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ABSTRACT
We prove and extend a conjecture of Kempe, Kleinberg, and
Tardos (KKT) on the spread of influence in social networks.

A social network can be represented by a directed graph
where the nodes are individuals and the edges indicate a form
of social relationship. A simple way to model the diffusion
of ideas, innovative behavior, or “word-of-mouth” effectson
such a graph is to consider an increasing process of “infected”
(or active) nodes: each node becomes infected once an acti-
vation function of the set of its infected neighbors crossesa
certain threshold value. Such a model was introduced by KKT
in [7, 8] where the authors also impose several natural assump-
tions: the threshold values are (uniformly) random to account
for our lack of knowledge of the true values; and the activation
functions are monotone and submodular, i.e. have “diminish-
ing returns.” The monotonicity condition indicates that a node
is more likely to become active if more of its neighbors are
active, while the submodularity condition, indicates thatthe
marginal effect of each neighbor is decreasing when the set of
active neighbors increases.

For an initial set of active nodesS, letσ(S) denote the ex-
pected number of active nodes at termination. Here we prove a
conjecture of KKT: we show that the functionσ(S) is submod-
ular under the assumptions above. We prove the same result
for the expected value of any monotone, submodular function
of the set of active nodes at termination.

In other words, our results demonstrate that “local” sub-
modularity is preserved “globally” under diffusion processes.
This is of natural computational interest, as many optimization
problems have good approximation algorithms for submodular
functions. In particular, our results coupled with an argument
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in [7] imply that a greedy algorithm gives an(1 − 1/e − ε)-
approximation algorithm for maximizingσ(S) among all sets
S of a given size. This result has important practical implica-
tions for many social network analysis problems, notably viral
marketing.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Stochastic Processes

General Terms
Networks, Optimization, Theory

Keywords
Viral marketing, social networks, submodularity, coupling

1. INTRODUCTION
Social Networks. In recent years, diffusion processes on

social networks have been the focus of intense study. While
traditionally such processes have been of major interest inepi-
demiology where they model the spread of diseases and im-
munization, see e.g. [12, 9, 10, 4, 1, 5], much of the recent in-
terest has resulted from applications in sociology, economics,
and engineering. (See e.g. [7] for references.)

In computer science, a strong motivation for analyzing dif-
fusion processes has recently emanated from the study of viral
marketing strategies in data mining, where various novel algo-
rithmic problems have been considered [2, 3, 7, 8]. Roughly
speaking,viral marketing—unlike conventional marketing—
takes into account the “network value” of potential customers,
i.e. it seeks to target a set of individuals whose influence on
their social network through work-of-mouth effects is high.
(For more background on viral marketing, see [2, 3, 7, 8].)

Commonly-used heuristics to identify influential nodes in
social networks include picking individuals of high degree—
so-called degree centrality heuristics—or picking individuals
with short average distance to the rest of the network—so-
called distance centrality heuristics [14]. Here we prove a
structural conjecture of Kempe, Kleinberg and Tardos (KKT)[7,
8], which can be roughly stated as follows: if a diffusion model
is locally submodular, i.e. the influence of an individual on
its neighbors in the network has “diminishing returns,” then
the process is globally submodular. This is relevant here be-
cause, under the submodularity property, optimization prob-
lems, such as the viral marketing problem, are known to have
good approximation algorithms [13]. In particular, in [7],greedy



algorithms based on the above conjecture were shown to achieve
significantly better performances in practice than widely-used
network analysis heuristics.

General Threshold Model. In [7], KKT introduced the
general threshold model, a broad generalization of a variety of
natural diffusion models on networks, including the influential
linear threshold modelof Granovetter in sociology [6]. Given
an initial set of infected or active individuals on a network,
the process grows in the following way. (See Section 1.1 for
a formal description.) Each individual, sayv, has an activa-
tion function which measures the effect of its neighbors onv
and a threshold value. At any time, if the set of previously in-
fected neighbors ofv is such that its activation function crosses
its threshold value, thenv becomes infected. This process is
progressive—an active node stays active forever. KKT con-
sider the following natural assumptions:

- The threshold valuesarerandom. This is to account for
our lack of knowledge of the exact threshold value of
each individual.

- Theactivation functionsaremonotone increasing. This
corresponds to the intuition that a node is more likely
to become infected if a larger set of its neighbors is in-
fected.

