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Abstract 1 Introduction

Gibbs sampling also known as Glauber dynamics is a poputaffii i i i istributi i
technique for sampling high dimensional distributions rkedi on Efiicient approximate sampling from Gibbs distributions is

graphs. Of special interest is the behavior of Gibbs samgpim & central challenge of randomized algorithms. Examples
the Erd6s-Rényi random grapfi(n,d/n), where each edge isinclude sampling from the uniform distribution over inde-

chosen independently with probabilith/n andd is fixed. While nhendent sets of a graph 23, 22, 4, 7], sampling from the
the average degree Gi(n, d/n) is d(1 = o(1)), it contains many Eniform distributiongof%a![chin sina : raph [p15]g or sam-
nodes of degree of ordésg n/ log log n. g grap ,

The existence of nodes of almost logarithmic degrees ifling from the uniform distribution of colorings [12, 3, 5]

as uniform coloring (with a constant number of colors) or tl}e

Ising model at any fixed inverse temperatutethe mixing time techniques is given by Gibbs samplers, also knqwn as
of Gibbs sampling is at least'*2(1/lelezn)  Recall that Glauber dynamics. These are reversible Markov chains that

the Ising model with inverse temperatugedefined on a graph have the desired distribution as their stationary distitdu
G = (V,E) is the distribution over{+}" given by P(¢) = and where at each step the status of one vertex is updated. It

7 exP(B Y, wep o(v)o(u). High degree nodes pose a technis typically easy to establish that the chains will everigual

cal challenge in proving polynomial time mixing of the dyriam converge to the desired distribution
for many models including the Ising model and coloring. Aého '

all known sufficient conditions in terms @f or number of colors
needed for rapid mixing of Gibbs samplers are stated in tefims ~ Studying the convergence rate of the dynamics is

the maximum degree of the underlying graph. __interesting from both the theoretical computer science the
In this work we show that for every < oo and the Ising

model defined orG/(n, d/n), there exists @, > 0, such that for Statistical physics perspectives. Approximate convergen
all 8 < B4 with probability going tol asn — oo, the mixing time in polynomial time, sometimes catipid mixing is essential

of the dynamics ot (n, d/n) is polynomial inn. Our results are j, computer science applications. The convergence rate is
the first polynomial time mixing results proven for a naturaidel

onG(n,d/n) for d > 1 where the parameters of the model do nélS0 of natural interest in the physics where the dynamical
depend om. They also provide a rare example where one can prqueoperties of such distributions are extensively studses

a polynomial time mixing of Gibbs sampler in a situation véhéite g ¢ 117]. Much recent work has been devoted to determining
actual mixing time is slower thanmpolylog(n). Our proof exploits

in novel ways the local treelike structure of Erdés-Rémndom Sufficient and necessary conditions for rapid convergence
graphs, comparison and block dynamics arguments and atree#nGibbs samplers. A common feature to most of this

result of Weitz. : o
Our results extend to much more general families of grapWsork [23, 22, 4,7, 12, 3, 2, 18] is that the conditions for

which are sparse in some average sense and to much morelgekgfavergence are stated in terms of the maximal degree of the
interactions. In particular, they apply to any graph forethevery underlying graph. In particular, these results do not allow

vertexv of the graph has a neighborhodé(v) of radiusO(log n) i ivi i
in which the induced sub-graph is a tree union at M@k n for the analysis of the mixing rate of Gibbs samplers on the

edges and where for each simple pattvifw) the sum of the vertex Erdos-Rényi random graph, which is sparse on average, but
degrees along the path @(logn). Moreover, our result apply has rare denser sub-graphs. Recent work has been invested

also in the case of arbitrary external fields and provide trst fi; ;
FPRAS for sampling the Ising distribution in this case. Walfin in showing how to relax statements so that they do not

present a non Markov Chain algorithm for sampling the distion Involve maximal degrees [5, 13], but the results are not
which is effective for a wider range of parameters. In paitic strong enough to imply rapid mixing of Gibbs sampling for

for G(n,d/n) it applies for all external fields and < 34, where ;
dtanh(B4) = 1is the critical point for decay of correlation for thethe Ising model ort:(n, d/n) for d > 1 and any > 0 or

Ising model onG(n, d/n). for sampling uniform colorings frond:(n, d/n) for d > 1
Keywords: Erdés-Rényi Random Graphs, Gibbs Sample@?leOOd colors. The second challenge is presented as the
Glauber Dynamics, Mixing Time, Ising model. major open problem of [5].

