
Rapid Mixing of Gibbs Sampling on Graphs that are Sparse on Average

Elchanan Mossel∗ Allan Sly †

Abstract
Gibbs sampling also known as Glauber dynamics is a popular
technique for sampling high dimensional distributions defined on
graphs. Of special interest is the behavior of Gibbs sampling on
the Erdős-Rényi random graphG(n, d/n), where each edge is
chosen independently with probabilityd/n andd is fixed. While
the average degree inG(n, d/n) is d(1 − o(1)), it contains many
nodes of degree of orderlog n/ log log n.

The existence of nodes of almost logarithmic degrees im-
plies that for many natural distributions defined onG(n, p) such
as uniform coloring (with a constant number of colors) or the
Ising model at any fixed inverse temperatureβ, the mixing time
of Gibbs sampling is at leastn1+Ω(1/ log log n). Recall that
the Ising model with inverse temperatureβ defined on a graph
G = (V, E) is the distribution over{±}V given by P (σ) =
1
Z

exp(β
P

(v,u)∈E σ(v)σ(u)). High degree nodes pose a techni-
cal challenge in proving polynomial time mixing of the dynamics
for many models including the Ising model and coloring. Almost
all known sufficient conditions in terms ofβ or number of colors
needed for rapid mixing of Gibbs samplers are stated in termsof
the maximum degree of the underlying graph.

In this work we show that for everyd < ∞ and the Ising
model defined onG(n, d/n), there exists aβd > 0, such that for
all β < βd with probability going to1 asn → ∞, the mixing time
of the dynamics onG(n, d/n) is polynomial inn. Our results are
the first polynomial time mixing results proven for a naturalmodel
onG(n, d/n) for d > 1 where the parameters of the model do not
depend onn. They also provide a rare example where one can prove
a polynomial time mixing of Gibbs sampler in a situation where the
actual mixing time is slower thannpolylog(n). Our proof exploits
in novel ways the local treelike structure of Erdős-Rényirandom
graphs, comparison and block dynamics arguments and a recent
result of Weitz.

Our results extend to much more general families of graphs
which are sparse in some average sense and to much more general
interactions. In particular, they apply to any graph for which every
vertexv of the graph has a neighborhoodN(v) of radiusO(log n)
in which the induced sub-graph is a tree union at mostO(log n)
edges and where for each simple path inN(v) the sum of the vertex
degrees along the path isO(log n). Moreover, our result apply
also in the case of arbitrary external fields and provide the first
FPRAS for sampling the Ising distribution in this case. We finally
present a non Markov Chain algorithm for sampling the distribution
which is effective for a wider range of parameters. In particular,
for G(n, d/n) it applies for all external fields andβ < βd, where
d tanh(βd) = 1 is the critical point for decay of correlation for the
Ising model onG(n, d/n).
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1 Introduction

Efficient approximate sampling from Gibbs distributions is
a central challenge of randomized algorithms. Examples
include sampling from the uniform distribution over inde-
pendent sets of a graph [23, 22, 4, 7], sampling from the
uniform distribution of matchings in a graph [15], or sam-
pling from the uniform distribution of colorings [12, 3, 5]
of a graph. A natural family of approximate sampling
techniques is given by Gibbs samplers, also known as
Glauber dynamics. These are reversible Markov chains that
have the desired distribution as their stationary distribution
and where at each step the status of one vertex is updated. It
is typically easy to establish that the chains will eventually
converge to the desired distribution.

Studying the convergence rate of the dynamics is
interesting from both the theoretical computer science the
statistical physics perspectives. Approximate convergence
in polynomial time, sometimes callrapid mixing, is essential
in computer science applications. The convergence rate is
also of natural interest in the physics where the dynamical
properties of such distributions are extensively studied,see
e.g. [17]. Much recent work has been devoted to determining
sufficient and necessary conditions for rapid convergence
of Gibbs samplers. A common feature to most of this
work [23, 22, 4, 7, 12, 3, 2, 18] is that the conditions for
convergence are stated in terms of the maximal degree of the
underlying graph. In particular, these results do not allow
for the analysis of the mixing rate of Gibbs samplers on the
Erdős-Rényi random graph, which is sparse on average, but
has rare denser sub-graphs. Recent work has been invested
in showing how to relax statements so that they do not
involve maximal degrees [5, 13], but the results are not
strong enough to imply rapid mixing of Gibbs sampling for
the Ising model onG(n, d/n) for d > 1 and anyβ > 0 or
for sampling uniform colorings fromG(n, d/n) for d > 1
and1000d colors. The second challenge is presented as the
major open problem of [5].

In this paper we give the first rapid convergence result of
Gibbs samplers for the Ising model on Erdős-Rényi random
graphs in terms of the average degree andβ only. Our results
hold for the Ising model allowing different interactions and
arbitrary external fields. We note that there is an FPRAS that
samples from the Ising model on any graph [14] as long as



all the interactions are positive and the external field is the
same for all vertices. However, these results do not provide
a FPRAS in the case where different nodes have different
external fields as we do here.

Our results are further extended to much more general
families of graphs that are “tree-like” and “sparse on av-
erage”. These are graph where every vertex has a radius
O(log n) neighborhood which is a tree with at mostO(log n)
edges added and where for each simple path in the neighbor-
hood, the sum of degrees along the path isO(log n). An
important open problem [5] is to establish similar conditions
for other models defined on graphs, such as the uniform dis-
tribution over colorings.

