
On the noise sensitivity of monotone functions

Elchanan Mossel, Ryan O’Donnell

ABSTRACT:
It is known that for all monotone functions f : {0, 1}n → {0, 1}, if x ∈ {0, 1}n

is chosen uniformly at random and y is obtained from x by flipping each of the bits
of x independently with probability ε, then P[fn(x) 6= fn(y)] < cε

√
n, for some

c > 0.
Previously, the best construction of monotone functions satisfying

P[fn(x) 6= fn(y)] ≥ δ, where 0 < δ < 1/2, required ε ≥ c(δ)n−α, where α =
1 − ln 2/ ln 3 = 0.36907. . . , and c(δ) > 0. We improve this result by achieving for
every 0 < δ < 1/2, P[fn(x) 6= fn(y)] ≥ δ, with:

• ε = c(δ)n−α for any α < 1/2, using the recursive majority function with
arity k = k(α);

• ε = c(δ)n−1/2 logtn for t = log2

√

π/2 = .3257. . . , using an explicit recursive
majority function with increasing arities; and,

• ε = c(δ)n−1/2, non-constructively, following a probabilistic CNF construction
due to Talagrand.

The constructions have implications for learning theory, computational com-
plexity, and neural networks, and they shed some light on the American electoral
system.

1 Introduction

1.1 Noise sensitivity and Fourier coefficients

The papers [KKL88, BL90] suggested the importance of the Fourier expansion
and the influence of variables on f for the study of boolean functions. The ideas
developed in these papers proved to be extremely fruitful in later work, e.g.,
[LMN93, FK96, F98, BKS98] and the material in Subsection 2, to name just a
few examples.

Let Ωn = {−1, +1}n be the Hamming cube endowed with the uniform proba-
bility measure P. We look at boolean functions f : Ωn → {−1, +1}. We are mostly
concerned with monotone boolean functions. Recall that a function f is monotone
if for all x, y ∈ Ωn we have f(x) ≤ f(y) whenever x ≤ y (in the sense xi ≤ yi for
all i).

For −1 ≤ η ≤ 1 and x ∈ Ωn, define Nη(x) to be a random element y of Ωn

which satisfies E[yixi] = η (equivalently, P[xi 6= yi] = (1−η)/2) independently for
all i. It is natural to measure how stable f is to η-noise by the correlation between
f(x) and f(Nη(x)),

Z(f, η) = E[f(Nη(x))f(x)] = 1 − 2P[f(Nη(x)) 6= f(x)]. (1)

If f is stable under the noise operator Nη , then typically f(x) and f(Nη(x)) should
have the same value and therefore Z(f, η), the expression in (1), should be close
to 1; if f is sensitive to noise, then Z(f, η) should be close to 0.

1

The space Ωn with the uniform probability measure naturally gives rise to
an inner product space on all functions f : Ωn → IR:

〈f, g〉 = E[fg] = 2−n
∑

x∈Ωn

f(x)g(x).

For a set S ⊆ [n], define uS(x) =
∏

i∈S xi. Since uSuS′ = uS∆S′ , where ∆ denotes
symmetric difference, it follows that (uS)S⊆[n] is an orthonormal basis. We call

f̂(S) = 〈uS , f〉 the S Fourier coefficient of f , and f =
∑

S⊆[n] f̂(S)uS the Fourier

expansion of f .
The basis (uS)S⊆[n] has very nice properties with respect to the noise oper-

ator; most notably, for all x and S, E[uS(Nη(x))] = η|S|uS(x), which implies

Z(f, η) = E[f(Nη(x))f(x)] =
∑

S⊆[n]

η|S|f̂2(S) (2)

(see e.g. [BKS98, BJT99, O02]).
The stability of the function f under noise, Z(f, η), is therefore closely related

to how much of the `2 mass of the Fourier coefficients of f lies on coefficients f̂(S)
for large sets S.

In addition to the sum in (2), it is common to study several other weighted

sums of f ’s squared Fourier coefficients. By Parseval’s identity,
∑

S f̂2(S) = 1.

The average sensitivity of f is defined by I(f) :=
∑

S |S|f̂2(S). It is shown in
[KKL88] that I(f) =

∑n
k=1 Ik(f), where Ik(f) is the probability the value of

the function flips, when the k’th bit is flipped. Note that if f is monotone, then

Ik(f) = |f̂({k})|. Finally, we have the quantity II(f) :=
∑n

k=1 I2
k(f), introduced

in [BKS98].

1.2 Sensitivity of monotone functions

The parity function, f = u[n] = ⊕, is the boolean function most sensitive to noise:
Z(f, η) = ηn is minimal, and I(f) = n is maximal.

It is natural to ask if monotone functions can be as sensitive to noise as
non-monotone functions. It is known (see Lemma 6.1 of [FK96]) that the major-
ity function has maximal I among all monotone functions on n inputs. Since its
average sensitivity is easily computed to be

√

2/π
√

n + o(
√

n), we get that for all
for all monotone f on n inputs,

I(f) ≤ (
√

2/π + o(1))
√

n. (3)

It remains to determine how small Nη(f) can be for monotone functions. A
natural goal is to find a monotone function f on n bits such that Z(f, 1 − δ) ≤
1 − Ω(1) for the smallest possible quantity δ. This problem was implicitly posed
in [BKS98].