In this paper we give the first rapid convergence result of
Gibbs samplers for the Ising model on Erdés-Rényi random
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all the interactions are positive and the external field & tbhain on{+}"" where given the current configuratienthe
same for all vertices. However, these results do not providext configuratiow’ is obtained by choosing a vertexn V'
a FPRAS in the case where different nodes have differemiformly at random and
external fields as we do here. ]

Our results are further extended to much more generaf Lettingo’(w) = o(w) forall w # v.
families of graphs that are “tree-like” and “sparse on av-
erage”. These are graph where every vertex has a radius ¢
O(log n) neighborhood which is a tree with at ma@stlog n) 1
edges added and where for each simple path in the neighbor- — — :
hood, the sum of degrees along the patiDidogn). An L exp(=2h0 =22 e Funo ()
important open problem [5] is to establish similar condito

for other models defined on graphs, such as the uniform dis- e Will be interested in the time it takes the dynamics
tribution over colorings. to get close to the distributions (1.1) and (1.2). Thiing

Below we define the Ising model and Gibbs saniime 7., of the chain is defined as the number of steps
plers and state our main result. Some related work dngeded in order to guarantee that the chain, starting from an
a sketch of the proof are also given in the introductioffbitrary state, is within total variation distantg2e from
Section 2 gives a more detailed proof though we have B¢ Stationary distribution. We will bound the mixing time
tried to optimize any of the parameters in proofs beloRY the relaxation time defined below.

The complete proofs can be found in the full paper at

'(v) is assigned the spis with probability

http://arxiv. org/ abs/ 0704. 3603. It is well known that Gibbs sampling is a reversible
Markov chain with stationary distributioR. Let1 = \; >
1.1 The Ising Model The Ising model is perhaps the'2 = -+ = Am = —1 denote the eigenvalues of the

simplest model defined on graphs. This model definedransition matrix of Gibbs sampling. Thepectral gapis
distribution on labelings of the vertices of the graph-by denoted bymax{1l — A2, 1 — [A,[} and therelaxation time

and—. The Ising model has various natural generalizatiofidS the inverse of the spectral gap. The relaxation time can
including the uniform distribution over colorings. Therigi P€ given in terms of the Dirichlet form of the Markov chain

model with varying parameters is of use in a variety of areB¥ the equation
of machine learning, most notably in vision, see e.qg. [9]. )
e { 25, P(0)(f(0)) }

Yoozr Qo,T)(f(0) = f(7))?

DEFINITION 1.1. The Ising model on a (weighted) graph (1.3)
with inverse temperaturg is a distribution on configura-

tions{+}" such that where f is any function on configurations(s,7) =
1 P(o)P(c — 7) and P(c — 7) is transition probability

(1.1) P(o)= 70 exp(fB Z a(v)o(u)) from o to 7. We use the result that the for reversible Markov
() {vu}EE chains the relaxation time satisfies

whereZ(3) is a normalizing constant. o 21_4) F< T <1 <1 i llog(min P(a))1>

More generally, we will be interested in Ising model 2 o
defined by: . o ]
(1.2) where 7,,,;,. IS the mixing time (see e.g. [1]) and so by

1 bounding the relaxation time we can bound the mixing time
P(o) = Z(5) exp( Y Pupo)o() + ) ho(v)), up to a polynomial factor.
{v,uleE v
For our proofs it will be useful to use the notiontdbck
dynamics The Gibbs sampler can be generalized to update
blocks of vertices rather than individual vertices. Fordi®

1.2 Gibbs Sampling The Gibbs sampler is a Mz;\rkovVl’V?"“’V’C C Vwith V' = U;V; the block dynamics of

chain on configurations where a configuratiofis updated the Gibbs sampler updates a configuratioby choosing a

by choosing a vertex uniformly at random and assigning !¢k Vi uniformly at random and assigning the spins/in

a spin according to the Gibbs distribution conditional o tﬁccording to the Gibbs distribution conditional on the spin
spins onG — {u}. on G — {V;}. The relaxation time of of the Gibbs sampler

can be given in terms of the relaxation time of the block
DEFINITION 1.2. Givenagraphi = (V, E) and an inverse dynamics and the relaxation times of the Gibbs sampler on
temperatures, Gibbs sampler is the discrete time Markothe blocks.

whereh,, are arbitrary and wheres,, , > 0 for all ©w andv.
In the more general case we will write= max,, , Bu,v-



PROPOSITIONL.1. If 7, IS the relaxation time of the THEOREM1.2. LetG = (V, E) be any graph om vertices
block dynamics and; is the maximum the relaxation timesatisfying the following properties. There exist> 0,0 <
onV; given any boundary condition froi — {V;} then by b < oo and0 < ¢ < oo such that for allv € V' it holds that
Proposition 3.4 of [17]

t(v,alogn) < blogn, m(v,alogn) < clogn.
(1.5) T < Tblock(m?XTi)fUnea@({#j tveVih

Then if
a

el/a(c —a)’

there exists constant@ = C(q, b, ¢, ) such that the mixing
time of the Glauber dynamics ®(n®). The result holds

for the homogeneous model (1.1) and for the inhomogeneous
model (1.2) providedh,| < 1008n for all v.