Below we define the Ising model and Gibbs sam-
plers and state our main result. Some related work and
a sketch of the proof are also given in the introduction.
Section 2 gives a more detailed proof though we have not
tried to optimize any of the parameters in proofs below.
The complete proofs can be found in the full paper at
http://arxiv.org/abs/0704.3603.

1.1 The Ising Model The Ising model is perhaps the
simplest model defined on graphs. This model defines a
distribution on labelings of the vertices of the graph by+
and−. The Ising model has various natural generalizations
including the uniform distribution over colorings. The Ising
model with varying parameters is of use in a variety of areas
of machine learning, most notably in vision, see e.g. [9].

DEFINITION 1.1. The Ising model on a (weighted) graphG
with inverse temperatureβ is a distribution on configura-
tions{±}V such that

(1.1) P (σ) =
1

Z(β)
exp(β

∑

{v,u}∈E

σ(v)σ(u))

whereZ(β) is a normalizing constant.
More generally, we will be interested in Ising models

defined by:
(1.2)

P (σ) =
1

Z(β)
exp(

∑

{v,u}∈E

βu,vσ(v)σ(u) +
∑

v

hvσ(v)),

wherehv are arbitrary and whereβu,v ≥ 0 for all u andv.
In the more general case we will writeβ = maxu,v βu,v.

1.2 Gibbs Sampling The Gibbs sampler is a Markov
chain on configurations where a configurationσ is updated
by choosing a vertexv uniformly at random and assigning it
a spin according to the Gibbs distribution conditional on the
spins onG − {v}.

DEFINITION 1.2. Given a graphG = (V, E) and an inverse
temperatureβ, Gibbs sampler is the discrete time Markov

chain on{±}V where given the current configurationσ the
next configurationσ′ is obtained by choosing a vertexv in V
uniformly at random and

• Lettingσ′(w) = σ(w) for all w 6= v.

• σ′(v) is assigned the spin+ with probability

1

1 + exp(−2hv − 2
∑

u:(v,u)∈E βu,vσ(u))
.

We will be interested in the time it takes the dynamics
to get close to the distributions (1.1) and (1.2). Themixing
time τmix of the chain is defined as the number of steps
needed in order to guarantee that the chain, starting from an
arbitrary state, is within total variation distance1/2e from
the stationary distribution. We will bound the mixing time
by the relaxation time defined below.

It is well known that Gibbs sampling is a reversible
Markov chain with stationary distributionP . Let 1 = λ1 >
λ2 ≥ . . . ≥ λm ≥ −1 denote the eigenvalues of the
transition matrix of Gibbs sampling. Thespectral gapis
denoted bymax{1 − λ2, 1 − |λm|} and therelaxation time
τ is the inverse of the spectral gap. The relaxation time can
be given in terms of the Dirichlet form of the Markov chain
by the equation

(1.3) τ = sup

{
2

∑
σ P (σ)(f(σ))2∑

σ 6=τ Q(σ, τ)(f(σ) − f(τ))2

}

where f is any function on configurations,Q(σ, τ) =
P (σ)P (σ → τ) and P (σ → τ) is transition probability
from σ to τ . We use the result that the for reversible Markov
chains the relaxation time satisfies

(1.4) τ ≤ τmix ≤ τ

(
1 +

1

2
log(min

σ
P (σ))−1

)

where τmix is the mixing time (see e.g. [1]) and so by
bounding the relaxation time we can bound the mixing time
up to a polynomial factor.

For our proofs it will be useful to use the notion ofblock
dynamics. The Gibbs sampler can be generalized to update
blocks of vertices rather than individual vertices. For blocks
V1, V2, . . . , Vk ⊂ V with V = ∪iVi the block dynamics of
the Gibbs sampler updates a configurationσ by choosing a
block Vi uniformly at random and assigning the spins inVi

according to the Gibbs distribution conditional on the spins
on G − {Vi}. The relaxation time of of the Gibbs sampler
can be given in terms of the relaxation time of the block
dynamics and the relaxation times of the Gibbs sampler on
the blocks.



PROPOSITION1.1. If τblock is the relaxation time of the
block dynamics andτi is the maximum the relaxation time
on Vi given any boundary condition fromG − {Vi} then by
Proposition 3.4 of [17]

(1.5) τ ≤ τblock(max
i

τi)max
v∈V

{#j : v ∈ Vj}.

1.3 Erdős-Rényi Random Graphs and Other Models
of graphs The Erdős-Rényi random graphG(n, p), is the
graph withn verticesV and random edgesE where each
potential edge(u, v) ∈ V × V is chosen independently with
probabilityp. We takep = d/n whered ≥ 1 is fixed. In
the cased < 1, it is well known that with high probability all
components ofG(n, p) are of logarithmic size which implies
immediately that the dynamics mix in polynomial time for
all β.

For a vertexv in G(n, d/n) let V (v, l) = {u ∈ G :
d(u, v) ≤ l}, the set of vertices within distancel of v,
let S(v, l) = {u ∈ G : d(u, v) = l}, let E(v, l) =
{(u, w) ∈ G : u, w ∈ V (v, l)} and letB(v, l) be the graph
(V (v, l), E(v, l)).

