
STAT 206A: Polynomials of Random Variables Grothendieck’s Inequality

Lecture 19

Lecture date: Nov 22 Scribe: Ben Hough

The scribes are based on a guest lecture by Ryan O’Donnell. In this lecture we prove
Grothendieck’s inequality, which states that for all real n× n matrices there is a universal
constant K <∞ (independent of n) such that

sup
x1,...,xn∈[−1,1]
y1,...,yn∈[−1,1]

n∑
i,j=1

Ai,jxiyj ≥
1
K

sup
~x1,...,~xn∈Bd
~y1,...,~yn∈Bd

n∑
i,j=1

Ai,j~xi · ~yj , (1)

where Bd =
{
z ∈ Rd : ‖z‖ ≤ 1

}
is the ball of radius 1 in Rd. The optimal constant K for

which equation (1) holds is called the Grothendieck constant, KG. We observe that the
suprema in (1) are obtained when xi, yj ∈ {−1, 1}, and ‖~xi‖, ‖~yj‖ = 1, so it is equivalent
to replace [−1, 1] with {−1, 1} and Bd with Sd =

{
z ∈ Rd : ‖z‖ = 1

}
in (1). Moreover,

by taking the vectors ~xi, ~yj to all lie along a common line in Rd, we see that the reverse
inequality to equation (1) holds with K = 1.

1 Why do we care?

One motivation for studying Grothendieck’s inequality is that it provides a method for
rapidly approximating the cut norm of a matrix.

Definition 1 The cut norm of a matrix A is defined to be

‖A‖c = max
I⊂[n]
J⊂[n]

∣∣∣∣∣∣∣
∑
i∈I
j∈J

Ai,j

∣∣∣∣∣∣∣ = max
xi,yj∈{0,1}

∣∣∣∣∣∣
n∑

i,j=1

Ai,jxiyj

∣∣∣∣∣∣ . (2)

Here [n] denotes {1, 2, . . . , n}.

Let us denote the left hand side of (1) by ‖A‖∞→1. An easy computation verifies that

Exercise 2 ‖A‖c ≤ ‖A‖∞→1 ≤ 4‖A‖c.

The right hand side of (1) can be computed in polynomial time using semi-definite pro-
gramming methods. On the other hand, computing the cut norm of a matrix is NP-hard.
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Grothendieck’s constant is known not to be too big, so this approach provides a reasonable
method for estimating the cut norm.

Grothendieck’s inequality also has important consequences in Banach spaces. Indeed, it
implies the following:

Corollary 3 Every bounded linear operator T from an L1 space X to a Hilbert space is
absolutely summable. That is, if x1, x2, · · · ∈ X have the property that

∑
i xi converges

regardless of re-arrangement, then
∑

i ‖Txi‖ <∞.

2 Known bounds on KG

When Grothendieck originally proved the inequality in 1956, he showed that 1.57 ∼ π
2 ≤

KG ≤ sinh
(
π
2

)
∼ 2.3. Riesz (’74) improved the upper bound slightly to 2.26, and Krivine

(’79) showed that

KG ≤ π

2
1

sinh−1 ∼ 1.78, (3)

and conjectured that this value is correct. A.M. Davie (’84, unpublished) improved the
lower bound. Independently, Jim Reeds (c’91, unpublished) improved the lower bound to
approximately 1.677. We shall discuss Reeds’ proof below.

3 Proof of lower bound for KG

Observe that

sup
~xi,~yj∈Bd

n∑
i,j=1

Ai,j~xi · ~yj = sup
f :[n]→Bd
g:[n]→Bd

n∑
i=1

〈
f(i),

n∑
j=1

Ai,jg(j)

〉
. (4)

This quantity is clearly increasing in d, we are interested in understanding by how much it
can increase as d increases from 1 to ∞. Scaling the matrix A (which has no influence on
the Grothendieck’s inequality), the above may be expressed as

sup
f,g:[n]→Bd

∫
[n]
〈f,Ag〉 dµ (5)

where µ is the uniform measure on [n]. For any value of n, this quantity equals

sup
f,g:Rn→Bd

∫
Rn

〈f,Ag〉 dγ = sup
f :Rn→Bd

∫
Rn

‖Ag(x)‖dγ(x). (6)
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where γ denotes the n-dimensional Gaussian distribution, and A is now an appropriate
linear operator on functions in Gaussian space. Conversely, as n→∞, any linear operator
on Gaussian space can be approximated arbitrarily well by discrete operators, hence it
suffices to consider by how much (6) can increase as d increases from 1 to ∞. In particular,
to obtain a good lower bound for KG, we shall exhibit an operator A for which (6) is large
as d→∞, and small for d = 1.

