STAT 206A: Polynomials of Random Variables Grothendieck’s Inequality

Lecture 19
Lecture date: Nov 22 Scribe: Ben Hough

The scribes are based on a guest lecture by Ryan O’Donnell. In this lecture we prove
Grothendieck’s inequality, which states that for all real n x n matrices there is a universal
constant K < oo (independent of n) such that
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where By = {2z € R?: ||z|| < 1} is the ball of radius 1 in R?. The optimal constant K for
which equation (1) holds is called the Grothendieck constant, Kg. We observe that the
suprema in (1) are obtained when z;,y; € {—1,1}, and ||Z;]], ||¥;|| = 1, so it is equivalent
to replace [—1,1] with {—1,1} and By with Sy = {z € R?: ||z| =1} in (1). Moreover,
by taking the vectors &;, 7; to all lie along a common line in R?, we see that the reverse
inequality to equation (1) holds with K = 1.

1 Why do we care?

One motivation for studying Grothendieck’s inequality is that it provides a method for
rapidly approximating the cut norm of a matrix.

Definition 1 The cut norm of a matriz A is defined to be
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Here [n] denotes {1,2,...,n}.
Let us denote the left hand side of (1) by ||Al|cc—1. An easy computation verifies that

Exercise 2 || Al < [|Allco—1 < 4[| 4]|c.

The right hand side of (1) can be computed in polynomial time using semi-definite pro-
gramming methods. On the other hand, computing the cut norm of a matrix is NP-hard.
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Grothendieck’s constant is known not to be too big, so this approach provides a reasonable
method for estimating the cut norm.

Grothendieck’s inequality also has important consequences in Banach spaces. Indeed, it
implies the following:

Corollary 3 Every bounded linear operator T from an L' space X to a Hilbert space is
absolutely summable. That is, if x1,x2,--- € X have the property that ), x; converges
regardless of re-arrangement, then ), ||Tx;|| < oo.

2 Known bounds on Kg

When Grothendieck originally proved the inequality in 1956, he showed that 1.57 ~ § <
K& < sinh (%) ~ 2.3. Riesz (’74) improved the upper bound slightly to 2.26, and Krivine
(’79) showed that
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and conjectured that this value is correct. A.M. Davie (’84, unpublished) improved the
lower bound. Independently, Jim Reeds (¢’91, unpublished) improved the lower bound to
approximately 1.677. We shall discuss Reeds’ proof below.

3 Proof of lower bound for K

Observe that

sup Y Aj - = sup > <f(i)>ZAi,j9(j)>' (4)

fi,ngBd 7,,]:]. f-[n]—>Bd i=1

This quantity is clearly increasing in d, we are interested in understanding by how much it
can increase as d increases from 1 to co. Scaling the matrix A (which has no influence on
the Grothendieck’s inequality), the above may be expressed as

sup /M (f, Ag) du (5)
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where p is the uniform measure on [n]. For any value of n, this quantity equals

sw [ (g = sw [ ag)ld). (
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where v denotes the n-dimensional Gaussian distribution, and A is now an appropriate
linear operator on functions in Gaussian space. Conversely, as n — oo, any linear operator
on Gaussian space can be approximated arbitrarily well by discrete operators, hence it
suffices to consider by how much (6) can increase as d increases from 1 to co. In particular,
to obtain a good lower bound for K¢, we shall exhibit an operator A for which (6) is large
as d — oo, and small for d = 1.

To define this operator A, we first recall that any g : R®™ — By has a Hermite expansion.
That is:

glx) = §(S)Hs(x) (7)

SeNn

where §(S) € By and Hg(x) =[]}, hs,(x;) where h; are the 1-dimensional Hermite poly-
nomials. It is easy to show that the Hg’s are orthonormal:

1 if §S=T
[ s ={ T (8

Moreover, Hz = 1 and if e; denotes the ith standard basis vector in R™, then H,, = z;.
Let us refer to |S| = > S; as the “level of S”, and define P; to be the “projection to level
1”7 operator. That is, Pig(z) = > i g(e;)z;. Define A = P; — X -1, where 1 denotes the
identity operator, and we shall choose A later. Our first claim gives a lower bound for (6)
for large d (note we take n = d here for convenience).

Proposition 4
1
sup /HAgH >1-2-0 () . (9)
gR*"—B, n

Proof: To prove this lower bound, it suffices to exhibit a function g for which the claimed
lower bound holds. Set g(z) = H%II and compute

(Pg)(w) =D wigle). (10)
i=1
Now we have that

ite) = | wotwar) ()

_ Y
= /yeRn Yi Hdev(y), (12)

and a straightforward computation shows that

YiYj 0 if i35
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Therefore, (P1g)(¥) = a,Z and we compute

j/ | Aglldv() L/“|u1ag>cf>—-xg<x>udv<f> (14)
. .

= [ (o= Zll(@ (16)
.

Theorem 5 The quantity
swp [ gl (@) (19)

gR*—{-1,1} JR

is mazimized by a function g’ of the following form:

1. ¢'(x) depends only on x1.

2. ¢'(x) is an odd function of x1, and there exists a constant a so that g(¥) = 1 for
x1 >a and g(Z) = —1 for 0 < z; < a.

Remark 6 Granting Theorem 5, one can solve for the optimal constants a and A and derive
a lower bound for Kq. The resulting expression is ugly, so we won’t repeat the computation
here.

Proof: If g : R — {—1,1}, then Pig is linear so (Pig)(z) = Y _;, bjx; for some constant
b;. Rotating space appropriately, we may assume that b= (b,0,...,0) for some 0 < b < 1.
This rotation will not influence the integral [g, [|Ag||dy(&), since v is rotationally symetric.
Define a : R — [—1,1] by a(z) = E[g|P1g = z], and observe that —1 < a(z) <1 for all z,
and

Plg=1/Pg =2 = 7 + 3a(2) (20)
Plg=—1|Pig=2]= 5 — za(2) (21)

Define
7 =i(e) = [ a9@in@ = [ () (22)
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where (z) is the density of a 1-dimensional Gaussian random variable. We compute:

[ i@ = [ 1ro@ - re@iin@ )
Rn Rn
= /R[(; + %a(z))|oz — A+ (% - %a(z))krz + A]p(2)dz (24)

= [ gloz=Al+loz 4 Aotz + [ alpiel) (@)

R
where 1(z) = 1(loz — A| — oz + A]).

To prove our theorem, we assume that o is fixed, and consider the following linear program:

LP,: Maximize:

Const. +/ Y(2)p(z)a(z)dz (26)
subject to the constraints:
—1<a(z)<1lforallz>0 and o= / zp(2)a(z)dz. (27)

Since p(z) is even and (z) is odd, we see that there will be an optimizing o which is odd
(replace a(z) with (§(a(z) — a(—z)) if necessary). Now, since @ is strictly increasing
on [0,00] we see that the optimal a will satisfy a(z) = 1 for z > a and a(z) = —1 for
0 <z <a. (If a(z) is not of this form, then we can perturb « slightly to increase the value
of [% 1(2)¢(z)a(z)dz while still satisfying the constraints). It now follows from (20) and
(21) that g must have the same form. O
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