An easy folklore argument (see long version for proof) uses (3) to deduce:

Proposition 1.1 For all monotone f on n inputs,

Z(f, 1 − δ) ≥ (1 − δ)(1+o(1))
√

(2/π)n.

Therefore if Z(f, 1 − δ) ≤ 1 − ε, then δ ≥
√

2
π

ε√
n

+ o(1/
√

n).

2

In particular, in order to obtain Z(f, 1−δ) ≤ 1−Ω(1), δ must satisfy δ ≥ Ω(n−1/2).
Prior to this work, the best sensitivity with respect to Nη was achieved via the re-
cursive majority of 3 function (folklore, see [BL90, BKS98]). This function satisfies
Z(f, 1 − δ) ≤ 1 − Ω(1), for δ = n−α, where α = 1 − ln 2/ ln 3 = 0.36907. . .

1.3 Our results

Recursive majority functions seem to be sensitive to noise. Previous techniques for
analyzing recursive majorities had suggested that recursive majority of 5, 7, etc.
might be less sensitive than recursive majority of 3. However, this is not the case.

Theorem 1.2 Let k = 2r + 1 and let REC-MAJ-k` denote the ` level k recursive
majority. Let

b =
2r + 1

24r

(
2r

r

)2

, a =
2r + 1

22r

(
2r

r

)

.

Then Z(REC-MAJ-k`, 1 − δ) ≤ ε for ` ≥
(

loga(1/δ) + log1/b(1/ε)
)

(1 + r(ε, δ)),

where r(ε, δ) → 0 as ε → 0 and δ → 0. Hence for every α < 1/2, and 0 < δ < 1,
there exists an odd k ≥ 3 such that for n = t`, fn = REC-MAJ-k` : Ωn → {−1, +1}
is a balanced function with

Z(fn, 1 − n−α) ≤ 1 − δ + o(1).

Note that this construction is explicit. Moreover, using k-majority gates, we obtain
a read-once, log-depth circuit which implements the function. The proof technique
is closely related to techniques in classical branching processes [AN72] (see also
[M98]).

By relaxing the bounded degree property, and using instead majority gates of
varying fan-in, we obtain an explicit read-once construction of log log-depth which
is sensitive to a noise rate of about n−1/2, up to a sub-logarithmic correction.

Theorem 1.3 For every 0 < δ < 1, there exists an explicit infinite family of
balanced monotone functions fn : Ωn → {−1, +1} with the following property:

Z(fn, 1 − 1/M) ≤ 1 − δ + o(1),

where M =
√

n/Θ(logt n), and t = log2

√

π/2 = .3257. . . .

It is interesting to note that the t parameter is optimal for this construction.
Finally, analyzing a probabilistic construction due to Talagrand [T96], we

obtain a tight result up to constant factors.

Theorem 1.4 For every 0 < δ < 1, there exists an infinite family of monotone
functions fn : Ωn → {−1, +1} with the following property:

Z(fn, 1 − n−1/2) ≤ 1 − δ + o(1). (4)

In this extended abstract, we sketch the proof of a slightly weakened version of
Theorem 1.4, i.e., instead of (4) we prove

Z(fn, 1 − n−1/2) ≤ 1 − Ω(1). (5)

3

2 Implications for other problems

2.1 Learning monotone functions

In the field of computational learning theory, one of the most widely studied models
is Valiant’s Probably Approximately Correct (PAC) model [V84]. In PAC learning,
a concept class C is a collection ∪n≥1Cn of boolean functions, where each function
(concept) f ∈ Cn is a boolean function on n bits. Let f ∈ Cn be an unknown
target function, and let D be an unknown probability distribution on {−1, +1}n.
A learning algorithm A for C takes as input an accuracy parameter 0 < ε <
1 and a confidence parameter 0 < δ < 1. During its execution, A has access
to an example oracle EX(f) which, when queried, generates a random labeled
example 〈x, f(x)〉, where x is drawn from distribution D. A’s goal is to output a
hypothesis h which is a boolean function on n bits, which is “close” to f under
distribution D. Specifically, we say that A is a PAC learning algorithm for C if
for every f ∈ C and every ε, δ, with probability 1 − δ algorithm A outputs a
hypothesis h satisfying Prx←D[f(x) 6= h(x)] ≤ ε. Ideally one likes for A to run in
time poly(n, s, 1/ε, log(1/δ)), where s is a “size parameter” of the concept class.