Our results only require some simple features of the
neighborhoods of all vertices in the graph.

DEFINITION 1.3. LetG = (V, E) be a graph andv a vertex
in G. Let t(G) denote thetree accessof G, i.e.,

t(G) = |E| − |V | + 1.

We call a pathv1, v2, . . . self avoidingif for all i 6= j it holds
that vi 6= vj . We let themaximal path densitym be defined
by

m(G, v, l) = max
Γ

∑

u∈Γ

du

where the maximum is taken over all self-avoiding paths
Γ starting atv with length at mostl and du is the degree
of nodeu. We writet(v, l) for t(B(v, l)) and m(v, l) for
m(B(v, l), v, l).

1.4 Our Result

THEOREM 1.1. Let G be a random graph distributed as
G(n, d/n). When

tanh(β) <
1

e2d
,

there exists constant aC = C(β) such that the mixing time
of the Glauber dynamics isO(nC) with high probability
as n goes to∞. The result holds for the homogeneous
model (1.1) and for the inhomogeneous model (1.2) provided
|hv| ≤ 100βn for all v.

The theorem above may be viewed as a special case of
the more general result.

THEOREM 1.2. LetG = (V, E) be any graph onn vertices
satisfying the following properties. There exista > 0, 0 <
b < ∞ and0 < c < ∞ such that for allv ∈ V it holds that

t(v, a log n) ≤ b logn, m(v, a log n) ≤ c log n.

Then if

tanh(β) <
a

e1/a(c − a)
,

there exists constant aC = C(a, b, c, β) such that the mixing
time of the Glauber dynamics isO(nC). The result holds
for the homogeneous model (1.1) and for the inhomogeneous
model (1.2) provided|hv| ≤ 100βn for all v.

REMARK 1.1. The condition that|hv| ≤ 100βn for all
v will be needed in the proof of the result in the general
case (1.2). However, we note that given Theorem 1.2 as
a black box, it is easy to extend the result and provide
an efficient sampling algorithm in the general case without
any bounds on thehv. In the case where some of the
verticesv satisfy |hv| ≥ 10βn, it is easy to see that the
target distribution satisfies except with exponentially small
probability that σv = + for all v with hv > 10βn and
σv = − for all v with hv < −10βn. Thus we may set
σv = + whenhv > 10βn andσv = −whenhv < 10βn and
consider the dynamics where these values are fixed.Doing so
will the effectively restrict the dynamics to the graph spanned
by the remaining vertices and will modify the values ofhv

for the remaining vertices; however, it is easy to see that all
remaining vertices will have|hv| ≤ 100βn. It is also easy
to verify that if the original graph satisfied the hypothesis
of Theorem 1.2 then so does the restricted one. Therefore
we obtain an efficient sampling procedure for the desired
distribution.

1.5 Related Work and Open ProblemsMost results for
mixing rates of Gibbs samplers are stated in terms of the
maximal degree. Thus for sampling uniform colorings, the
result are of the form: for every graph where all degrees are
at mostd if the number of colorsq satisfiesq ≥ q(d) then
Gibbs sampling is rapidly mixing [23, 22, 4, 7, 12, 3, 2, 18].
For example, it is well known and easy to see that one can
takeq(d) = 2d. Similarly, results for the Ising model are
stated in terms ofβ < β(d). The novelty of the result
presented here is that it allows to study graphs where the
average degree is small while some degrees may be large.

Previous attempts at studying this problem for sampling
uniform colorings yielded weaker results. In [5] it is
shown that Gibbs sampling rapidly mixes onG(n, d/n) if
q = Ωd((log n)α) whereα < 1 and that a variant of the
algorithm rapidly mixes ifq ≥ Ωd(log log n/ log log log n).
Indeed the main open problem of [5] is to determine if one
can takeq to be a function ofd only. Our result here provides
a positive answer to the analogous question for the Ising



model. We further note that other results where the con-
ditions on degree are relaxed [13] do not apply in our setting.

Subsequent to completing this work we have answered
the open problem of [5] and have shown in [19] that the
Glauber dynamics mixes in polynomial time for a fixed
number of colorsq = q(d) which does not depend on
n. This required a different approach, based on a novel
partitioning of the graph into tree-like blocks in which
we could bound the spectral gap of the block dynamics.
The results also generalize to the hard-core model at low
fugacity and to general models of soft constraints at high
temperatures. Spirakis and Eythymiou [8] independently
have also produced a scheme for approximately sampling
from the random coloring distribution in polynomial time.
They take a different approach, instead of sampling using
MCMC they assign colours to vertices one at a time by
calculating the conditional marginal distributions making
use of the decay in correlation on the graph.

The following propositions are easy and well known.
They show that ford > 1 and largeβ the mixing time is
exponential inn and that for alld > 0 andβ > 0 the mixing
time is more thannpolylog(n). Their proof is omitted from
this extended abstract

PROPOSITION1.2. If d > 0 and β > 0 then with high
probability the mixing time of the dynamics onG(n, d/n)
is at leastn1+Ω(1/ log log n).

