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ABSTRACT

We prove and extend a conjecture of Kempe, Kleinberg, and

Tardos (KKT) on the spread of influence in social networks.
A social network can be represented by a directed grap

where the nodes are individuals and the edges indicate a form

of social relationship. A simple way to model the diffusion
of ideas, innovative behavior, or “word-of-mouth” effects
such a graph is to consider an increasing process of “irdécte
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in [7] imply that a greedy algorithm gives gt — 1/e — ¢)-
approximation algorithm for maximizing(S) among all sets
S of a given size. This result has important practical implica

h tions for many social network analysis problems, notabiglvi

marketing.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Stochastic Processes

(or active) nodes: each node becomes infected once an acti-

vation function of the set of its infected neighbors crosses
certain threshold value. Such a model was introduced by KKT
in [7, 8] where the authors also impose several hatural gssum
tions: the threshold values are (uniformly) random to aotou
for our lack of knowledge of the true values; and the actbrati
functions are monotone and submodular, i.e. have “diminish
ing returns.” The monotonicity condition indicates thatoale
is more likely to become active if more of its neighbors are
active, while the submodularity condition, indicates ttiee
marginal effect of each neighbor is decreasing when thefset o
active neighbors increases.

For an initial set of active node$, leto(S) denote the ex-
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1. INTRODUCTION

Social Networks. In recent years, diffusion processes on
social networks have been the focus of intense study. While
traditionally such processes have been of major interesgiin

pected number of active nodes at termination. Here we prove a demiology where they model the spread of diseases and im-

conjecture of KKT: we show that the functier{.5) is submod-

munization, see e.g. [12, 9, 10, 4, 1, 5], much of the recent in

ular under the assumptions above. We prove the same resultterest has resulted from applications in sociology, ecacem

for the expected value of any monotone, submodular function
of the set of active nodes at termination.

In other words, our results demonstrate that “local” sub-
modularity is preserved “globally” under diffusion proses.
This is of natural computational interest, as many optitora
problems have good approximation algorithms for submadula
functions. In particular, our results coupled with an argam
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and engineering. (See e.qg. [7] for references.)

In computer science, a strong motivation for analyzing dif-
fusion processes has recently emanated from the studyabf vir
marketing strategies in data mining, where various nogg-al
rithmic problems have been considered [2, 3, 7, 8]. Roughly
speaking,viral marketing—unlike conventional marketing—
takes into account the “network value” of potential custesne
i.e. it seeks to target a set of individuals whose influence on
their social network through work-of-mouth effects is high
(For more background on viral marketing, see [2, 3, 7, 8].)

Commonly-used heuristics to identify influential nodes in
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so-called degree centrality heuristics—or picking indials
with short average distance to the rest of the network—so-
called distance centrality heuristics [14]. Here we prove a
structural conjecture of Kempe, Kleinberg and Tardos (KKT)
8], which can be roughly stated as follows: if a diffusion rabd
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cause, under the submodularity property, optimizatiorbpro
lems, such as the viral marketing problem, are known to have
good approximation algorithms [13]. In particular, in [@feedy



algorithms based on the above conjecture were shown tov&chie the final active set. This gives(a — 1/e — ¢)-approximation

significantly better performances in practice than wideded
network analysis heuristics.

General Threshold Model. In [7], KKT introduced the
general threshold modgeh broad generalization of a variety of
natural diffusion models on networks, including the infltigin
linear threshold modebf Granovetter in sociology [6]. Given
an initial set of infected or active individuals on a network
the process grows in the following way. (See Section 1.1 for
a formal description.) Each individual, say has an activa-
tion function which measures the effect of its neighborsyon
and a threshold value. At any time, if the set of previousty in
fected neighbors af is such that its activation function crosses
its threshold value, then becomes infected. This process is
progressive—an active node stays active forever. KKT con-
sider the following natural assumptions:

- Thethreshold valuesrerandom This is to account for
our lack of knowledge of the exact threshold value of
each individual.

- Theactivation function@remonotone increasingThis
corresponds to the intuition that a node is more likely
to become infected if a larger set of its neighbors is in-
fected.

- The activation functionsare submodular This corre-
sponds to the fact that the marginal effect of each neigh-
bor of v decreases as the set of active nodes increases.

The Influence Maximization Problem. Since the diffu-
sion process defined above is increasing, it terminates afte
finite number of steps. For a given initial set of active nodes
S we defines(S) to be the expected size of the set of active
nodes at the end of the process. In litiduence Maximization
Problem we aim to find a sef5 of a fixed size maximizing
a(S).