An important and well-studied restriction of the PAC model is uniform PAC
learning, which is simply the case in which D is the uniform distribution on
{−1, +1}n. Linial, Mansour, and Nisan [LMN93] introduced a very powerful and
general uniform PAC learning algorithm, which has come to be known as the “low
degree algorithm” (see Mansour’s survey [M94]). The low degree algorithm works
for any concept class which has a Fourier concentration bound. Specifically, sup-

pose that for every function f in a given concept class,
∑

|S|≥m f̂2(S) ≤ ε. Then

the low degree algorithm will PAC-learn this class under the uniform distribu-
tion in time exp(O(m log(n/m))) log(1/δ). The algorithm works by drawing many
examples for f , and using these to calculate empirical estimates for all Fourier

coefficients f̂(S) with |S| < m. The hypothesis outputted is simply the sign of the
resulting truncated Fourier expansion.

Bshouty and Tamon [BT96] give the fastest known uniform PAC learn-
ing algorithm for the concept class of monotone functions. Their algorithm is
the low degree algorithm, and they show a Fourier concentration bound for the
class of monotone functions with m = O(ε−1

√
n). (It is simple to derive this

from (3); Bshouty and Tamon also extend these results to general product dis-
tributions on {−1, +1}n.) This leads to a learning algorithm running in time
exp(O(1

ε

√
n log(ε

√
n))) log(1/δ).

As a tightness result, [BT96] prove via a counting argument that there is a

monotone f which does not satisfy
∑

|S|≥m f̂2(S) ≤ n−1/2 log n unless m = Ω(n).

However this leaves open the question of ε = Ω(n−1/2 log n). To show that the
low degree algorithm for monotone functions cannot be improved, we need to

exhibit a monotone f for which
∑

|S|≥Ω(ε−1
√

n) f̂2(S) > ε. The functions f from

Theorem 1.4 satisfy
∑

|S|≥√n f̂2(S) ≥ Ω(1). Hence the low degree algorithm will

have Ω(1) error unless it goes up to degree
√

n. In fact, our Corollary 7.2 gives us

an explicit function f with
∑

|S|≥Ω̃(
√

εn) f̂2(S) ≥ 1 − ε.

See [BJT99, KOS02] for more on noise sensitivity in the context of compu-
tational learning theory.

4

2.2 Hardness amplification within NP

The central problem in computational complexity theory is whether or not NP =
P; i.e., deciding if proving a proposition is harder than verifying the proof of
that proposition. In studying this problem, many researchers have considered the
slightly weaker question of whether or not every language in NP can be computed
by circuits of polynomial size. (See any standard text such as [Pa93, BDG88, DK00]
for the definitions of P, NP, circuits, etc.) Let us phrase this question precisely.
A language F ∈ NP gives rise to a family of characteristic functions 〈fn〉, where
fn : {0, 1}n → {0, 1} is defined by fn(x) = 1 iff x ∈ F . We often abuse language
by saying fn is a function NP (we always have a particular family of functions in
mind). A family of boolean circuits 〈Cn〉 is said to have polynomial size if there is a
finite k such that size(Cn) ≤ O(nk). We say NP has polynomial-sized circuits if for
every family of functions 〈fn〉 in NP, there is a circuit family 〈Cn〉 of polynomial
size such that C|x|(x) = f|x|(x) for every boolean string x.

Most researchers believe that NP does not have polynomial-sized circuits; i.e.,
NP is hard for polynomial-sized circuits. One might then ask how hard NP is for
polynomial circuits. One way of viewing this to question is to ask on how large a
fraction of the inputs in {0, 1}n can a polynomial-sized circuit compute a given NP

function. We say that f is “(1−δ)-hard for polynomial circuits” is for every family
〈Cn〉 of polynomial-sized circuits, P[f(x) = Cn(x)] ≤ 1 − δ. Note that asserting
NP is hard for polynomial circuits is the same as saying that there is a function
f ∈ NP which is (1−2−n)-hard for polynomial circuits. Also note that no function
is (1−δ)-hard for δ ≥ 1/2 because either the circuit which always outputs 1 or the
circuit that always outputs 0 gets f right on at least half of all inputs. Under the
assumption that NP does not have polynomial circuits, it is of interest to know
just how hard NP is in this sense.

In [O02], the second author addresses this question. Starting from the as-
sumption that there is a function in NP which is (1−1/nO(1))-hard for polynomial
circuits, [O02] shows the existence of a function in NP which is (1/2 + n−1/2+δ)-
hard for polynomial circuits (for any small δ > 0). The main technical theorem
in [O02] is that if f is a balanced function which is (1 − δ)-hard for polynomial
circuits, and g is a function satisfying Z(g, 1 − 2δ) ≤ η, then g ⊗ f is essentially
(1
2 + 1

2

√
η)-hard for polynomial circuits.

In order to apply this technical theorem to convert a slightly hard function
in NP to a very hard function in NP, it is necessary to ensure that g ⊗ f ∈ NP

when f ∈ NP. Recall that NP is the class of functions f which have easily verified
proofs of f = 1. In order for g ⊗ f to have easily verified proofs of g ⊗ f = 1, it
suffices for g to be (a) in NP, and (b) monotone. For in this case, we can prove
that g ⊗ f = 1 by proving that some subset of the inputs to g are 1, and each of
these is a statement of the form f = 1, which has an easily verified proof because
f ∈ NP.