PROPOSITION1.3. If d > 1 then there existsβ′
d such that if

β > β′
d then the with probability going to1, the mixing time

of the dynamics onG(n, d/n) is exp(Ω(n)).

It is natural to conjecture that properties of the Ising
model on the branching process withPoisson(d) offspring
distribution determines the mixing time of the dynamics on
G(n, d/n). In particular, it is natural to conjecture that
the critical point foruniquenessof Gibbs measures plays a
fundamental role [10, 21] as results of similar flavor were
recently obtained for the hard-core model on random bi-
partited regulargraphs [20].

CONJECTURE1.1. If d tanh(β) > 1 then with probability
going to1 as n → ∞ over G(n, d/n) the mixing time of
Gibbs sampler isexp(Ω(n)). If d > 1 andd tanh(β) < 1
then with probability going to1 asn → ∞ overG(n, d/n)
the mixing time of the Gibbs sampler is polynomial inn.

After proposing the conjecture we have learned that a
recent result of Antoine Gerschenfeld and Andrea Montanari
implies exponential slow mixing for the Ising model on
G(n, d/n) whend tanh(β) > 1 [11].

1.6 Proof Technique Our proof follows the following
main steps.

• Analysis of the mixing time for Gibbs sampling on trees
of varying degrees. We find a bound on the mixing time
on trees in terms of the maximal sum of degrees along
any simple path from the root. This implies that forall
β if we consider a tree where each node has number of
descendants that has Poisson distribution with parame-
ter d − 1 then with high probability the mixing time of
Gibbs sampling on the tree is polynomial in its size. The
motivation for this step is that we are looking at tree-
like graphs Note however, that the results established
here hold for allβ, while rapid mixing forG(n, d/n)
does not hold for allβ. Our analysis here holds for all
boundary conditions and all external fields on the tree.

• We next use standard comparison arguments to extend
the result above to case where the graph is a tree with a
few edges added. Note that with high probability for all
v ∈ G(n, d/n) the induced subgraphB(v, 1

2 logd n) on
all vertices of distance at most1

2 logd n from v is a tree
with at most a few edges added. (Note this still holds
for all β).

• We next consider the effect of the boundary on the root
of the tree. We show that for tree ofa logn levels, the
total variation distance of the conditional distribution
at the root given all+ boundary conditions and all
− boundary conditions isn−1−Ω(1) with probability
1 − n−1−Ω(1) providedβ < βd is sufficiently small
(this is the only step where the fact thatβ is small is
used).

• Using the construction of Weitz [23] and a Lemma
from [2] we show that the spatial decay established in
the previous step also holds with probability1 − o(1)
for all neighborhoodsB(v, a log n) in the graph.

• The remaining steps use the fact that a strong enough
decay of correlation inside blocks each of which is
rapidly mixing implies that the dynamics on the full
graph is rapidly mixing. This idea is taken from [6].

• In order to show rapid mixing it suffices to exhibit a
coupling of the dynamics starting at all+ and all−
that couples with probability at least1/2 in polynomial
time. We show that the monotone coupling (where
the configuration started at− is always “below” the
configuration started at+) satisfies this by showing that
for eachv in polynomial time the two configurations at
v coupled except with probabilityn−1/(2e).

• In order to establish the later fact, it suffices to show
that running the dynamics onB(v, a log n) starting at
all + and all+ boundary conditions and the dynamics



starting at all− and all− will couple atv except with
probabilityn−1/(2e) within polynomial time.

• The final fact then follows from the fact that the dynam-
ics insideB(v, a log n) have polynomial mixing time
and that the stationary distributions inB(v, 1

2 logd n)
given + and− boundary conditions agree atv with
probability at least1 − n−1/(4e).

We note that the decay of correlation on the self-
avoiding tree defined by Weitz that we prove here allows a
different sampling scheme from the target distribution. In-
deed, this decay of correlation implies that given any assign-
ment to a subset of the verticesS and anyv 6∈ S we may
calculate using the Weitz tree of radiusa logn in polynomial
time the conditional probability thatσ(v) = + up to an ad-
ditive error ofn−1/100. It is easy to see that this allow sam-
pling the distribution in polynomial time. More specifically,
consider the following algorithm from [23].

ALGORITHM 1.1. Fix a radius parameterr and label the
verticesv1, . . . , vn. Then the algorithm approximately sam-
ples fromP (σ) by assigning the spins ofvi sequentially. Re-
peating from1 ≤ i ≤ n:

• In stepi constructT r
SAW (vi), the tree of self-avoiding

walks truncated at distancer from vi.

• Calculate

pi = PT r

SAW
(σvi

= +|σ{v1,...,vi−1}, τA−Vi−1
).

(The boundary conditions at the tree can be chosen
arbitrarily; in particular, one may calculatepi with no
boundary conditions).

• Fix σvi
= Xvi

whereXvi
is a random variable with

pi = P (Xvi
= +) = 1 − P (Xvi

= −).

Then we prove that:

THEOREM 1.3. Let G be a random graph distributed as
G(n, d/n). When

tanh(β) <
1

d
,

for anyγ > 0 there exist constantsr = r(d, β, γ) andC =
C(d, β, γ) such that with high probability Algorithm 1.1,
with parameterr log n, has running timeO(nC) and output
distribution Q with dTV (P, Q) < n−γ . The result holds
for the homogeneous model (1.1) and for the inhomogeneous
model (1.2).