The Influence Maximization Problem is a natural problem
to consider in the context of viral marketing. Given a social
network, it is desired to find a small set of “target” indivals
S0 as to maximize the number of customers who will even-
tually purchase a product following the effects of “word-of
mouth” [2, 3]. The same problem may also be of interest in
epidemiology where finding the sétof a fixed size maximiz-
ing o(S) is a natural problem both in terms of bounding the

algorithm for finding a sef of fixed size maximizingr(S).

1.1 The Model

In this section, we define formally thgeeneral threshold
model

DEFINITION1 (SociAL NETWORK). A social network
is given by:
- Aground sel/ with |V| =n
- A collection ofactivation functionsF = (f.)vev, where
fo:2V —[0,1]is a[0, 1]-valued set function ol .

Typically, we think of V' as the individuals of a social network
G = (V, E) where eacty, measures the effect efs neigh-
bors N(v) onwv. In particularf, depends only on neighbors
N (v) affectingv, so f,(S) = fu(N(v) NS) forall S. How-
ever, the specification of the graph will not be needed below.

DEFINITION2 (MONOTONICITY). The function
f: 2V — R is monotondf

fo(S) < fu(T)
for all
SCTCV.

DEFINITION 3 (SUBMODULARITY). The function
f:2Y — Ris submodulaif for all S,7 C V/

F)+H(T) = f(SNT) + f(SUT).

The monotonicity condition corresponds to the fact that the
effect of a larger set onis stronger than the effect of a smaller
set. The submodularity condition is equivalent to the faat t

if S C T andv € V then:

F(TU{v}) = f(T) < f(SU{v}) = £(9),

so the effect of each individual is decreasing when the set in
creases.

ASSUMPTION 1. Throughout, we assume that(0) = 0
and thatf, is monotone and submodular for alle V.

We will consider the following diffusion process.

DEfFINITION 4 (DIFFUsSION). For a given F, consider

spread of a disease and in terms of maximizing the effect of the following proces$ — (St)nf(} started atS C V:
= " CV:

immunization.

In [7] it was shown that the Influence Maximization Prob-
lem is N P-hard to approximate within a factér— 1 /e + ¢ for
alle > 0. (The problem is in fack! ~¢ hard to approximate
without the submodularity condition.) On the other hand, it
was shown in [8] that for alk > 0 it is possible find a set
S of fixed size that is 41 — 1/e — ¢)-approximation of the
maximum in random polynomial time if the set functienis
itself submodular, which leads to the following conjecture.

CONJECTUREL ([7, 8]). The functiory is submodular.

While the result of [7, 8] showed that is submodular

in special cases and related models (see below), the general

case was open prior to our work, as highlighted in a recent
invited talk of J. Kleinberg at FOCS 2006. In this paper we
prove Conjecture 1 and extend it to the case whe(€) is

1. Associate to each nodean independent random vari-
abled, uniformin|0, 1] ;

2. SetSy = S;

3. Attimet > 1, initialize S; = S;—1 and add toS; the
set of nodes iV \ S;—1 such thatf,(S;—1) > 0.

Clearly the process stops on or before time- 1. We denote
by Q7 (S) the distribution ofS when started aiS and write
S ~ Q#(S), where we will drop the subscript whéhis clear
from the context.

DEFINITIONS5  (INFLUENCE). For a weight functionw :
2" — Ry, we define the influenee, (S) of S C V as

ow(S) = Es[w(Sn-1)],

the expected value of any monotone, submodular function of WhereEs is the expectation unde®(.5).



1.2 Previous Results THEOREM1 (MAIN RESULT). Consider the process de-

Conjecture 1 was previously verified in several specialsase fined in Definition 4 where”” and w are monotone and sub-
and related models. modular, therr,, is monotone and submodular. In particular,
Linear Threshold Model [7]. This is the general thresh-  this is true whenw is the cardinality function.

old model withf, of the form COROLLARY 1. Consider the process defined in Defini-

£o(S) = Z bow, tion 4 where and w are monotone and submodular. Then

' there exists a (greedy) — 1/e — ¢)-approximation algorithm
for maximizingo ., (.S) among all setsS of sizek [8]. In par-
ticular, this is true whenw is the cardinality function.

weS

for nonnegative constants .,. The proof uses a representa-
tion in terms of a related percolation model. See [7] for tieta

“Normalized” Submodular Threshold Model [8]. This The corollary follows from Theorem 1 and Theorem 2 of [8].
is the general threshold model with satisfying the so-called KKT’s Greedy Approximation Algorithm is a simple variant
“normalized” submodularity property: of the standard greedy algorithm where sampling is used to