1.3 Erdés-Renyi Random Graphs and Other Models tanh(f3) <

of graphs The Erd6és-Rényi random graghi(n, p), is the
graph withn verticesV and random edgeB where each
potential edgéu, v) € V x V is chosen independently with
probabilityp. We takep = d/n whered > 1 is fixed. In
the casel < 1, itis well known that with high probability all

components of/(n, p) are of logarithmic size which implieSge\iark 1.1. The condition thath,| < 1008n for all
immediately that the dynamics mix in polynomial time 0, | pe needed in the proof of the result in the general
all 3. i case (1.2). However, we note that given Theorem 1.2 as
For a vertexv in G(n,d/n) let V(v,1) = {u € G : g pjack box, it is easy to extend the result and provide
d(u,v) < 1}, the set of vertices within distandeof v, g efficient sampling algorithm in the general case without
let S(v,l) = {u € G : d(u,v) = I}, let E(v,l) = any bounds on thé,. In the case where some of the
{(u,w) € G : u,w e V(v,1)} and letB(v, ) be the graph yerticesy satisfy|,| > 104n, it is easy to see that the

(V(v,0), E(v,1)). ) ) target distribution satisfies except with exponentiallyabm
Our results only require some simple features of ”ﬂ)‘:r'obability thato, = + for all v with h, > 103n and
neighborhoods of all vertices in the graph. o, = — for all v with h, < —108n. Thus we may set

o, = +whenh, > 106n ando,, = —whenh, < 108n and
consider the dynamics where these values are fixed.Doing so
will the effectively restrict the dynamics to the graph spxeoh
t(G) = |E| - |V] + 1. by the remaining vertices and will modify the valuespf
for the remaining vertices; however, it is easy to see thiat al
We call a pathyy, vs, . . . self avoidingf for all ¢ # j it holds remaining vertices will havéh, | < 1006n. It is also easy
thatv; # v;. We let themaximal path densityn be defined to verify that if the original graph satisfied the hypothesis

DerINITION 1.3. LetG = (V, E) be a graph and a vertex
in G. Lett(G) denote theéree accessf G, i.e.,

by of Theorem 1.2 then so does the restricted one. Therefore
m(G,v,l) = maxz dy, we obtain an efficient sampling procedure for the desired
I distribution.

where the maximum is taken over all self-avoiding paths
I" starting atv with length at most and d,, is the degree 1.5 Related Work and Open ProblemsMost results for

of nodeu. We writet(v, ) for ¢(B(v,1)) andm(v,1) for mixing rates of Gibbs samplers are stated in terms of the

m(B(v,1),v,1) maximal degree. Thus for sampling uniform colorings, the
o result are of the form: for every graph where all degrees are
1.4 Our Result at mostd if the number of colorg satisfies; > ¢(d) then

Gibbs sampling is rapidly mixing [23, 22, 4, 7, 12, 3, 2, 18].
THEOREM1.1. Let G be a random graph distributed asFor example, it is well known and easy to see that one can
G(n,d/n). When take¢(d) = 2d. Similarly, results for the Ising model are
stated in terms of < ((d). The novelty of the result
tanh(B) < %’ presented here is that it allows to study graphs where the
e*d average degree is small while some degrees may be large.
Previous attempts at studying this problem for sampling

there exists constant@ = C(3) such that the mixing time i . e
uniform colorings yielded weaker results. In [5] it is

of the Glauber dynamics i€ (n“) with high probability ) t f : !
asn goes toco. The result holds for the homogeneoud10Wn that Gibbs sampling rapidly mixes Gfin, d/n) if

model (1.1) and for the inhomogeneous model (1.2) provided™ Q4((logn)”) wherea < 1 and that a variant of the
Ih,| < 1008n for all v. algorithm rapidly mixes ify > Q4(loglogn/logloglogn).
v Indeed the main open problem of [5] is to determine if one
The theorem above may be viewed as a special caseaf take; to be a function off only. Our result here provides

the more general result. a positive answer to the analogous question for the Ising



model. We further note that other results where the cadh6 Proof Technique Our proof follows the following
ditions on degree are relaxed [13] do not apply in our settingain steps.