Hence to amplify hardness within NP, [O02] needs to find a monotone func-
tion in NP such that Z(g, 1−1/nO(1)) is very small. This exact problem is addressed
in the present paper. Take g to be the function from Theorem 7.1 on k inputs. This
function is easily seen to be in P, hence in NP. If we pick k = nC and ε = nc/k

for some constants C and c, then Theorem 7.1 tells us that Z(g, 1− 1/Ω̃(nc/2)) ≤
1/k1−c/C . Hence if f (1−1/nO(1))-hard for polynomial circuits, by choosing c and
C sufficiently large, we can arrange for g⊗f — which has input length kn = nC+1

— to be (1/2 + (kn)−1/2+δ)-hard for any small δ > 0. This is the result of [O02].

5

Note that Theorem 1.4 is not useful in this context, since the amplifying
function g must be in NP, and Talagrand’s function is not even explicit.

2.3 Neural networks

In the theory of neural networks (see e.g. [H99] for background), a neuron is
modeled as a weighted majority function. For physical and biological reasons, it is
expected that such a function would be noise stable. In [BKS98] it is shown that
there exists a universal constant C such that for all weighted majority functions
M , Z(M, 1 − ε) ≥ 1 − Cε1/4. Peres [Pe98] has improved this to 1 − Cε1/2.

If we consider the simplest kind of neural network, in which every variable
and every majority output is read only once, we obtain a tree circuit of weighted
majority gates. Using a simple exchange of variables, we may assume that all the
weights of the majority functions are positive and hence that the network repre-
sents a monotone function. Proposition 1.1 implies that the network is insensitive
to noise rate of n−α for α > 1/2, where n is the number of inputs to the function.
Our construction in Theorem 1.2 implies on the other hand that this is tight, i.e.,
for every α < 1/2, there exists a neural network in which every variable and every
output is read once, and the network is sensitive to noise rate n−α.

2.4 Sensitivity of election schemes

One of the desired properties of election schemes is robustness. Consider the fol-
lowing simple model: There are n voters who have to decide between candidate −1
and candidate 1. Suppose that voter i wants to vote xi, and that the xi’s are uni-
formly random and independent. Suppose furthermore that due to confusion and
some technical errors, the vote of voter i is recorded as yi where P[xi = yi] = 1− ε
independently for all i. In this setting it is natural to require that the vote outcome
f(y1, . . . , yn) be governed by a symmetric balanced monotone function. Moreover,
if we want to minimize the effect of the confusion and errors, we want to maximize
P[f(x1, . . . , xn) = f(y1, . . . , yn)] = Z(f, 1 − 2ε).

Let us compare two election schemes. In the first scheme, f is the simple
majority function. Here Z(f, 1− 2ε) is of order 1− ε1/2. In the second scheme, we
have a two level majority function; e.g., each state votes by simple majority for
an elector, and the majority of the electors’ votes chooses the president. Here, if
we assume n1/2 electors, a calculation as in the proof of Theorem 1.2 shows that
Z(f, 1 − 2ε) is of order ε1/4. Hence the “electoral college” system is much more
sensitive to noise. In fact, Theorem 1.2 suggests that adding more levels of sub-
electors (such as voting by county first) increases the sensitivity of the election to
noise, up to its maximum possible level for a monotone function.

3 Sensitivity of majorities

3.1 Majority

We denote the majority function on k bits by MAJk. Using asymptotic results for
random walks, one can prove (cf. [O02]):

6

Proposition 3.1 For every η ∈ [−1, 1],

|Z(MAJk, η) − 2

π
arcsin(η)| ≤ O(1/

√
k).

Much more can be said when η is very close to 1, specifically, when 1 − η is
small compared to 1/k. For η close to 1, we prefer to view Z(f, η) in terms of the
probability that flipping input bits of f flips the output bit. We use the following
lemma in the proof of Theorem 1.3.

Lemma 3.2 Suppose k ≥ 3 and δ ≤ 1/k. Say we pick a random input to MAJk

— call it x — and then construct y by flipping each bit of x independently with
probability δ. Then

P[MAJk(x) 6= MAJk(y)] ≥
√

2

π

√
k δ exp(−1/3k) exp(−δk).

Proof: Clearly,

P[MAJk(x) 6= MAJk(y)]

≥ P[MAJk(x) 6= MAJk(y)|exactly one flip] × P[exactly one flip], (6)

and P[exactly one flip] = kδ(1 − δ)k−1. By elementary calculus, (1 − δ)k−1 ≥
exp(−δk) for δ ≤ 1/k. Therefore,

P[exactly one flip] = kδ(1 − δ)k−1 ≥ kδ exp(−δk). (7)

The probability that the majority flips given that there is exactly one flipped
bit in x, is exactly the probability that the remaining input bits split evenly —
i.e.,

P[MAJk(x) 6= MAJk(y)|exactly one flip] =

(
k − 1

(k − 1)/2

)

2−(k−1)

≥
√

2

πk
(1 − 1/4k) ≥

√

2

πk
exp(−1/3k), (8)

where the first inequality follows by Stirling’s formula and the second since 1 −
1/4k ≤ exp(−1/3k) for k ≥ 3. Combining (6), (7) and (8) we obtain the required
result. �

3.2 Recursive majority

We begin with a formal definition of the recursive majority function.