- The activation functionsare submodular. This corre-
sponds to the fact that the marginal effect of each neigh-
bor ofv decreases as the set of active nodes increases.

The Influence Maximization Problem. Since the diffu-
sion process defined above is increasing, it terminates after a
finite number of steps. For a given initial set of active nodes
S we defineσ(S) to be the expected size of the set of active
nodes at the end of the process. In theInfluence Maximization
Problem, we aim to find a setS of a fixed size maximizing
σ(S).

The Influence Maximization Problem is a natural problem
to consider in the context of viral marketing. Given a social
network, it is desired to find a small set of “target” individuals
so as to maximize the number of customers who will even-
tually purchase a product following the effects of “word-of-
mouth” [2, 3]. The same problem may also be of interest in
epidemiology where finding the setS of a fixed size maximiz-
ing σ(S) is a natural problem both in terms of bounding the
spread of a disease and in terms of maximizing the effect of
immunization.

In [7] it was shown that the Influence Maximization Prob-
lem isNP -hard to approximate within a factor1−1/e+ε for
all ε > 0. (The problem is in factn1−ε hard to approximate
without the submodularity condition.) On the other hand, it
was shown in [8] that for allε > 0 it is possible find a set
S of fixed size that is a(1 − 1/e − ε)-approximation of the
maximum in random polynomial time if the set functionσ is
itselfsubmodular, which leads to the following conjecture.

CONJECTURE1 ([7, 8]). The functionσ is submodular.

While the result of [7, 8] showed thatσ is submodular
in special cases and related models (see below), the general
case was open prior to our work, as highlighted in a recent
invited talk of J. Kleinberg at FOCS 2006. In this paper we
prove Conjecture 1 and extend it to the case whereσ(S) is
the expected value of any monotone, submodular function of

the final active set. This gives a(1 − 1/e − ε)-approximation
algorithm for finding a setS of fixed size maximizingσ(S).

1.1 The Model
In this section, we define formally thegeneral threshold

model.

DEFINITION 1 (SOCIAL NETWORK). A social network
is given by:

- A ground setV with |V | = n

- A collection ofactivation functionsF = (fv)v∈V , where
fv : 2V → [0, 1] is a [0, 1]-valued set function onV .

Typically, we think ofV as the individuals of a social network
G = (V, E) where eachfv measures the effect ofv’s neigh-
borsN(v) on v. In particularfv depends only on neighbors
N(v) affectingv, sofv(S) = fv(N(v) ∩ S) for all S. How-
ever, the specification of the graph will not be needed below.

DEFINITION 2 (MONOTONICITY). The function
f : 2V → R is monotoneif

fv(S) ≤ fv(T )

for all

S ⊆ T ⊆ V.

DEFINITION 3 (SUBMODULARITY ). The function
f : 2V → R is submodularif for all S, T ⊆ V

f(S) + f(T ) ≥ f(S ∩ T ) + f(S ∪ T ).

The monotonicity condition corresponds to the fact that the
effect of a larger set onv is stronger than the effect of a smaller
set. The submodularity condition is equivalent to the fact that
if S ⊆ T andv ∈ V then:

f(T ∪ {v}) − f(T ) ≤ f(S ∪ {v}) − f(S),

so the effect of each individual is decreasing when the set in-
creases.

ASSUMPTION 1. Throughout, we assume thatfv(∅) = 0
and thatfv is monotone and submodular for allv ∈ V .

We will consider the following diffusion process.

DEFINITION 4 (DIFFUSION). For a givenF , consider
the following processS = (St)

n−1
t=0 started atS ⊆ V :

1. Associate to each nodev an independent random vari-
ableθv uniform in[0, 1] ;

2. SetS0 = S;

3. At timet ≥ 1, initialize St = St−1 and add toSt the
set of nodes inV \ St−1 such thatfv(St−1) ≥ θv.

Clearly the process stops on or before timen − 1. We denote
by QF (S) the distribution ofS when started atS and write
S ∼ QF (S), where we will drop the subscript whenF is clear
from the context.

DEFINITION 5 (INFLUENCE). For a weight functionw :
2V → R+, we define the influenceσw(S) of S ⊆ V as

σw(S) = ES[w(Sn−1)],

whereES is the expectation underQF (S).