Subsequent to completing this work we have answere
the open problem of [5] and have shown in [19] that the
Glauber dynamics mixes in polynomial time for a fixed
number of colors; = ¢(d) which does not depend on
n. This required a different approach, based on a novel
partitioning of the graph into tree-like blocks in which
we could bound the spectral gap of the block dynamics.
The results also generalize to the hard-core model at low
fugacity and to general models of soft constraints at high
temperatures. Spirakis and Eythymiou [8] independently
have also produced a scheme for approximately sampling
from the random coloring distribution in polynomial time.
They take a different approach, instead of sampling using
MCMC they assign colours to vertices one at a time by 4
calculating the conditional marginal distributions makin

use of the decay in correlation on the graph.

The following propositions are easy and well known.

They show that ford > 1 and larges the mixing time is
exponential im and that for alll > 0 andg > 0 the mixing
time is more thampolylog(n). Their proof is omitted from
this extended abstract

PROPOSITION1.2. If d > 0 and 5 > 0 then with high
probability the mixing time of the dynamics 6#(n,d/n)
is at leastn!+$2(1/ loglogn),

PROPOSITIONL.3. If d > 1 then there exists!, such that if
B > (3, then the with probability going td, the mixing time
of the dynamics of¥(n, d/n) is exp(€2(n)).

It is natural to conjecture that properties of the Ising

model on the branching process wiltvisson(d) offspring

distribution determines the mixing time of the dynamics on
G(n,d/n). In particular, it is natural to conjecture that e
the critical point foruniqguenessf Gibbs measures plays a
fundamental role [10, 21] as results of similar flavor were
recently obtained for the hard-core model on random bi-

partited regulargraphs [20].

CONJECTUREL.1. If dtanh(5) > 1 then with probability
going tol asn — oo over G(n,d/n) the mixing time of
Gibbs sampler igxp(2(n)). If d > 1 anddtanh(8) < 1
then with probability going td asn — oo overG(n,d/n)
the mixing time of the Gibbs sampler is polynomiahin

After proposing the conjecture we have learned that a
recentresult of Antoine Gerschenfeld and Andrea Montanarie
implies exponential slow mixing for the Ising model on

G(n,d/n) whend tanh(3) > 1 [11].

K Analysis of the mixing time for Gibbs sampling on trees

of varying degrees. We find a bound on the mixing time
on trees in terms of the maximal sum of degrees along
any simple path from the root. This implies that &k

[ if we consider a tree where each node has number of
descendants that has Poisson distribution with parame-
terd — 1 then with high probability the mixing time of
Gibbs sampling on the tree is polynomial in its size. The
motivation for this step is that we are looking at tree-
like graphs Note however, that the results established
here hold for all3, while rapid mixing forG(n,d/n)
does not hold for all3. Our analysis here holds for all
boundary conditions and all external fields on the tree.

We next use standard comparison arguments to extend
the result above to case where the graph is a tree with a
few edges added. Note that with high probability for all

v € G(n,d/n) the induced subgraphi(v, £ log, n) on

all vertices of distance at mo$tlog, n fromv is a tree

with at most a few edges added. (Note this still holds
for all ).

We next consider the effect of the boundary on the root
of the tree. We show that for tree aflogn levels, the
total variation distance of the conditional distribution
at the root given alH boundary conditions and all
— boundary conditions i~ '~(1) with probability

1 — n~ =20 provideds < B, is sufficiently small
(this is the only step where the fact thatis small is
used).

Using the construction of Weitz [23] and a Lemma
from [2] we show that the spatial decay established in
the previous step also holds with probability- o(1)

for all neighborhood® (v, a log ) in the graph.

The remaining steps use the fact that a strong enough
decay of correlation inside blocks each of which is
rapidly mixing implies that the dynamics on the full
graph is rapidly mixing. This idea is taken from [6].

In order to show rapid mixing it suffices to exhibit a
coupling of the dynamics starting at al and all —
that couples with probability at leasf2 in polynomial
time. We show that the monotone coupling (where
the configuration started at is always “below” the
configuration started at) satisfies this by showing that
for eachv in polynomial time the two configurations at
v coupled except with probability ! /(2¢).

In order to establish the later fact, it suffices to show
that running the dynamics oB(v,alogn) starting at
all + and all+ boundary conditions and the dynamics



starting at all- and all— will couple atv except with whereVr, , . () (v,7) = {u € Tsaw(v) : d(u,v) < r}.
probabilityn = /(2¢) within polynomial time. When