Definition 3.3 For f : Ωn → {−1, +1}, g : Ωm → {−1, +1}, we let f ⊗ g denote
the function f ⊗ g : Ωnm → {−1, +1} defined by

f ⊗ g (x1, . . . , xnm) = f
(
g(x1, . . . , xm), . . . , g(x(n−1)m+1, . . . , xnm)

)

For ` an integer, we define f⊗
`

= f if ` = 1, and f⊗
`

= f ⊗ (f⊗
`−1

) otherwise.

We let REC-MAJ-t` = MAJ
⊗`

t .

7

The following proposition is immediate, yet useful.

Proposition 3.4 If g is a balanced function and f is any function, then
Z(f ⊗ g, η) = Z(f, Z(g, η)).

In this section we prove Theorem 1.2. It is easy to calculate (and well known)
that for the majority function on k = 2r + 1, MAJk,

II(MAJk) =
2r + 1

24r

(
2r

r

)2

, I(MAJk) =
2r + 1

22r

(
2r

r

)

.

Note therefore that I(MAJk) →
√

2/π
√

k as k → ∞. Hence Theorem 1.2 follows
almost immediately from the following proposition:

Proposition 3.5 Let f : Ωk → {−1, +1} be a balanced function, and let

a =
∑

S

|S|f̂2(S), b =
∑

|S|=1

f̂2(S).

(Note that a = I(f), and if f is monotone, b = II(f).) If a > 1 and b < 1, then

Z(f⊗
`

, 1−δ) ≤ ε, for ` ≥
(

loga(1/δ) + log1/b(1/ε)
)

(1+r(ε, δ)), where r(ε, δ) → 0

as ε → 0 and δ → 0.

Proof: (sketch) Let f =
∑

S f̂2(S)uS be the Fourier expansion of f . Letting

p(η) := Z(f, η) =
∑

S f̂2(S)η|S|, we see that p(η) is a convex polynomial function
of η which satisfies

p(0) = 0, p(1) = 1, p′(0) =
∑

|S|=1 f̂2(S) = b, p′(1) =
∑

S |S|f̂2(S) = a.

(9)
Proposition 3.4 implies that

Z(f⊗
`

, η) = p(`)(η) := p(p(· · · p(η) · · ·))
︸ ︷︷ ︸

` times

. (10)

The claim of the proposition now follows by standard arguments on iterations of
convex functions (for more details, see the long version of this paper). �

4 Sensitivity to small noise

In this section we prove Theorem 1.3. We do this by proving

Theorem 4.1 There exists an explicit infinite family of balanced monotone func-
tions fn : Ωn → {−1, +1} with the following property:

Z(fn, 1 − ε/M) ≤ 1 − ε + O(ε2),

where M =
√

n/Θ(logt n), and t = log2

√

π/2 = .3257. . . .

8

Proof of Theorem 1.3: Let fn be the function constructed at Theorem 4.1, and
let ε be such that Z(fn, 1 − ε/M) ≤ 1 − ε + O(ε2) < 1 − δ′ + o(1)′, where δ′ > 0.
Let g = REC-MAJ-3` where ` is chosen is such a way that Z(g, 1 − δ′/2) ≤ 1 − δ
(such ` exists by Theorem 1.2). Taking gn = g ⊗ fn, we obtain the desired result.
�

The construction in Theorem 4.1 again consists of recursive majorities, where
now the number of inputs to the majority varies with the level. The estimates on
the sensitivity of these majority functions are derived via Lemma 3.2.
Proof of Theorem 4.1: Since we are dealing with correlations close to 1, it will
be more helpful to look at their difference from 1. In particular, we will prove
the following equivalent formulation of the theorem: Let x be a randomly chosen
input to fn, and suppose we flip each bit of x independently with probability ε/M ,
forming y. Then the probability that fn(x) = fn(y) is at least ε − O(ε2).

The function f = fn will be given by recursive majorities of increasing arity:

fn = MAJk1
⊗MAJk2

⊗ · · · ⊗MAJk`
. We will select ki = 32i−1+1, so “from the top

down” the majorities have arity 9, 27, 243, etc. Note that ki+1 = k2
i /3. With these

choices, the number of inputs is n = 32`+`−1. Hence ` ≤ log2 log3 n.
Let δ0 = ε/M , and recursively define δi+1 to be the probability that the

output of a MAJk`−i
flips, given that each of its inputs is flipped independently

with probability δi. Since all MAJ functions are balanced, Proposition 3.4tells
us that the probability that the output of f is flipped is δ`. We will show that
δ` ≥ ε − O(ε2).

By Lemma 3.2,
δi+1 ≥ g(k`−i) exp(−δik`−i)δi,

where:

g(t) :=
1

√

π/2

√

k`−i exp(−1/3k`−i).