. . estimater,,.
F(SULE) = fulS) > L@V - fo (T), (1) Our proof. Similarly to [8], a natural idea is to run the
1= fu(S5) 1= fu(T) process in stages. Here we use three phases: we first grow

for all S C 7. Note that this is stronger than submodularity. A N B, then A \ B, and finally B \ A. See Figure 1 for
The proof takes advantage of an equivalence witldtwreas- an illustration. The key difference is in the execution of th
ing cascade modégkee below). last phase. To do away with the “normalized” submodularity

Independent Cascade Model [7]This is a related model condition of [8], we use
where each edg@, w) has an associated probabiljty ., of
beinglive, independently of all other edges. Infected nodes are
those connected to the initial set througdliva path The proof
of Conjecture 1 in this case also uses a percolation argument e and, more importantly, a novel “antisense” coupling tech-

e a careful combination of cascade and threshold models,
which we call the need-to-know representation;

Decreasing Cascade Model [8]A natural generalization nique based on the intuition that coupling the processes
of the previous model consists in defining for eagheach started at arbitrary set$ and B by usingd,, and1 — 6,
neighborw of v and each subset of neighbafof v a success respectively, in a way, “maximizes their union” (note
probability p,, (w, S) which is the probability that node will thatl — 0, is also uniform in[0, 1]); this has to be im-
succeed in activating given that nodes it are active and plemented carefully to also control the intersection; see
have failed to activate. Each nodev gets only one chance Section 2 for details; see e.g. [11] for a general reference
to activate each of its neighbors. KKT impose a natorder- on the coupling method.

independenceondition on the success probabilities, i.e. the
overall success probability of activatingdoes notdependon 2. PROOF
the order in which the active neighborswotry to activate it.
This model—called thgeneral cascade modal [7]—turns
out to be equivalent to thgeneral threshold modeinder the

Throughout we fixF andw monotone, submodular. We
also fix two arbitrary setsi, B C V and letC = AN B
andD = A U B. The idea of the proof is to couple the four

maps processes
w(SU{w}) — fu(S n
po(w, S) = ful 1{_;)(S)f ( ), A= (At)ti()i ~ Q(A),
v B = (B:)/2, ~ Q(B),
and C=(Co)izy ~Q(0),
r D = (Dy)}y ~ Q(D),
f”(S):1_1:[1(1_7’”(1”“5“1))’ in such a way that
wheresS = {’LU1,...,’LUT} andSi = {wl,...,wi}. When Cn-1 < An—1 ﬂBn_l’ (3)
po(w, S) > pu(w,T) 2 and
for all S C T and allv, w, the model is called théecreasing D1 € An—1 U Bn1. )
cascade model Indeed, we then have the following lemma.

It is easy to check that the decreasing cascade model is : :
equivalent to (1) under the mapping above. The proof of the D IS_aEtri\il\f/)ll?ngl.(S?u&[;o_srig:]ere exists a coupling®ofB, C and
conjecture for the decreasing cascade model works by cou- e
pling the processes started&tand7 with S C T and then ow(A)+ow(B) > ocw(ANB)+0w(AUB). (5)
addingw in a second phase where condition (2) is used.

_ PrROOF Indeed, we have by monotonicity and submodu-
In [7], it also shown that these results carry over to the

larit
non-progressivease wherd, is resampled independently at y
each time step and tgeneral marketing strategieshere one w(An—1) + w(Bn-1)
can use several marketing actions simultaneously. Seef7] f > w(An—1NBp_1) +w(An_1UBn_1)
details. > w(Cr1) + w(Dn_1), (6)

1.3 Main Result and therefore, taking expectation we get (S]]



Our coupling is based on the following ideas:

- Antisense coupling.The obvious coupling is to use the

samef,’s for all processes. It is easy to see that such
It does however sat-

a coupling does not satisfy (4).
isfy (3). Intuitively, using the samé, for A and B
“maximizes their intersection” while usirg, for A and
(1—0,) for B “maximizes their union.” We call this last
coupling, theantisense couplingTo dominate both the

intersection and the union simultaneously, we combine

these two couplings.

- Piecemeal growth. The growth of the four processes

PROOFR Pickd, uniformly in [0, 1] for eachv € V and let

S = (S1)i=y ~ Q(S0),

T = (1) ~ (s, ..., 55 ).
Moreover, let
T = (T})2 ' ~ Q(S,0,...,0]0),
and
T = (T ~ 9(0,...,0,5]0).

can be divided in several stages where we add the initial By monotonicity and induction on thi stages

sets progressively. Roughly, the coupling below starts

by growingA N B, thenA \ B and finallyB \ A. Fol-

lowing our previous comment, the last phase uses the

antisense coupling to allow the procd3sto dominate
D in that phase.