1
e The final fact then follows from the fact that the dynam- tanh(f3) < 7

ics insideB(v,algg n) haye |_ooly_nomial milxing time ¢, any~y > 0 there exist constants = r(a, b, 3,v) and
and that the stationary distributions (v, 51og,) ¢ = (/(a,b, 3,+) such that Algorithm 1.1, with parameter
given + and — boundapl’ conditions agree atwith .),o; has running time(nC) and output distributior)
probability at least —n~"/(4e). with dry (P,Q) < n~". The result holds for the homoge-
We note that the decay of correlation on the sef0US model (1.1) and for the inhomogeneous model (1.2).
ay0|d|ng tree d_eflned by Weitz that we prove hgre gllows a The proof of theorems 1.4 and 1.3 can
different sampling scheme from the target distribution: In . .
. o . .be found in the long version of the paper at
deed, this decay of correlation implies that given any @S0 arxiv. oral abs/ 0704. 3603
ment to a subset of the verticésand anyv ¢ S we may P: -org ' '

calculate using the Weitz tree of radiwkg n in polynomial 1.7 AcknowledgmentE.M. thanks Andrea Montanari

time the cond|tl?nal prob_ab|||ty that(v) = + up to an ad- and Alistair Sinclair for interesting related discussions
ditive error ofn~'/100. Itis easy to see that this allow sam-

pling the distribution in polynomial time. More specifioall 5 Proofs

consider the following algorithm from [23].

Recall that the local neighborhood of a vertex@in, d/n)
ALGORITHM 1.1. Fix a radius parameter and label the looks like a branching process tree. In the first step of the
verticesuy, . .., v,. Then the algorithm approximately samproof we bound the relaxation time on a tree generated by a
ples fromP (o) by assigning the spins of sequentially. Re- Galton-Watson branching process. More generally, we show
peating froml < i < n: that trees that are not too dense have polynomial mixing

e In step: constructls 4, (v;), the tree of self-avoiding me

walks truncated at distaneefrom v;. DEFINITION 2.1. Let T be a finite rooted tree. We define
m(T) = maxr ), . d, Where the maximum is taken over
all simple pathsl" emanating from the root and, is the
degree of node.

e Calculate

pi = PT;‘AW (Uvi, = +|U{U1 »»»»» vi—1}r TA=Vi_y )

(The boundary conditions at the tree can be ChOS-EHEOREM 2.1. Let T be the relaxation time of the Glauber

arbitrarily; in particular, one may calculage with no dynamics o’ where0 < f,,, < 3 forall w andv and given
boundary conditions). arbitrary boundary conditions and external field. Then

e Fix 0,, = X,, whereX,, is a random variable with 7 < exp(48m(T)).
pi:P(XUi:+):1_P(XUi:_)' . . . .
Proof. We proceed by induction om with a similar argu-

Then we prove that: ment to the one used in [2] for a regular tree. Note that if
m = 0 the claim holds true since= 1. For the general case,
THEOREM1.3. Let ¢ be a random graph distributed asiet ;, pe the root off’, and denote its children by, . . . , ux
G(n,d/n). When and denote the subtree of the descendants bfy 7. Now
tanh(8) < 1’ let T’ be the tree obtained by removing theedges from
d to thew;, let P’ be the Ising model ofi” and letr’ be the

for any~ > 0 there exist constants= r(d, 3,7) andC = relaxation time orf”. By equation (1.3) we have that
C(d, 8,7) such that with high probability Algorithm 1.1,

with parameter- log n, has running timed(n“') and output , 7y e < 08X P(a)/P'(o)  _ exp(46k)
distribution Q with dy(P,Q) < n~". The result holds ~ ~ ming; Q(o,7)/Q'(0,7) T '

for the homogeneous model (1.1) and for the inhomogeneous o _
model (1.2). Now we divideT” into k + 1 blocks{{v}, {T'},...,{T*}}.

Since these blocks are not connected to each other the
THEOREM1.4. LetG = (V, E) be any graph om vertices mixing time of the block dynamics is simply By applying
satisfying the following properties. There exist- 0,0 < Proposition 3.4 of [17] we get that the relaxation timeTon
b < oo such that for alw € V, is simply the maximum of the relaxation times on the blocks,

(1.6) Vs aw (v) (v, alogn)| < pelogn 7 < max{1,7'}.



where 7 is the relaxation time ori. Note that by the Proof. Let K denote the degree of the root @f, and for
definition of m, it follows that the value ofn for each of 1 < i < K let M;(n — 1) denote the value of: for the
the subtree§" satisfiesn(7%) < m — k, and therefore for sub-tree off}, rooted at the’th child. Then:
all 7 it holds thatr? < exp(48(m — k)). This then implies

o P Blexp(tM(n)]

by (2.7) thatr < exp(40m) as needed]
= Flmax(1, max exp(t(M;(n —1)+ K)))]

For the applications considered for random and sparse Isisk
graphs, it is not always the case that the neighborhood of
a vertex is a tree, instead it is sometimes a tree with a = Zl(1 +eXp(tK))ZeXp(tMi(n —1))]
small number of edges added. Using standard comparison =1
arguments we show that the mixing time of a graph that = E[(1 + K exp(tK))]Elexp(tM (n —1))].
is a tree with a few edges added is still polynomial. Weaq s the result follows by induction provided that) is
also show that with high probability for th&(n, d/n) the large enough so that
neighborhoods of all vertices are tree-like.