Recursively define η0 = η′0 = δ0, and:

ηi+1 = g(k`−i) exp(−ηik`−i)ηi, η′i+1 = g(k`−i)η
′
i.

Since the probability that the output of MAJ flips is an increasing function of δ,
we can conclude that δi ≥ ηi for every i. But clearly η′i ≥ ηi for every i. Hence, for
every i, ηi+1 ≥ g(k`−i) exp(−η′ik`−i)ηi. It follows immediately that:

η` ≥
(`−1∏

i=0

g(k`−i) exp(−η′ik`−i)
)

η0

=
(1

√

π/2

)` ∏̀

j=1

√

kj exp(−1

3

∑̀

j=1

k−1
j) · exp

[`−1∑

i=0

−η′ik`−i

]

· δ0

Defining

M :=
∏̀

m=1

g(km) =
(1

√

π/2

)log
2
log

3
n

exp(−1

3

∑̀

j=1

k−1
j)

=
(1

√

π/2

)log
2
log

3
n√

n exp(−O(1)),

9

and δ0 := ε/M , we obtain

η` ≥ M · exp
[`−1∑

i=0

−η′ik`−i

]

· (ε/M) = ε · exp
[`−1∑

i=0

−η′ik`−i

]

.

Since δ` ≥ η`, it remains to show:

exp
[`−1∑

i=0

−η′ik`−i

]

≥ 1 − O(ε).

By the recursive definition of η′i, we immediately have η′i = (
∏i−1

j=0 g(k`−j))η
′
0.

Hence η′i = M(
∏`−i

m=1 g(km)−1)η′0 = ε(
∏`−i

m=1 g(km)−1). Therefore:

exp
[`−1∑

i=0

−η′ik`−i

]

= exp
[

−ε
∑̀

m=1

km

g(k1)g(k2) · · · g(km)

]

.

Hence if we can show
∑`

m=1 km/g(k1)g(k2) · · · g(km) = O(1) then we’re done.
The first term in this sum is k1/g(k1) = O(1). The ratio of the mth term to the

(m− 1)th term is km/km−1g(km). But km−1 =
√

3
√

km by definition, so this ratio

is
√

km/
√

3g(km) =
√

π/2/
√

3 exp(−1/3km) < 1. Hence the terms in the sum
decrease geometrically, so the sum is indeed O(1). �

5 Talagrand’s function

In [T96], Talagrand gives a randomized construction of a monotone fn : Ωn →
{−1, +1} with the following property: at least an Ω(1) fraction of points x in Ωn

satisfy both fn(x) = −1, and #{x′ : ∆(x, x′) = 1 and f(x) = +1} ≥ Ω(n1/2),
where ∆ denotes Hamming distance. It is natural to conjecture that this function
is sensitive to slight n−1/2 noise, as we prove below.

Talagrand’s function f = fn is a random CNF on its n inputs. Specifically,
f is the 2

√
n-wise AND of

√
n-wise ORs, where each OR’s inputs are selected

independently and uniformly at random (with replacement) from [n]. To prove
Theorem 1.4, it suffices to prove that if we pick f , x, and x′ := Nε(x) at random
(where ε = n−1/2), then:

Ef

[
P[f(x) 6= f(Nε(x))]

]
≥ Ω(1).

Proof of Theorem 1.4: (sketch)

Ef

[
P[f(x) 6= f(Nε(x))]

]
= Ex, x′

[

P
f
[f(x) 6= f(x′)]

]

= 2Ex, x′

[

P
f
[f(x) = −1, f(x′) = +1]

]
, (11)

by symmetry, since x and x′ have the same distribution. We want to show that
(11) ≥ Ω(1).

10

Fix x and x′. Let n+? denote the number of indices on which x is +1, let n?+

denote the number of indices on which x′ is +1, and let n++ denote the number
of indices on which both x and x′ are +1.

Since f has a fairly simple form — the AND of ORs, where the ORs’ inputs
are completely independent — it is easy to write Pf [f(x) = −1, f(x′) = +1]
explicitly in terms of n+?, n?+, and n++:

Pf [f(x) = −1, f(x′) = +1] = p2
√

n

?− − p2
√

n

−− , (12)

where

p?− = 1 −
(n?+

n

)√n
,

p−− = 1 −
(n?+

n

)√n −
(n+?

n

)√n
+

(n++

n

)√n
.

By the mean value theorem, (12) is bounded from below by:

2
√

n(p?− − p−−)p2
√

n

−− . (13)

Now n+? ∼ Binomial(n, 1/2), and similarly for n?+. Hence for sufficiently
large n, both quantities are in the range [n/2−√

n, n/2 +
√

n], except with prob-
ability .05. Also, n++ ∼ Binomial(n+?, 1 − ε), so for sufficiently large n and if

ε ≥ n−1/2, n++ is no larger than (1 − ε + 2
√

ε/n+?)n+?, except with probabil-
ity .05. Taking all these facts together via a union bound, we may conclude that
except with probability .15,

n+? ∈
[n

2
−
√

n,
n

2
+
√

n
]

, n?+ ∈
[n

2
−
√

n,
n

2
+
√

n
]

,
n++

n?+
≤ 1 − ε + 3

√
ε

n
.