- Need-to-know representation. Finally, to help carry

out the previous remarks, we note that it is not necessary
to pick thed,’s at the beginning of the process. Instead,
at each step, we uncover as little information as possible

about#,,. This is related to the cascade model of [8]

Trn-1 CTrn-1 C Tin
But clearly

Txn-1=Tkn-1=Sn-1
sothatS,,—1 = Tkn—1. O

2.2 Antisense phase and need-to-know rep-
resentation

To implement the antisense coupling, we define the fol-

although here we use an explicit combination of cascade lowing variant of the process

and threshold models.

We explain these ideas next. The proof of Theorem 1 follows

in Section 2.3.

2.1 Piecemeal growth

DEFINITION 6. LetS™ ... SU be a partition ofS and
letT C V' \ S. We define the process

T =(T)E "t w0 (sW, ..., 5. 1),

We first describe an equivalent representation of the pro- Where

cess where the initial set is added in stages. We denote by

Q(S|0) the procesL(S) conditioned or¥ = (6,)vecv. For
a partitions™ ..., SU9 of S (we allow some of the&s*)’s
to be empty), consider the process

T =(T)Z5 " ~Q(s™W,..., s,
where

1. For eachv € V pick 6, uniformly in [0,1] and set
T_1 =0

2. Forl <k < K, we set
(TG ~ QT(—1yn—1 U S™ [ 0);

in other words, we add th§*)'s one at a time and use
the samé),’s for all stages.

It is easy to see that the proces€&sS) and
Q(SW, ..., 8% have the same distribution. This result ac-
tually follows from a more general discussion in [8], but we
give a proof here for completeness.

LEMMA 2 (PIECEMEAL GROWTH). LetS® .. S0
be a partition ofS C V. Let
S = (S)i% ~ Q(S),
and
T = (T)Kn 1 ~ o(sW, ..., sH)).

ThenS,,—1 andTk,—1 have the same distribution.

1. For eachv € V pick#, uniformly in|0, 1];
2. LetT = (1)Kt ~ 9(sW, ..., 55 |g);
3. Setl'xn, = Tkn1UT,

4. AttimeKn +1 <t < (K + 1)n — 1, initialize T; =
T:—1, and add td7; the set of nodes i \ 7;—1 such

that
f’u(Tt—l) - fv(TKn—l) 2 1- 01}-
LEMMA 3 (ANTISENSEPHASE). Assumes™® ... sUO
is a partition of S and7" C V' \ S. Let

S = (S)EFV T N (s, L 8T ),

and

T = (1) 5"~ o (sW, ..., 8% 1),

Then,S(k+1)n—1 andT{k 11),—1 have the same distribution.

PrROOF As was discussed at the beginning of Section 2,
rather than picking thé,’s at the beginning of the process, it
is useful to think of them as being progressively uncovered o
a need-to-know basis. Consider only fivet stage of the pro-
cessS for the time being. LeS_; = (. Suppose that, at time
t > 1,v ¢ Si—1. Then we have that, € [f,(S:—2),1] and
all we need to know to decide if is added taS; is whether
or notf, € [f,(Si—2), fu(Si—1)]. In other words, was the
increase inf, between time¢t — 2 andt¢ — 1 enough to hit



0,? Note that, given the evertf, (S;—2) < 6.}, 6, is uni-
formly distributed in[f,(S:—2), 1] and we have that, is in
[fo(St—2), fu(Se—1)] with probability

Jo(St—1) = fo(St—2)
1— fo(Se-2)

Therefore, we can describe the procéSs)7—, equivalently
as follows. We first sef_; = ), So = S. Then, at stef <
t < n—1,weinitializeS; = S;— and foreach € V'\ S;_1:

- With probability

Jo(St—1) = fo(St-2)
1— fu(Si—2) ~

we addv to S; and pické, uniformly in

[fo(St-2), fo(Se-1)];

@)

- Otherwise, we do nothing.

PrROOF Note that by monotonicity and submodularity
fSUT) = f(S) > f(SUT)— f(S),
F(SU(T\S)) - f(9),
FSUS'\(TUS)U(T\S))

—f(SU(S"\(TU9))),
fF8'UT) — f(S).