1.2 Previous Results
Conjecture 1 was previously verified in several special cases

and related models.
Linear Threshold Model [7]. This is the general thresh-

old model withfv of the form

fv(S) =
∑

w∈S

bv,w,

for nonnegative constantsbv,w. The proof uses a representa-
tion in terms of a related percolation model. See [7] for details.

“Normalized” Submodular Threshold Model [8]. This
is the general threshold model withfv satisfying the so-called
“normalized” submodularity property:

fv(S ∪ {i}) − fv(S)

1 − fv(S)
≥

fv(T ∪ {i}) − fv(T )

1 − fv(T )
, (1)

for all S ⊆ T . Note that this is stronger than submodularity.
The proof takes advantage of an equivalence with thedecreas-
ing cascade model(see below).

Independent Cascade Model [7].This is a related model
where each edge(v, w) has an associated probabilitypv,w of
beinglive, independently of all other edges. Infected nodes are
those connected to the initial set through alive path. The proof
of Conjecture 1 in this case also uses a percolation argument.

Decreasing Cascade Model [8].A natural generalization
of the previous model consists in defining for eachv, each
neighborw of v and each subset of neighborsS of v a success
probabilitypv(w, S) which is the probability that nodew will
succeed in activatingv given that nodes inS are active and
have failed to activatev. Each nodew gets only one chance
to activate each of its neighbors. KKT impose a naturalorder-
independencecondition on the success probabilities, i.e. the
overall success probability of activatingv does not depend on
the order in which the active neighbors ofv try to activate it.
This model—called thegeneral cascade modelin [7]—turns
out to be equivalent to thegeneral threshold modelunder the
maps

pv(w, S) =
fv(S ∪ {w}) − fv(S)

1 − fv(S)
,

and

fv(S) = 1 −
r

∏

i=1

(1 − pv(wi, Si−1)),

whereS = {w1, . . . , wr} andSi = {w1, . . . , wi}. When

pv(w, S) ≥ pv(w, T ) (2)

for all S ⊆ T and allv, w, the model is called thedecreasing
cascade model.

It is easy to check that the decreasing cascade model is
equivalent to (1) under the mapping above. The proof of the
conjecture for the decreasing cascade model works by cou-
pling the processes started atS andT with S ⊆ T and then
addingw in a second phase where condition (2) is used.

In [7], it also shown that these results carry over to the
non-progressivecase whereθv is resampled independently at
each time step and togeneral marketing strategieswhere one
can use several marketing actions simultaneously. See [7] for
details.

1.3 Main Result

THEOREM1 (MAIN RESULT). Consider the process de-
fined in Definition 4 whereF and w are monotone and sub-
modular, thenσw is monotone and submodular. In particular,
this is true whenw is the cardinality function.

COROLLARY 1. Consider the process defined in Defini-
tion 4 whereF and w are monotone and submodular. Then
there exists a (greedy)(1−1/e−ε)-approximation algorithm
for maximizingσw(S) among all setsS of sizek [8]. In par-
ticular, this is true whenw is the cardinality function.

The corollary follows from Theorem 1 and Theorem 2 of [8].
KKT’s Greedy Approximation Algorithm is a simple variant
of the standard greedy algorithm where sampling is used to
estimateσw.

Our proof. Similarly to [8], a natural idea is to run the
process in stages. Here we use three phases: we first grow
A ∩ B, then A \ B, and finallyB \ A. See Figure 1 for
an illustration. The key difference is in the execution of the
last phase. To do away with the “normalized” submodularity
condition of [8], we use

• a careful combination of cascade and threshold models,
which we call the need-to-know representation;

• and, more importantly, a novel “antisense” coupling tech-
nique based on the intuition that coupling the processes
started at arbitrary setsA andB by usingθv and1− θv

respectively, in a way, “maximizes their union” (note
that1 − θv is also uniform in[0, 1]); this has to be im-
plemented carefully to also control the intersection; see
Section 2 for details; see e.g. [11] for a general reference
on the coupling method.

2. PROOF
Throughout we fixF andw monotone, submodular. We

also fix two arbitrary setsA,B ⊆ V and letC = A ∩ B
andD = A ∪ B. The idea of the proof is to couple the four
processes

A = (At)
n−1
t=0 ∼ Q(A),

B = (Bt)
n−1
t=0 ∼ Q(B),

C = (Ct)
n−1
t=0 ∼ Q(C),

D = (Dt)
n−1
t=0 ∼ Q(D),

in such a way that

Cn−1 ⊆ An−1 ∩ Bn−1, (3)

and

Dn−1 ⊆ An−1 ∪ Bn−1. (4)

Indeed, we then have the following lemma.