K

exp(c(t)) > E(1 + K exp(tK)).
PROPOSITION2.1. Let G be a graph onr vertices with
r + s — 1 edges that has a spanning tré&ewith m(7") = m.
Then the mixing time of the Glauber dynamics of with
any boundary conditions and external fields satisfies:

For the second statement of the theorem, note that by the
previous theorem we have that

E7(n) < Elexp(48M(n))],
T < exp(45(m + s)).
D4 ) whereM (n) is the random value af: for the treeT,, so if

Proof. Repeating the argument of Theorem 2.1, these edg4$) = exp(c(43)) thenEr(n) < C(8)".

of G\T costs at mostxp(4/3s) to the relaxation time. The .
proof follows. O For the last part of the theorem, 1a% be independent

copies of N and note that

2.1 Some properties of Galton Watson Treeddere we (2.8) Eexp(tZny1)
prove a couple of useful properties for Galton Watson trees 2
that will be used below. We €l be the tree generated by a _ Eexp(z": td*(”Jfl)N-)
Galton-Watson branching process with offspring distinut !
N such that for allt, Eexp(tN) < oo and such that 2z,
E(N) = d. Of particular interest to us would be the Poisson _ —(n+1

dis(strii)ution witﬁ mearnl which has N E[E[QXP(Z ¢ )Ni|Z"]]

=0

=0
Eexp(tN) = exp(d(e' — 1)). = E[(Elexp(td~ "' N)])?"]
i = Eexp(log(E exp(td~ ™tV N))Z,)
We letT;, denote the first levels of . We letM (n) denote
the value ofm for T'(n) and 7(n) the supremum of the which recursively relates the exponential momentgpf |
mixing times given any boundary conditions and exterri@l the exponential moments &f,. In particular since all the
fields assuming that = sup 3,.,. We denote byZ, the exponential moments ¢f; exist, £ exp(tZ,,) < oo forall ¢
number of descendants at level andn. When0 < s <1

THEOREM2.2. Under the assumptions above we have: (2.9) Eexp(sN) = exp(d(e” — 1)) < exp(sd(1 + s)).

o There exists a positive functiatit) such that for allr  NOW fixat and lett, = texp(2t Zi:nﬂgﬂ)' For some

and alln: sufficiently largej we have thatxp(2t )~ d~*") < 2

andt,d~ (™1 < 1foralln > j. Thenforn > j by
Elexp(tM(n))] < exp(c(t)n). equations (2.8) and (2.9),
—(n+1)

e ThenE7(n) < C(B)" for someC(3) < oo depending Eexp(tni1Zniad )

on g = sup B, only. = Fexp(log(E exp(tn_kld*(”“)Ni))Zn)

—(n+1 —n

e If N is the Poisson distribution with meakthen for all < Eexp(tpi1(1+ tpard™ ") Z,d ")

(t
t>0, < Eexp(tyy1(1+2td= ") Z,d7™)
sup Elexp(tZ,d™")] < occ. < Bexp(tnZnd™)



and so it follows by a union bound over alb € G and1 <
I < alogn we have with high probability for all,
Slip_EeXP(thdin) < Sl;P_EeXp(thndin) |B(v,alogn)| < 3(1 —d~')neleedlogn.
"= "= , In the construction of (v, alogn) there may be some
= Eexp(t;Z;d™7) < oo edges in B(v,alogn) which are not explored and so
are not inT(v,alogn). Each edge between,w €
V(v,alogn) which is not explored in the construction of
When the branching process is super-critical, the num(v, alogn) then is present itB(v, alog n) independently
ber of vertices i€)((EW)") and the result above gives tha®f 7'(v,alogn) with probability d/n. There are at most
the mixing time is polynomial in the number of vertices of3(1 — d~')n*'*¢%logn)? unexplored edges. Now when
Galton Watson branching process with high probability. We> 1/(1 — 2alogd),
remark that all our bounds here are increasing in the degrees ) ) iy alosd )
of the vertices so if a random tree T is stochastically domi- £ (Binomial((3(1 —d~")n®*¢%logn)®, d/n) > k)
nated by a Galton-Watson branching process then the same-O (#2102 4=1) (1og )2k) = 5, =1 =41
bound applies.

which completes the result]

so by a union bound with high probability we have
2.2 Structure of Random Graphs t(v,alogn) < k. Now a self-avoiding path ifB(v, alogn)
. can traverse each of thedeedges at most once so this
LEMMA 2.1. Let G be a random graph distributed as,5th can be split into at most + 1 self-avoiding paths