THEOREM 1.4. LetG = (V, E) be any graph onn vertices
satisfying the following properties. There exista > 0, 0 <
b < ∞ such that for allv ∈ V ,

(1.6) |VTSAW (v)(v, a log n)| ≤ ba log n

whereVTSAW (v)(v, r) = {u ∈ TSAW (v) : d(u, v) ≤ r}.
When

tanh(β) <
1

b
,

for any γ > 0 there exist constantsr = r(a, b, β, γ) and
C = C(a, b, β, γ) such that Algorithm 1.1, with parameter
r log n, has running timeO(nC) and output distributionQ
with dTV (P, Q) < n−γ . The result holds for the homoge-
neous model (1.1) and for the inhomogeneous model (1.2).

The proof of theorems 1.4 and 1.3 can
be found in the long version of the paper at
http://arxiv.org/abs/0704.3603.

1.7 Acknowledgment E.M. thanks Andrea Montanari
and Alistair Sinclair for interesting related discussions.

2 Proofs

Recall that the local neighborhood of a vertex inG(n, d/n)
looks like a branching process tree. In the first step of the
proof we bound the relaxation time on a tree generated by a
Galton-Watson branching process. More generally, we show
that trees that are not too dense have polynomial mixing
time.

DEFINITION 2.1. Let T be a finite rooted tree. We define
m(T ) = maxΓ

∑
v∈Γ dv where the maximum is taken over

all simple pathsΓ emanating from the root anddv is the
degree of nodev.

THEOREM 2.1. Let τ be the relaxation time of the Glauber
dynamics onT where0 ≤ βu,v ≤ β for all u andv and given
arbitrary boundary conditions and external field. Then

τ ≤ exp(4βm(T )).

Proof. We proceed by induction onm with a similar argu-
ment to the one used in [2] for a regular tree. Note that if
m = 0 the claim holds true sinceτ = 1. For the general case,
let v be the root ofT , and denote its children byu1, . . . , uk

and denote the subtree of the descendants ofui by T i. Now
let T ′ be the tree obtained by removing thek edges fromv
to theui, let P ′ be the Ising model onT ′ and letτ ′ be the
relaxation time onT ′. By equation (1.3) we have that

(2.7) τ/τ ′ ≤
maxσ P (σ)/P ′(σ)

minσ,τ Q(σ, τ)/Q′(σ, τ)
≤ exp(4βk).

Now we divideT ′ into k+1 blocks{{v}, {T 1}, . . . , {T k}}.
Since these blocks are not connected to each other the
mixing time of the block dynamics is simply1. By applying
Proposition 3.4 of [17] we get that the relaxation time onT ′

is simply the maximum of the relaxation times on the blocks,

τ ′ ≤ max{1, τ i}.



whereτ i is the relaxation time onT i. Note that by the
definition of m, it follows that the value ofm for each of
the subtreesT i satisfiesm(T i) ≤ m − k, and therefore for
all i it holds thatτ i ≤ exp(4β(m − k)). This then implies
by (2.7) thatτ ≤ exp(4βm) as needed.�

For the applications considered for random and sparse
graphs, it is not always the case that the neighborhood of
a vertex is a tree, instead it is sometimes a tree with a
small number of edges added. Using standard comparison
arguments we show that the mixing time of a graph that
is a tree with a few edges added is still polynomial. We
also show that with high probability for theG(n, d/n) the
neighborhoods of all vertices are tree-like.

PROPOSITION2.1. Let G be a graph onr vertices with
r + s− 1 edges that has a spanning treeT with m(T ) = m.
Then the mixing timeτ of the Glauber dynamics onG with
any boundary conditions and external fields satisfies:

τ ≤ exp(4β(m + s)).

Proof. Repeating the argument of Theorem 2.1, these edges
of G\T costs at mostexp(4βs) to the relaxation time. The
proof follows.�

2.1 Some properties of Galton Watson TreesHere we
prove a couple of useful properties for Galton Watson trees
that will be used below. We letT be the tree generated by a
Galton-Watson branching process with offspring distribution
N such that for allt, E exp(tN) < ∞ and such that
E(N) = d. Of particular interest to us would be the Poisson
distribution with meand which has

E exp(tN) = exp(d(et − 1)).

We letTn denote the firstn levels ofT . We letM(n) denote
the value ofm for T (n) and τ(n) the supremum of the
mixing times given any boundary conditions and external
fields assuming thatβ = supβu,v. We denote byZn the
number of descendants at leveln.

THEOREM 2.2. Under the assumptions above we have:

• There exists a positive functionc(t) such that for allt
and alln:

E[exp(tM(n))] ≤ exp(c(t)n).

• ThenEτ(n) ≤ C(β)n for someC(β) < ∞ depending
onβ = supβu,v only.

• If N is the Poisson distribution with meand then for all
t > 0,

sup
n

E[exp(tZnd−n)] < ∞.