(14)
We would like to show that Ex,x′ [(13)] ≥ Ω(1). Since (14) happen with prob-

ability at least .85, it suffices to prove Ex,x′ [(13)] ≥ Ω(1) conditioned on these
three events holding. But in this case,

Ex,x′ [(13)] = 2
√

n(p?− − p−−)
[

1 −
(n?+

n

)√n −
(n+?

n

)√n
+

(n++

n

)√n
]2

√
n

≥ 2
√

n(p?− − p−−)
[

1 −
(n?+

n

)√n −
(n+?

n

)√n
]2

√
n

≥ 2
√

n(p?− − p−−)
[

1 − (1/2 + n−1/2)
√

n − (1/2 + n−1/2)
√

n
]2

√
n

≥ 2
√

n(p?− − p−−)[1 − 2e/2
√

n]2
√

n

≥ e−2e2
√

n(p?− − p−−)

= e−2e
(

2
n?+

n

)√n(

1 −
(n++

n?+

)√n)

≥ e−2e(1 − 2n−1/2)
√

n
(

1 −
(n++

n?+

)√n)

≥ e−2e−2
(

1 −
(n++

n?+

)√n)

≥ e−2e−2
(

1 − (1 − ε + 2
√

ε/n)
√

n
)

. (15)

11

When ε = n−1/2, the quantity (1− ε + 2
√

ε/n)
√

n exceeds e−1. Hence (15) is
at least e−2e−2 ≥ Ω(1), and we’re done. �

6 Tribes and high sensitivity

We have mostly settled the question of how small ε can be, such that there is a
monotone function f satisfying Z(f, 1 − ε) ≤ 1 − Ω(1). At the other end of the
spectrum, one might ask: given an initial correlation δ < 1−Ω(1), which monotone
function f makes Z(f, δ) as close to 0 as possible? A nearly optimal function for
this problem (which is tight to within a constant factor if the initial correlation δ
is small enough) is the so-called tribes function of Ben-Or and Linial [BL90].

Let ANDk denote the And function on k bits (i.e., ANDk(x) = −1 iff xi = −1
for all 1 ≤ i ≤ k), and let ORk denote the Or function on k bits. For each b ∈ N,
define n = nb to be the smallest integral multiple of b such that (1−2−b)n/b ≤ 1/2,
so n is very roughly (ln 2)b2b, and b = lg n − lg ln n + o(1). (Here lg n denotes
log2 n.) Now define the tribes function Tn to be ORn/b ⊗ ANDb. This function is
monotone, and by construction it’s near-balanced; it’s easy to see that P[Tn =
+1] = (1 − 2−b)n/b = 1/2 − O(log n/n).

One can calculate Z(Tn, η) directly and exactly:

Proposition 6.1 Z(Tn, η) = 1−4
[
(1−2−b)n/b−(1−(2−(1

2 + 1
2η)b)2−b)n/b

]
.

Corollary 6.2 Z(Tn, η) ≤ (1 + o(1)) lg2 n
n η(1 + η)b + O(log2 n/n2).

Therefore if η ≤ O(1/ log n), then Z(Tn, η) ≤ O(η log2 n/n).

We omit the proofs of these results from this extended abstract. A similar result
to Corollary 6.2 appears in [O02], with a more complicated proof.

Now we give a monotone function for which Z(f, δ) is small when δ ≤ 1−Ω(1).

Theorem 6.3 Let δ ≤ 1 − Ω(1). Then there is an infinite family of monotone
functions {gn} satisfying:

Z(gn, δ) ≤ log1+u′

n

n
,

where u′ is any number exceeding u = log 4/3 3 = 3.818. . . .

Proof: The idea is to first use REC-MAJ-3 to reduce δ to η := 1/ log n; then, apply
a tribes function.

Let Tn be any tribes function. We will construct gn′ on n′ := n logu′

n inputs.
Let ` be the REC-MAJ-3 depth necessary from Theorem 1.2 to reduce δ correlation
down to 1/ log n correlation. Hence ` = (1+o(1)) log 4/3(log n) (since 1−δ ≥ Ω(1)).

Put h = REC-MAJ-3`, so h is a function on 3` = logu′

n inputs. Let gn′ = Tn ⊗ h.
By construction, Z(h, δ) ≤ 1/ log n. By Corollary 6.2, Z(Tn, 1/ log n) ≤

O(log n/n). Since h is balanced, by Proposition 3.4 we get Z(gn′ , δ) ≤ O(log n/n).

The result follows, since as a function of n′, O(log n/n) is log1+u′

n′/n′ (taking u′

slightly larger to kill any constant factors). �

As we can see from the following proposition, when the initial correlation
0 < δ < 1 is a constant, the above result is tight up to a factor of log2.818n:

12

Proposition 6.4 If f : Ωn → {−1, +1} is monotone, then Z(f, η) ≥ Ω(η log2 n/n).