1 :
G(n,d/n). For 0 < a < gy there exists somej, 1, ;10g1) and hence with high probabilitys(v, 1) <
c(a,d) such that with high probability, for alb € G, (]ogpn wherec = (k+1)(as +2).0

m(v,alogn) < clogn. There existg = k(a,d) > 0 such

that with high probability, for al € G, t(v,alogn) < k. LEMMA 2.2. When0 < a < 3Toga With high probability

: . forallv e G,
Proof. We construct a spanning trée(v,l) of B(v,l) in

a st.andard mannet. _Take some arbitrary orde_ring of the Vg aw (v) (v; alogn)| < O(n®'°8 4 log n)
vertices ofG. Start with the vertexw and attach it to all
its neighbors in;. Now take the minimal vertex i§(v, 1), whereVr, . () (v,7) = {u € Tsaw (v) : d(u,v) < r}.
according to the ordering, and attach it to all its neighliors
G which are not already in the graph. Repeat this for edétpof. We now count the number of self-avoiding walks
of the vertices inS(v, 1) in increasing order. Repeat thiof length at mostalogn in B(v,alogn). By the proof
for S(v,2) and continue untilS(v,! — 1) which completes of Lemma 2.7 we have that with high probability for
T(v,1). By construction this is a spanning tree (v, 7). all v, |B(v,alogn)] < 3(1 — d~')n*"e?logn and
The construction can be viewed as a breadth first seatth alogn) < k. Lete, ..., e (y,a105n) denote the edges
of B(v,1) starting fromwv and exploring according to ourin B(v, alogn) which are not inl’(v, alogn). Now every
ordering. vertex inu’ € Tsaw (v) corresponds to a unique self avoid-
By a standard argumefit(v, alogn) is stochastically ing walk in B(v,alogn) fromwv to u. A self-avoiding walk
dominated by a Galton-Watson branching process with off-B(v, a log n) passes through each edge at most most once
spring distribution Poissdd). Then by repeating the arguso in particular it passes through each of theat most

ment of Theorem 2.2 for somie once. So a path which beginsatraverses through some
o sequence;, , ..., e; in particular directions and then ends
Eexp(m(T'(v,alogn),v,alogn)) < §* 8" at u is otherwise uniquely defined since the intermediate
_ steps are paths ifi(v, alogn) which are unique. There are
and so,P(m(T (v, alogn), v, alogn)) > (ad +2)logn) = mostk(k!) sequences;,,...,e;, there are2* choices

O(n=2) which implies that with high probability
m(T (v,alogn),v,alogn)) > (ad + 2)logn for all
v.

of directions to travel through them, and at ma&st —
d—Yn2leed]og n possible terminal vertices iB (v, a log n)

< _ J—1\ok ! alogd .
If Z, are the number of offspring in generatior?o|VTSAW(”)(v’alogn)'_3(1 d=)2%k(k!)n logn

[ of a Galton-Watson branching process with offspring
distribution Poissofil) by Theorem 2.2 we have tha

sup, E exp(Z1/d') < oo and since t2.3 Spatial decay of correlation for tree-like neighbor-

hoods

l l 3
P(|S(v,1)] > 3d'logn) < P(exp(Zi/d’) > n°) PROPOSITION2.2. LetT be a tree such that(v, a) < m.
< n 3Eexp(Z1/d), Thens|(v,a)| < (m=at1ye,



Proof. By a simple induction on the height of the tree EMMA 2.5. For a graphG andv € G there existsd C
|S(v,a)] must be maximized by a spherically symmetri€s,., and some configurationy on A such that,

tree, that is one where the degrees of the vertices depeyd onl

on their distance to. If d; is the degree of a vertex distance Pa(oy = +loa) = Pr(oy = +loa, Ta-a).

i fromv then by the arithmetic-geometric inequality The setd corresponds to the terminal vertices of path which

returns to a vertex already visited by the path.

a—1 a—1
|S(v,a)| = do H(di -1)< ((Z di = (a=1))/a) LEMMA 2.6. Suppose that, b, ¢, § satisfy the hypothesis of
i=1 i=0 Theorem 1.2. Then,

IN

(m—a—i—l)a
m—aeray) 1
a max P(o, = +|oa, =+) — P(oy, = +|oa, =—) =o(—)

veG n

O
whereA,, C S(v,alogn).
LEMMA 2.3. If T is a tree, P is the Ising model with

arbitrary external field (including, = 00 meaning thav Proof. Apply Lemma 2.5 we have that it = 5(v,alogn)

has to taket) and g3, , < § for all v, v andr is the number then
of vertices inS(v, 1) then Po(oy = +|lon =+)  Pr(o, =+|oa = +,7a-a1)
Pg(a'v = —|—|0'A = —) n PT(O'U e —|—|0'A/ = —,TA,A/).
Ploy = Hloswn =+) _ ! . o . .
< exp(20r(tanh §)°). Conditioning onr, is equivalent to setting the external field