Proof. Let K denote the degree of the root ofTn and for
1 ≤ i ≤ K let Mi(n − 1) denote the value ofm for the
sub-tree ofTn rooted at thei’th child. Then:

E[exp(tM(n))]

= E[max(1, max
1≤i≤K

exp(t(Mi(n − 1) + K)))]

≤ E[(1 + exp(tK))

K∑

i=1

exp(tMi(n − 1))]

= E[(1 + K exp(tK))]E[exp(tM(n − 1))].

and so the result follows by induction provided thatc(t) is
large enough so that

exp(c(t)) ≥ E(1 + K exp(tK)).

For the second statement of the theorem, note that by the
previous theorem we have that

Eτ(n) ≤ E[exp(4βM(n))],

whereM(n) is the random value ofm for the treeTn so if
C(β) = exp(c(4β)) thenEτ(n) ≤ C(β)

n.

For the last part of the theorem, letNi be independent
copies ofN and note that

E exp(tZn+1)(2.8)

= E exp(

Zn∑

i=0

td−(n+1)Ni)

= E[E[exp(

Zn∑

i=0

td−(n+1)Ni|Zn]]

= E[(E[exp(td−n+1N)])Zn ]

= E exp(log(E exp(td−(n+1)N))Zn)

which recursively relates the exponential moments ofZn+1

to the exponential moments ofZn. In particular since all the
exponential moments ofZ1 exist,E exp(tZn) < ∞ for all t
andn. When0 < s ≤ 1

(2.9) E exp(sN) = exp(d(es − 1)) ≤ exp(sd(1 + s)).

Now fix a t and lettn = t exp(2t
∑∞

i=n+1 d−i). For some
sufficiently largej we have thatexp(2t

∑∞
i=n+1 d−i) < 2

and tnd−(n+1) < 1 for all n ≥ j. Then forn ≥ j by
equations (2.8) and (2.9),

E exp(tn+1Zn+1d
−(n+1))

= E exp(log(E exp(tn+1d
−(n+1)Ni))Zn)

≤ E exp(tn+1(1 + tn+1d
−(n+1))Znd−n)

≤ E exp(tn+1(1 + 2td−(n+1))Znd−n)

≤ E exp(tnZnd−n)



and so

sup
n≥j

E exp(tZnd−n) ≤ sup
n≥j

E exp(tnZnd−n)

= E exp(tjZjd
−j) < ∞

which completes the result.�

When the branching process is super-critical, the num-
ber of vertices isO((EW )n) and the result above gives that
the mixing time is polynomial in the number of vertices on
Galton Watson branching process with high probability. We
remark that all our bounds here are increasing in the degrees
of the vertices so if a random tree T is stochastically domi-
nated by a Galton-Watson branching process then the same
bound applies.

2.2 Structure of Random Graphs

LEMMA 2.1. Let G be a random graph distributed as
G(n, d/n). For 0 < a < 1

2 log d there exists some
c(a, d) such that with high probability, for allv ∈ G,
m(v, a log n) ≤ c log n. There existsk = k(a, d) > 0 such
that with high probability, for allv ∈ G, t(v, a log n) ≤ k.

Proof. We construct a spanning treeT (v, l) of B(v, l) in
a standard manner. Take some arbitrary ordering of the
vertices ofG. Start with the vertexv and attach it to all
its neighbors inG. Now take the minimal vertex inS(v, 1),
according to the ordering, and attach it to all its neighborsin
G which are not already in the graph. Repeat this for each
of the vertices inS(v, 1) in increasing order. Repeat this
for S(v, 2) and continue untilS(v, l − 1) which completes
T (v, l). By construction this is a spanning tree forB(v, l).
The construction can be viewed as a breadth first search
of B(v, l) starting fromv and exploring according to our
ordering.

By a standard argumentT (v, a logn) is stochastically
dominated by a Galton-Watson branching process with off-
spring distribution Poisson(d). Then by repeating the argu-
ment of Theorem 2.2 for someδ,

E exp(m(T (v, a log n), v, a logn)) ≤ δa log n

and so,P (m(T (v, a log n), v, a log n)) > (aδ + 2) log n) =
O(n−2) which implies that with high probability
m(T (v, a logn), v, a log n)) > (aδ + 2) log n for all
v.

If Zl are the number of offspring in generation
l of a Galton-Watson branching process with offspring
distribution Poisson(d) by Theorem 2.2 we have that
supl E exp(Zl/dl) < ∞ and since

P (|S(v, l)| > 3dl log n) ≤ P (exp(Zl/dl) > n3)

≤ n−3E exp(Zl/dl),

it follows by a union bound over allv ∈ G and 1 ≤
l ≤ a log n we have with high probability for allv,
|B(v, a log n)| ≤ 3(1 − d−1)na log d log n.

In the construction ofT (v, a logn) there may be some
edges in B(v, a log n) which are not explored and so
are not in T (v, a logn). Each edge betweenu, w ∈
V (v, a log n) which is not explored in the construction of
T (v, a logn) then is present inB(v, a log n) independently
of T (v, a logn) with probability d/n. There are at most
(3(1 − d−1)na log d log n)2 unexplored edges. Now when
k > 1/(1 − 2a log d),

P (Binomial((3(1 − d−1)na log d log n)2, d/n) > k)

=O(nk(2a log d−1)(log n)2k) = n−1−Ω(1)

so by a union bound with high probability we have
t(v, a log n) ≤ k. Now a self-avoiding path inB(v, a log n)
can traverse each of thesek edges at most once so this
path can be split into at mostk + 1 self-avoiding paths
in T (v, a logn) and hence with high probabilitym(v, l) ≤
c log n wherec = (k + 1)(aδ + 2). �

LEMMA 2.2. When0 < a < 1
2 log d with high probability

for all v ∈ G,

|VTSAW (v)(v, a log n)| ≤ O(na log d log n)

whereVTSAW (v)(v, r) = {u ∈ TSAW (v) : d(u, v) ≤ r}.