LEMMA 1. Suppose there exists a coupling ofA,B,C and
D satisfying (3), (4). Then

σw(A) + σw(B) ≥ σw(A ∩ B) + σw(A ∪ B). (5)

PROOF. Indeed, we have by monotonicity and submodu-
larity

w(An−1) + w(Bn−1)

≥ w(An−1 ∩ Bn−1) + w(An−1 ∪ Bn−1)

≥ w(Cn−1) + w(Dn−1), (6)

and therefore, taking expectation we get (5).



Our coupling is based on the following ideas:

- Antisense coupling.The obvious coupling is to use the
sameθv ’s for all processes. It is easy to see that such
a coupling does not satisfy (4). It does however sat-
isfy (3). Intuitively, using the sameθv for A and B

“maximizes their intersection” while usingθv for A and
(1−θv) for B “maximizes their union.” We call this last
coupling, theantisense coupling. To dominate both the
intersection and the union simultaneously, we combine
these two couplings.

- Piecemeal growth. The growth of the four processes
can be divided in several stages where we add the initial
sets progressively. Roughly, the coupling below starts
by growingA ∩ B, thenA \ B and finallyB \ A. Fol-
lowing our previous comment, the last phase uses the
antisense coupling to allow the processB to dominate
D in that phase.

- Need-to-know representation. Finally, to help carry
out the previous remarks, we note that it is not necessary
to pick theθv ’s at the beginning of the process. Instead,
at each step, we uncover as little information as possible
aboutθv. This is related to the cascade model of [8]
although here we use an explicit combination of cascade
and threshold models.

We explain these ideas next. The proof of Theorem 1 follows
in Section 2.3.

2.1 Piecemeal growth
We first describe an equivalent representation of the pro-

cess where the initial set is added in stages. We denote by
Q(S | θ) the processQ(S) conditioned onθ = (θv)v∈V . For
a partitionS(1), . . . , S(K) of S (we allow some of theS(k) ’s
to be empty), consider the process

T = (Tt)
Kn−1
t=0 ∼ Q(S(1), . . . , S(K)),

where

1. For eachv ∈ V pick θv uniformly in [0, 1] and set
T−1 = ∅;

2. For1 ≤ k ≤ K, we set

(Tt)
kn−1
t=(k−1)n ∼ Q(T(k−1)n−1 ∪ S(k) | θ);

in other words, we add theS(k)’s one at a time and use
the sameθv ’s for all stages.

It is easy to see that the processesQ(S) and
Q(S(1), . . . , S(K)) have the same distribution. This result ac-
tually follows from a more general discussion in [8], but we
give a proof here for completeness.

LEMMA 2 (PIECEMEAL GROWTH). LetS(1), . . . , S(K)

be a partition ofS ⊆ V . Let

S = (St)
n−1
t=0 ∼ Q(S),

and

T = (Tt)
Kn−1
t=0 ∼ Q(S(1), . . . , S(K)).

ThenSn−1 andTKn−1 have the same distribution.

PROOF. Pickθv uniformly in [0, 1] for eachv ∈ V and let

S = (St)
n−1
t=0 ∼ Q(S | θ),

and

T = (Tt)
Kn−1
t=0 ∼ Q(S(1), . . . , S(K) | θ).

Moreover, let

T
′ = (T ′

t)
Kn−1
t=0 ∼ Q(S, ∅, . . . , ∅ | θ),

and

T
′′ = (T ′′

t )Kn−1
t=0 ∼ Q(∅, . . . , ∅, S | θ).

By monotonicity and induction on theK stages,

T ′′

Kn−1 ⊆ TKn−1 ⊆ T ′

Kn−1

But clearly

T ′

Kn−1 = T ′′

Kn−1 = Sn−1

so thatSn−1 = TKn−1.

2.2 Antisense phase and need-to-know rep-
resentation

To implement the antisense coupling, we define the fol-
lowing variant of the process.