Proof:
Z(f, η) =

∑

S

η|S|f̂2(S) ≥ η
∑

|S|=1

f̂2(S) ≥ Ω(η log2 n/n),

by a result of [KKL88] (using the fact that f is monotone). �

It also follows from this proposition and Corollary 6.2 that when the initial
correlation η is O(1/ log n), the tribes function by itself is maximally sensitive
among monotone functions, to within a constant factor.

7 High sensitivity to small noise, and Fourier con-
centration around

√
n

It seems natural to combine the functions from Theorems 1.3 and 6.3, via Propo-
sition 3.4. One gets:

Theorem 7.1 There exists an explicit infinite family of monotone functions fn :
Ωn → {−1, +1} with the following property: Z(fn, 1 − 1/Q) ≤ ε, where:

Q =

√
nε

(log(nε))t log(1/ε)(1+u′)/2
,

t = .3257. . . , and (1 + u′)/2 = 2.409. . . .

Using the relationship Z(f, η) =
∑

S η|S|f̂2(S), it’s easy to conclude:

Corollary 7.2 There exists an explicit infinite family of monotone functions fn :
Ωn → {−1, +1} satisfying:

∑

|S|≤Q

f̂n
2
(S) ≤ ε,

where Q = Ω̃(
√

nε) is the quantity from Theorem 7.1.

From (3), one can easily derive the well-known fact that for all monotone

f : Ωn → {−1, +1}, ∑

|S|≤ε−1
√

n f̂2(S) ≥ 1 − ε. That is, every monotone function

has almost all the `2 mass of its Fourier spectrum concentrated on coefficients of
degree up to O(

√
n). Corollary 7.2 demonstrates that this bound is tight up to

polylog factors.

Acknowledgment: We would like to thank Gil Kalai for providing encour-
agement to write this result and Yuval Peres for interesting discussions.

References

[AN72] K. Athreya, P. Ney. Branching processes. Springer-Verlag, New York-
Heidelberg, 1972.

[BDG88] J. Balcázar, J. Dı́az, J. Gabarró. Structural Complexity I, II. Springer-
Verlag, Heidelberg, 1988.

13

[BJT99] N. Bshouty, J. Jackson, T. Tamon. Uniform-distribution attribute noise
learnability. Workshop on Computational Learning Theory, 1999.

[BKS98] I. Benjamini, G. Kalai, O. Schramm. Noise sensitivity of boolean func-
tions and applications to percolation. Preprint.

[BL90] M. Ben-Or, N. Linial. Collective coin flipping. In Randomness and
Computation, S. Micali ed. Academic Press, New York, 1990.

[BT96] N. Bshouty, C. Tamon. On the Fourier spectrum of monotone functions.
Journal of the ACM 43(4), 1996.

[DK00] D.-Z. Du, K.-I Ko. Theory of Computational Complexity. Wiley Inter-
science, New York, 2000.

[F98] E. Friedgut. Boolean functions with low average sensitivity depend on
few coordinates. Combinatorica 18(1), 1998, 27–36.

[FK96] E. Friedgut, G. Kalai. Every monotone graph property has a sharp
threshold. Proc. Amer. Math. Soc. 124, 1996, 2993–3002.

[H99] S. Haykin. Neural Networks, 2nd Edition. Prentice Hall, 1999.

[J97] J. Jackson. An efficient membership-query algorithm for learning DNF
with respect to the uniform distribution. Journal of Computer and Sys-
tem Sciences, 55(3), 1997.

[KKL88] J. Kahn, G. Kalai, N. Linial. The influence of variables on boolean
functions. Foundations of Computer Science, 1988.

[KOS02] A. Klivans, R. O’Donnell, R. Servedio. Learning intersections and thresh-
olds of halfspaces. To appear.

[LMN93] N. Linial, Y. Mansour, N. Nisan. Constant depth circuits, Fourier trans-
form, and learnability. J. Assoc. Comput. Mach. 40, 1993, 607–620.

[M94] Y. Mansour. Learning boolean functions via the Fourier transform. Theo-
retical Advances in Neural Computing and Learning, Kluwer Acad. Publ.,
Dordrecht (1994), 391–424.

[M98] E. Mossel. Recursive reconstruction on periodic trees. Random Struc-
tures Algorithms, 13, 1998, no. 1, 81–97.

[O02] R. O’Donnell. Hardness amplification within NP. Symposium on the
Theory Of Computation, 2002.

[Pa93] C. Papadimitriou. Computational Complexity. Addison Wesley, Read-
ing, MA, 1993.

[Pe98] Y. Peres. Personal communication, 1998.

[T96] M. Talagrand. How much are increasing sets positively correlated? Com-
binatorica 16, 1996, no. 2, 243–258.

[V84] L. Valiant. A theory of the learnable. Communications of the ACM, 40,
1994, no. 2, 445–474.

14

Elchanan Mossel
Hebrew University of Jerusalem and Microsoft Research
mossel@microsoft.com
Ryan O’Donnell
MIT Mathematics Department
odonnell@theory.lcs.mit.edu

15

