majority functions can aggregate well in this
setting.
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Theorem 4.3 (Haggstrom, Kalai, Mossel [2]). If f is monotone and fair and it is not a
weighted majority then there exists a probability distribution P so that EXi > 1/2 for all i
and Ef = 0 and ei(f,P) = 0 for all i.
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