DEFINITION 6. LetS(1), . . . , S(K) be a partition ofS and
let T ⊆ V \ S. We define the process

T = (Tt)
(K+1)n−1
t=0 ∼ Q−(S(1), . . . , S(K); T ),

where

1. For eachv ∈ V pickθv uniformly in[0, 1];

2. LetT = (Tt)
Kn−1
t=0 ∼ Q(S(1), . . . , S(K) | θ);

3. SetTKn = TKn−1 ∪ T ;

4. At timeKn + 1 ≤ t ≤ (K + 1)n − 1, initialize Tt =
Tt−1, and add toTt the set of nodes inV \ Tt−1 such
that

fv(Tt−1) − fv(TKn−1) ≥ 1 − θv.

LEMMA 3 (ANTISENSEPHASE). AssumeS(1), . . . , S(K)

is a partition ofS andT ⊆ V \ S. Let

S = (St)
(K+1)n−1
t=0 ∼ Q(S(1), . . . , S(K), T ),

and

T = (Tt)
(K+1)n−1
t=0 ∼ Q−(S(1), . . . , S(K); T ).

Then,S(K+1)n−1 andT(K+1)n−1 have the same distribution.

PROOF. As was discussed at the beginning of Section 2,
rather than picking theθv ’s at the beginning of the process, it
is useful to think of them as being progressively uncovered on
a need-to-know basis. Consider only thefirst stage of the pro-
cessS for the time being. LetS−1 = ∅. Suppose that, at time
t ≥ 1, v /∈ St−1. Then we have thatθv ∈ [fv(St−2), 1] and
all we need to know to decide ifv is added toSt is whether
or not θv ∈ [fv(St−2), fv(St−1)]. In other words, was the
increase infv between timet − 2 and t − 1 enough to hit



θv? Note that, given the event{fv(St−2) ≤ θv}, θv is uni-
formly distributed in[fv(St−2), 1] and we have thatθv is in
[fv(St−2), fv(St−1)] with probability

fv(St−1) − fv(St−2)

1 − fv(St−2)
.

Therefore, we can describe the process(St)
n−1
t=0 equivalently

as follows. We first setS−1 = ∅, S0 = S. Then, at step1 ≤
t ≤ n−1, we initializeSt = St−1 and for eachv ∈ V \St−1:

- With probability

fv(St−1) − fv(St−2)

1 − fv(St−2)
, (7)

we addv to St and pickθv uniformly in

[fv(St−2), fv(St−1)];

- Otherwise, we do nothing.

By the discussion above, this new version of the process has
the same distribution asQ(S(1)). We proceed similarly for
the following K − 1 stages to get(St)

Kn−1
t=0 which is then

distributed according toQ(S(1), . . . , S(K)).
We can clearly choose

(Tt)
Kn−1
t=0 = (St)

Kn−1
t=0 .

Then note that, at timet = Kn, for eachv /∈ SKn−1 =
TKn−1, we have thatθv is uniformly distributed in

[fv(SKn−1), 1] = [fv(TKn−1), 1].

For each suchv, we now pickθv uniformly in [fv(SKn−1), 1]
and set

θ′

v =

{

θv, v ∈ SKn−1,
fv(SKn−1) + 1 − θv, v /∈ SKn−1.

Finally, let

(St)
(K+1)n−1
t=Kn ∼ Q(SKn−1 ∪ T | θ),

and

(Tt)
(K+1)n−1
t=Kn ∼ Q(TKn−1 ∪ T | θ′).

That is, we run the last stage ofS andT as before, withθ and
θ′ respectively. It is clear thatT ∼ Q−(S(1), . . . , S(K); T )
by construction. Moreover, it follows easily thatS(K+1)n−1

andT(K+1)n−1 have the same distribution from the fact that
for a uniform variableθv in [fv(SKn−1), 1], the random vari-
ablesθv and fv(SKn−1) + 1 − θv have the same distribu-
tion.

2.3 Coupling
We are now ready to prove Theorem 1. See Figure 1 for

a graphical representation of the proof. We will need the fol-
lowing easy consequence of monotone submodularity.

LEMMA 4. Letf : 2V → R+ be monotone and submodu-
lar. Then ifS ⊆ S′ ⊆ V andT ⊆ T ′ ⊆ V , we have

f(S ∪ T ′) − f(S) ≥ f(S′ ∪ T ) − f(S′).