Proof. We now count the number of self-avoiding walks
of length at mosta logn in B(v, a log n). By the proof
of Lemma 2.7 we have that with high probability for
all v, |B(v, a log n)| ≤ 3(1 − d−1)na log d log n and
t(v, a log n) ≤ k. Let e1, . . . , et(v,a log n) denote the edges
in B(v, a log n) which are not inT (v, a log n). Now every
vertex inu′ ∈ TSAW (v) corresponds to a unique self avoid-
ing walk in B(v, a log n) from v to u. A self-avoiding walk
in B(v, a log n) passes through each edge at most most once
so in particular it passes through each of theei at most
once. So a path which begins atv traverses through some
sequenceei1 , . . . , eil

in particular directions and then ends
at u is otherwise uniquely defined since the intermediate
steps are paths inT (v, a logn) which are unique. There are
at mostk(k!) sequencesei1 , . . . , eil

, there are2k choices
of directions to travel through them, and at most3(1 −
d−1)na log d log n possible terminal vertices inB(v, a log n)
so|VTSAW (v)(v, a log n)| ≤ 3(1−d−1)2kk(k!)na log d log n.

�

2.3 Spatial decay of correlation for tree-like neighbor-
hoods

PROPOSITION2.2. LetT be a tree such thatm(v, a) ≤ m.
ThenS|(v, a)| ≤ (m−a+1

a )a.



Proof. By a simple induction on the height of the tree
|S(v, a)| must be maximized by a spherically symmetric
tree, that is one where the degrees of the vertices depend only
on their distance tov. If di is the degree of a vertex distance
i from v then by the arithmetic-geometric inequality

|S(v, a)| = d0

a−1∏

i=1

(di − 1) ≤ ((
a−1∑

i=0

di − (a − 1))/a)a

≤

(
m − a + 1

a

)a

.

�

LEMMA 2.3. If T is a tree, P is the Ising model with
arbitrary external field (includinghv = ±∞ meaning thatv
has to take±) andβu,v ≤ β for all u, v andr is the number
of vertices inS(v, l) then

P (σv = +|σS(v,l) ≡ +)

P (σv = +|σS(v,l) ≡ −)
≤ exp(2βr(tanh β)l).

Proof. The case of no external field andβu,v ≡ β follows
from the second equation in the proof of Theorem 2.1 in [16].

It is a well known and easy to see that on trees when
there is no external fieldP (σv = +|σΛ ≡ +) is monotone in
βu,v since the recursions used to calculateP (σv = +|σΛ ≡
+) are monotone inβu,v. Consequently Lemma 2.3 holds as
long as all the external fields are0. The fact that the lemma
holds for arbitrary external fields follows from Lemma 4.1
of [2] which we state below.�

LEMMA 2.4. If T is a tree,P is the inhomogeneous Ising
model with interactionβu,v with external field and̃P is the
inhomogeneous Ising model with the same interactionsβu,v

but with no external field then

P (σv = +|σΛ ≡ +)

P (σv = +|σΛ ≡ −)
≤

P̃ (σv = +|σΛ ≡ +)

P̃ (σv = +|σΛ ≡ −)
.

Now B(v, a log n) is not in general a tree so we use
the self-avoiding tree construction of Weitz [23] to reduce
the problem to one on a tree. The tree of self-avoiding
walks, which we denoteTsaw(v, a log n), is the tree of paths
in B(v, a log n) starting fromv and and not intersecting
themselves, except at the terminal vertex of the path. Threw
this construction each vertex inTsaw(v, a log n) can be
identified with a vertex inG which gives a natural way to
relateΛ ⊂ V and a configurationσΛ to the corresponding
Λ′ ⊂ Tsaw(v, a log n) and configurationσΛ′ . Furthermore if
A, B ⊂ V thend(A, B) = d(A′, B′). Then Theorem 3.1 of
[23] gives the following result. Each vertex (edge) ofTsaw

corresponds to a vertex (edge) ofG andPT is as the Ising
model onTsaw defined by taking the corresponding external
field and interactions.

LEMMA 2.5. For a graphG and v ∈ G there existsA ⊂
Tsaw and some configurationτA onA such that,

PG(σv = +|σΛ) = PT (σv = +|σΛ′ , τA−Λ′).

The setA corresponds to the terminal vertices of path which
returns to a vertex already visited by the path.

LEMMA 2.6. Suppose thata, b, c, β satisfy the hypothesis of
Theorem 1.2. Then,

max
v∈G

P (σv = +|σΛn
≡ +)−P (σv = +|σΛn

≡ −) = o(
1

n
)

whereΛn ⊆ S(v, a log n).