To define this operator A, we first recall that any g : Rn → Bd has a Hermite expansion.
That is:

g(x) =
∑
S∈Nn

ĝ(S)HS(x) (7)

where ĝ(S) ∈ Bd and HS(x) =
∏n
i=1 hSi(xi) where hj are the 1-dimensional Hermite poly-

nomials. It is easy to show that the HS ’s are orthonormal:∫
Rn

HS(x)HT (x) =
{

1 if S = T
0 if S 6= T

(8)

Moreover, H~0 = 1 and if ei denotes the ith standard basis vector in Rn, then Hei = xi.
Let us refer to |S| =

∑
Si as the “level of S”, and define P1 to be the “projection to level

1” operator. That is, P1g(x) =
∑n

i=1 ĝ(ei)xi. Define A = P1 − λ · 1, where 1 denotes the
identity operator, and we shall choose λ later. Our first claim gives a lower bound for (6)
for large d (note we take n = d here for convenience).

Proposition 4

sup
g:Rn→Bn

∫
‖Ag‖ ≥ 1− λ−O

(
1
n

)
. (9)

Proof: To prove this lower bound, it suffices to exhibit a function g for which the claimed
lower bound holds. Set g(x) = x

‖x‖ and compute

(P1g)(x) =
n∑
i=1

xiĝ(ei). (10)

Now we have that

ĝ(ei) =
∫
y∈Rn

yig(y)dγ(y) (11)

=
∫
y∈Rn

yi
y

‖y‖
dγ(y), (12)

and a straightforward computation shows that∫
Rn

yiyj
‖y‖

dγ(y) =
{

0 if i 6= j
an := 1

n

∫
Rn ‖x‖dγ(x) if i = j

. (13)
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Therefore, (P1g)(~x) = an~x and we compute∫
Rn

‖Ag‖dγ(~x) =
∫

Rn

‖(P1g)(~x)− λg(x)‖dγ(~x) (14)

=
∫

Rn

‖an~x−
λ~x

‖~x‖
‖dγ(~x) (15)

=
∫

Rn

(an −
λ

‖x‖
)‖~x‖dγ(~x) (16)

= an

∫
Rn

‖~x‖ − λ (17)

=
1
n

(∫
Rn

‖~x‖
)2

− λ (18)

2

Theorem 5 The quantity

sup
g:Rn→{−1,1}

∫
Rn

‖Ag‖dγ(~x) (19)

is maximized by a function g′ of the following form:

1. g′(x) depends only on x1.

2. g′(x) is an odd function of x1, and there exists a constant a so that g(~x) = 1 for
x1 > a and g(~x) = −1 for 0 ≤ x1 ≤ a.

Remark 6 Granting Theorem 5, one can solve for the optimal constants a and λ and derive
a lower bound for KG. The resulting expression is ugly, so we won’t repeat the computation
here.

Proof: If g : Rn → {−1, 1}, then P1g is linear so (P1g)(x) =
∑n

i=1 bixi for some constant
bi. Rotating space appropriately, we may assume that ~b = (b, 0, . . . , 0) for some 0 ≤ b ≤ 1.
This rotation will not influence the integral

∫
Rn ‖Ag‖dγ(~x), since γ is rotationally symetric.

Define α : R → [−1, 1] by α(z) = E[g|P1g = z], and observe that −1 ≤ α(z) ≤ 1 for all z,
and

P[g = 1|P1g = z] =
1
2

+
1
2
α(z) (20)

P[g = −1|P1g = z] =
1
2
− 1

2
α(z). (21)

Define
σ = ĝ(e1) =

∫
Rn

x1g(~x)dγ(~x) =
∫

R
zα(z)ϕ(z)dz (22)
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where ϕ(z) is the density of a 1-dimensional Gaussian random variable. We compute:∫
Rn

|Ag|dγ(~x) =
∫

Rn

|(P1g)(~x)− λg(~x)|dγ(~x) (23)

=
∫

R
[(

1
2

+
1
2
α(z))|σz − λ|+ (

1
2
− 1

2
α(z))|σz + λ|]ϕ(z)dz (24)

=
∫

R

1
2
(|σz − λ|+ |σz + λ|)ϕ(z)dz +

∫
R
α(z)ψ(z)ϕ(z) (25)

where ψ(z) = 1
2(|σz − λ| − |σz + λ|).

To prove our theorem, we assume that σ is fixed, and consider the following linear program:

LPσ: Maximize:

Const. +
∫ ∞

−∞
ψ(z)ϕ(z)α(z)dz (26)

subject to the constraints:

−1 ≤ α(z) ≤ 1 for all z ≥ 0 and σ =
∫ ∞

−∞
zϕ(z)α(z)dz. (27)

Since ϕ(z) is even and ψ(z) is odd, we see that there will be an optimizing α which is odd
(replace α(z) with (1

2(α(z) − α(−z)) if necessary). Now, since ψ(z)
z is strictly increasing

on [0,∞] we see that the optimal α will satisfy α(z) = 1 for z > a and α(z) = −1 for
0 ≤ z ≤ a. (If α(z) is not of this form, then we can perturb α slightly to increase the value
of

∫∞
−∞ ψ(z)ϕ(z)α(z)dz while still satisfying the constraints). It now follows from (20) and

(21) that g must have the same form. 2
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