PROOF. Note that by monotonicity and submodularity

f(S ∪ T ′) − f(S) ≥ f(S ∪ T ) − f(S),

= f(S ∪ (T \ S)) − f(S),

≥ f(S ∪ (S′ \ (T ∪ S)) ∪ (T \ S))

−f(S ∪ (S′ \ (T ∪ S))),

≥ f(S′ ∪ T ) − f(S′).

PROOF. We proceed with our coupling ofA, B, C, andD.
In fact, by Lemmas 1, 2, and 3, it suffices instead to couple

A = (At)
3n−1
t=0 ∼ Q(A ∩ B, A \ B, ∅),

B = (Bt)
3n−1
t=0 ∼ Q−(A ∩ B, ∅; A \ B),

C = (Ct)
3n−1
t=0 ∼ Q(A ∩ B, ∅, ∅),

D = (Dt)
3n−1
t=0 ∼ Q−(A ∩ B, A \ B; B \ A),

in such a way that for all0 ≤ t ≤ 3n − 1

Ct ⊆ At ∩ Bt, Dt ⊆ At ∪ Bt. (8)

Our coupling is as follows. We pickθv uniformly in [0, 1] for
all v ∈ V and use the sameθ for all four processes.

By construction, for all0 ≤ t ≤ 2n − 1 we have

Bt = Ct ⊆ At

so that

Ct = At ∩ Bt.

Similarly for all 0 ≤ t ≤ 2n − 1 we haveDt = At so that

Dt ⊆ At ∪ Bt.

Thus (8) is satisfied for0 ≤ t ≤ 2n − 1. To see (8) holds also
for 2n ≤ t ≤ 3n − 1, note that by Lemma 4 for allv /∈ D2n

fv(B2n) − fv(B2n−1) ≥ fv(D2n) − fv(D2n−1),

sinceB2n−1 ⊆ D2n−1,

B2n = B2n−1 ∪ (B \ A),

and

D2n = D2n−1 ∪ (B \ A).

We proceed by induction. By monotonicity and Lemma 4, we
then have for all2n ≤ t ≤ 3n − 1

Dt \ D2n−1 ⊆ Bt \ B2n−1,

and

fv(Bt) − fv(B2n−1) ≥ fv(Dt) − fv(D2n−1),

∀ v /∈ D2n. This proves the claim since we then have for all
2n ≤ t ≤ 3n − 1, At = D2n−1 and

Dt \ D2n−1 ⊆ Bt

which implies

Dt ⊆ At ∪ Bt.

The condition

Ct ⊆ At ∩ Bt

is clear from the construction.



A

B

A

D

A3n−1 ∩ B3n−1

PhaseB \ A

A3n−1 ∪ B3n−1

B2n = B2n−1 ∪ (B \ A) → B3n−1

A2n = A2n−1 ∪ ∅ → A3n−1

C2n = C2n−1 ∪ ∅ → C3n−1

D2n = D2n−1 ∪ (B \ A) → D3n−1

PhaseA \ B

Bn = Bn−1 ∪ ∅ → B2n−1

An = An−1 ∪ (A \ B) → A2n−1

Dn = Dn−1 ∪ (A \ B) → D2n−1

Cn = Cn−1 ∪ ∅ → C2n−1

D0 = A ∩ B → Dn−1

C

PhaseA ∩ B

B0 = A ∩ B → Bn−1

A0 = A ∩ B → An−1

C0 = A ∩ B → Cn−1

B

Figure 1: The three phases of the coupling. In each phase, thedark shaded region is the initial set, while the light shaded
region is the final set. The setsA andB are indicated by dashed lines. The thick dashed lines show that the desired properties
are satisfied.



3. CONCLUDING REMARKS
Necessity.It is easy to see that the submodularity assump-

tion in Theorem 1 is necessary in the following sense: Any
function f which is not submodular admits a network with
activation functionf where the influence is not submodular.
Indeed, letf : 2V → R+, A, B ⊆ V such that

f(A) + f(B) < f(A ∩ B) + f(A ∪ B).

Let V ∗ = V ∪ {v∗} with fv∗ ≡ f andfv ≡ 1 for all v ∈ V .
It is then immediate to check that:

σ(A) + σ(B) = |A| + |B| + f(A) + f(B)

= |A ∩ B| + |A ∪ B|

+f(A) + f(B)

< |A ∩ B| + |A ∪ B|

+f(A ∩ B) + f(A ∪ B)

= σ(A ∩ B) + σ(A ∪ B).
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