Proof. Apply Lemma 2.5 we have that ifΛ = S(v, a log n)
then

PG(σv = +|σΛ ≡ +)

PG(σv = +|σΛ ≡ −)
=

PT (σv = +|σΛ′ ≡ +, τA−Λ′)

PT (σv = +|σΛ′ ≡ −, τA−Λ′)
.

Conditioning onτA is equivalent to setting the external field
atu ∈ A to sign(τv)∞. Let P̃T be the Ising model onTsaw

with no external field. Then by Lemma 2.4

PT (σv = +|σΛ′ ≡ +, τA−Λ′)

PT (σv = +|σΛ′ ≡ −, τA−Λ′)
≤

P̃T (σv = +|σΛ′ ≡ +)

P̃T (σv = +|σΛ′ ≡ −)

≤
P̃T (σv = +|σSsaw(v,a log n) ≡ +)

P̃T (σv = +|σSsaw(v,a log n) ≡ −)

whereSsaw(v, a log n) = {u ∈ Tsaw(v, a log n) : d(u, v) =
a logn}. Now supposev = u1, u2, . . . , uk is a non-
repeating walk inTsaw and letu′

1, u
′
2, . . . , u

′
k be the cor-

responding walk inG. Then from the construction of
Tsaw either u′

1, u
′
2, . . . , u

′
k is a non-repeating walk inG

or for somej < k, u′
j = u′

k in which caseuk is a
leaf of Tsaw and so has degree 1. It also follows from
the construction ofTsaw that the degree ofui is less
than or equal to the degree ofu′

i and so we have that
m(v, a log n) ≤ m(Tsaw, v, a log n) + 1. The by Propo-
sition 2.2 |Ssaw(v, a log n)| ≤ ( c log n−a log n+2

a log n )a log n =

O(na log((c−a)/a)) = o(n−1(tanhβ)−a log n). Applying
Lemma 2.3 completes the result.�

2.4 Proof of the Main Result

Proof. (Theorem 1.2) LetX±
t , denote the Gibbs sampler

started from all±, coupled together onG. Fix some vertex
v ∈ G. Define four new chainsQ+

t , Q−
t , Z+

t andZ−
t . These

chains run the Glauber dynamics and are coupled withX+
t

andX−
t insideB(v, a log n) but are fixed (i.e. do not update)

outsideB(v, a log n). They are given the following initial
conditions.

• Q+
t starts from all+ configuration (and therefore has

all + boundary conditions during the dynamics).



• Q−
t starts from all− configuration (and therefore has

all − boundary conditions during the dynamics).

• Z+
t starts from all + configuration outside

B(v, a log n) and Z+
0 is distributed according to

the stationary distribution insideB(v, a log n) given
the all + boundary condition (thereforeZ+

t will have
this distribution for allt).

• Z−
t starts from all − configuration outside

B(v, a log n) and is distributed according to the
stationary distribution insideB(v, a log n) given the
all − boundary condition (thereforeZ−

t will have this
distribution for allt).

We can initializeZ+
t and Z−

t so thatZ+
0 < Z−

0 and by
monotonicity we haveZ+

t < Z−
t for all t. We also have

thatQ+
t < X+

t < X−
t < Q−

t .
By Lemma 2.6 we have

P (Z+
t (v) 6= Z−

t (v)) ≤ o(n−1),

for all t. By Proposition 2.1 the Gibbs sampler on
B(v, a log n) has relaxation timeτ ≤ exp(4β(a + b) log n)
and so has mixingτmix ≤ τ(1 + 1

2 log(minσ P (σ))−1).
Each vertex has degree at mostc log n so

log(min
σ

P (σ))−1 ≤ (β|E|)
∑

u

|hu| ≤ (100cn2β2 log n)

so τmix ≤ O(n3+4(a+b)β). This implies that forC =
5 + 4(a + b)β we have that with high probability after
t = O(nC) steps the Gibbs sampler on allG has chosen
every vertex at leastn2 times and so

P (Q+
t (v) 6= Z+

t (v)) = P (Q−
t (v) 6= Z−

t (v)) ≤ o(n−1).

It follows that P (Q+
t (v) 6= Q−

t (v)) ≤ o(n−1) and hence
P (X+

t (v) 6= X−
t (v)) ≤ o(n−1) for all v. By a union bound

P (X+
t 6= X−

t ) ≤ o(1) so the mixing time is bounded by
O(nC) as required.�

The following lemma puts random graphs into the set-
ting of Theorem 1.2, the proof is omitted.

LEMMA 2.7. Let G be a random graph distributed as
G(n, d/n). For 0 < a < 1

2 log d there exists some
c(a, d) such that with high probability, for allv ∈ G,
m(v, a log n) ≤ c log n. There existsk = k(a, d) > 0 such
that with high probability, for allv ∈ G, t(v, a log n) ≤ k.

Proof. (Theorem 1.1) By Lemma 2.7 with high proba-
bility a random graph satisfies the hypothesis of Theo-
rem 1.2 for small enoughβ. To prove the result when
tanh(β) < 1

e2d the only modification to the proof of Theo-
rem 1.2 needed is to show that with high probability when

−1/(log(d tanh(β))) < a < (2 log d)−1 we still have
P (Z+

t (v) 6= Z−
t (v)) ≤ o(n−1). This is done with a modifi-

cation of Lemma 2.6 to establish decay of correlation on the
graph.�
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