A\

Y

O

PROOF We proceed with our coupling ¢, B, C, andD.
In fact, by Lemmas 1, 2, and 3, it suffices instead to couple

A= (At)?io_l ~ Q(AQB’A\B’(D)’

B = (B2, ~Q-(ANB,0; A\ B),

C = (Ct)?zal ~ Q(Aﬂ B7®7®)7

D= (D)5 ~Q_(ANB,A\ B; B\ A),
insuchawaythatforal <¢ <3n-—1

Ct gAtﬂBt7 Dt gAtUBt. (8)

By the discussion above, this new version of the process hasOur coupling is as follows. We pick, uniformly in [0, 1] for

the same distribution a@(S*). We proceed similarly for

the following K — 1 stages to getS,)~<"~*

distributed according t@ (s, ..., $U).
We can clearly choose

(To)iZo " = (S

which is then

Then note that, at timé = Kn, for eachv ¢ Sk,—1 =
Tkn—1, we have that, is uniformly distributed in

[fU(SKn—l)v 1] = [fU(TKn—1)7 1]'

For each such, we now pickd,, uniformly in [f,(Sxn—1), 1]
and set

9/ _ 91}, v e Sanly
v f'u(Sanl)"_l_e'u’ U¢SK7L71~
Finally, let

K+1)n—1
(St)ian)

~ Q(Skn-1UT|0),
and
(T) " ~ Q(Trna UTO).

That is, we run the last stage 8fand T as before, witt and
0’ respectively. Itis clear thal ~ Q_(S™, ... S5 1)
by construction. Moreover, it follows easily th&fx ;1),—1

andTx41)n—1 have the same distribution from the fact that

for a uniform variablé,, in [f,(Skn—1), 1], the random vari-

ableséd, and f,(Skn—1) + 1 — 6, have the same distribu-

tion. O

2.3 Coupling

We are now ready to prove Theorem 1. See Figure 1 for
a graphical representation of the proof. We will need the fol

lowing easy consequence of monotone submodularity.

LEMMA 4. Letf : 2" — R, be monotone and submodu-

lar. ThenifS C S’ C VandT C T’ C V, we have

FSUT) = f(8) = f(S'UT) = ().

allv € V and use the samfor all four processes.
By construction, for alD < ¢ < 2n — 1 we have

By =Cy C Ay

so that
Cy = A¢ N By

Similarly for all0 < ¢ < 2n — 1 we haveD, = A; so that
D; C A, U B,.

Thus (8) is satisfied fab < ¢ < 2n — 1. To see (8) holds also
for 2n <t < 3n — 1, note that by Lemma 4 for all ¢ Da,,

fo(Ban) = fo(Ban-1) > fu(D2n) — fu(Dan-1),
sinceBan—1 C Dap—1,
B = Ban—1 U (B\ A),
and
D2y, = Dap—1 U (B\ A).

We proceed by induction. By monotonicity and Lemma 4, we
then have foralbn <t <3n—1

Dt \ D2n—1 g Bt \ BQn—h
and
Jo(Bt) = fo(B2n-1) > fo(Dt) = fu(Dan-1),

Vv ¢ Da,. This proves the claim since we then have for all
2n <t<3n-1, At = Dop_1 and

D\ Dan—1 C By
which implies
D, C A, U B,.
The condition
C: CANB

is clear from the construction.[d
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Dy =Dp_1U (A \ B) — Dop_1
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D2y, = Dop—1 U (B\ A) — D3p—1
A3n—1 U BBn—l

Figure 1: The three phases of the coupling. In each phase, ttidark shaded region is the initial set, while the light shaded
region is the final set. The setsl and B are indicated by dashed lines. The thick dashed lines showalthe desired properties
are satisfied.



3. CONCLUDING REMARKS [11] T. Lindvall. Lectures on the Coupling Method/iley,

Necessitylt is easy to see that the submodularity assump- New York, 1992.
tion in Theorem 1 is necessary in the following sense: Any [12] M. Morris, editor.Network EpidemiologyOxford
function f which is not submodular admits a network with University Press, 2004.
activation functionf where the influence is not submodular. [13] G. Nemhauser and L. Wolseynteger and
Indeed, letf : 2V — R, A, B C V such that Combinatorial OptimizationJohn Wiley, 1988.
F(A) + f(B) < f(AN B) + f(AU B). [14] S. Wasserman and K. FauSocial Network Analysis

Cambridge University Press, 1994.
LetV* =V U {v*} with f,» = fandf, = 1forallv e V.
It is then immediate to check that:

o(A)+o(B) = [A[+[B[+ f(A)+ f(B)
= |ANB|+|AUB]|
+f(A)+ f(B)
< |ANnB|+]AUB|
+f(ANnB)+ f(AUB)
= o(ANB)+0o(AUB,).
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