P(o, = +|o vl) = — . ~ .
( st ) atu € Ato signt,)co. Let Pr be the Ising model off's,,

Proof. The case of no external field ant} , = 3 follows Wwith no external field. Then by Lemma 2.4
from the second equation in the proof of Theorem 2.1 in [16]. ~

It is a well known and easy to see that on trees wher 7 (90 = Hloar = +,7a-n') < fT(UU =tlow =+
there is no external fiel# (o, = +|os = +)ismonotonein  Pr(cv = +|oa = =, 7a-2) = Pr(o, = +lon = —
Bu,v Since the recursions used to calcul®ter, = +|ox =
+) are monotone i, ,. Consequently Lemma 2.3 holds as < =
long as all the external fields ate The fact that the lemma Pr(oy = +105,4.(v.alogn) =~
holds for arbitrary external fields follows from Lemma 4.} horeg

< ﬁT(U’U = +|055aw(v,alogn) =+

)
)
)
)

saw(V,alogn) = {u € Ty (v,alogn) : d(u,v) =

of [2] which we state below.] alogn}. NOW SuUpposev = uj, us,...,u iS a non-
LEMMA 2.4. If T is a tree, P is the inhomogeneous Ising:eloeating walk inT.,, and letuy, u3,. .., uj, be the cor-
model with interactiorg,, ,, with external field and’ is the ; Spogg'hne% V\,'alk, InG. ’Tizeg :g:réhia%znsagﬁ'ﬂ%d
inhomogeneous Ising model with the same interactigns ~ " U1ty - ’%’“ ;o b 9 .
but with no external field then or for somej < k, u; = uy in which caseuy is a
leaf of Ts,,, and so has degree 1. It also follows from
P(o, = +|oa = +) 16(01; = +|oa = +) the construction ofT,, that the degree ofy; is less

<=

. than or equal to the degree of and so we have that
P(oy, = +|oa = —) P(oy, = +|oa = —) q g of

m(v,alogn) < m(Tsqw,v,alogn) + 1. The by Propo-
. ) " clogn—alogn+2\aqlogn __
Now B(v,alogn) is not in general a tree so we us€tion 2.2[Ssew (v, alogn)| < (= )R =

alogn

the self-avoiding tree construction of Weitz [23] to redug@(n®'°8((c=4)/a)) = o(n~1(tanh B)~*1°s™).  Applying
the problem to one on a tree. The tree of self-avoidikgmma 2.3 completes the restili.

walks, which we denot&,,, (v, alogn), is the tree of paths

in B(v,alogn) starting fromv and and not intersecting2.4 Proof of the Main Result

themselves, except at the terminal vertex of the path. Thrﬁ\%mc (Theorem 1.2) LetX#, denote the Gibbs sampler
. . o

FE:asn t(':f(')en dStrthr:'c;n ::tlgh .grteﬁ.c'ﬁs‘l?“ (gs’ Zloni :L)raﬁanabio started from alk-, coupled together ofv. Fix some vertex
IrelateIJI\ WXI/ an(;/a C(;(nlfi u\r/;tilon glt\:) the cor:Jes (\;Vn(;lin v € G. Define four new chain@y’, Q; , Z," andZ, . These
. 9 A P 9 ¢hains run the Glauber dynamics and are coupled With

, ) : .
ﬁ E Ts‘a”iﬁé%?g;);ng Zog)ggta“_?_ﬁgl’q' _F#ég‘gr:]ngri I(];f andX, insideB(v,alogn) but are fixed (i.e. do not update)
2 C (4, B) = d(4, B'). : outsideB(v,alogn). They are given the following initial

[23] gives the following result. Each vertex (edge)iaf, .., conditions

corresponds to a vertex (edge)@fand Pr is as the Ising '

model onT,,, defined by taking the corresponding external e ;" starts from all+ configuration (and therefore has
field and interactions. all + boundary conditions during the dynamics).



e (), starts from all— configuration (and therefore has-1/(log(d tanh(z3)))
P(Z(v) # Z; (v))

all — boundary conditions during the dynamics).

B(v,alogn) and Z; is distributed according to

the stationary distribution insid® (v, alogn) given

< a < (2logd)~! we still have
< o(n~1). This is done with a modifi-

] ) _cation of Lemma 2.6 to establish decay of correlation on the
e Z; starts from all + configuration outside raph.C]

the all + boundary condition (therefor&;” will have References

this distribution for allt).
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