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ABSTRACT
One of the major tasks of evolutionary biology is the reconstruction
of phylogenetic trees from molecular data. The evolutionary model
is given by a Markov chain on the true evolutionary tree. Given
samples from this Markov chain at the leaves of the tree, the goal
is to reconstruct the evolutionary tree.

It is well known that in order to reconstruct a tree on n leaves,
sequences of length Ω(log n) are needed. It was conjectured by M.
Steel that for the CFN evolutionary model, if the mutation proba-
bility on all edges of the tree is less than p∗ = (

√
2−1)/23/2, then

the tree can be recovered from sequences of length O(log n). This
was proven by the second author in the special case where the tree
is “balanced”. The second author also proved that if all edges have
mutation probability larger than p∗ then the length needed is nΩ(1).
This “phase-transition” in the number of samples needed is closely
related to the phase transition for the reconstruction problem (or ex-
tremality of free measure) studied extensively in statistical physics,
probability and computer science.

Here we complete the proof of Steel’s conjecture and give a re-
construction algorithm using optimal (up to a multiplicative con-
stant) sequence length. Our results further extend to obtain an opti-
mal reconstruction algorithm for the Jukes-Cantor model with short
edges. All reconstruction algorithms run in polynomial time.

Categories and Subject Descriptors: F.2 [Theory of Computa-
tion]: Analysis of Algorithms and Problem Complexity; J.3 [Com-
puter Applications]: Life and Medical Sciences—Biology and ge-
netics.

General Terms: Algorithms, Theory.

Keywords: Phylogenetics, CFN model, Ising model, phase transi-
tions, reconstruction problem, Jukes Cantor.

1. INTRODUCTION
In this paper we establish a central conjecture in algorithmic

Phylogeny [26]: we show that every phylogenetic tree with short
edges on n leaves can be reconstructed from sequences of length
O(log n). This result is optimal up to a multiplicative constant.
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Phylogeny Background. Phylogenies are used in evolutionary bi-
ology to model the stochastic evolution of genetic data on the an-
cestral tree relating a group of species. The leaves of the tree cor-
respond to (known) extant species. Internal nodes represent extinct
species while the root of the tree represents the most recent ances-
tor to all species in the tree. Following paths from the root to the
leaves, each bifurcation indicates a speciation event whereby two
new species are created from a parent. We refer the reader to [9,
24] for excellent introductions to Phylogeny.

The underlying assumption is that genetic information evolves
from the root to the leaves according to a Markov model on the
tree. This genetic information may consist of DNA sequences, pro-
teins, etc. Suppose for example that the genetic data consists of
(aligned) DNA sequences and let us follow the evolution of the first
letter in all sequences. This collection, named the first character,
evolves according to Markov transition matrices on the edges. The
root is assigned one of the four letters A, C, G and T . Then this
letter evolves from parents to descendants according to the Markov
matrices on the edges connecting them.

The vector of the i’th letter of all sequences is called the i’th
character. It is further assumed that the characters are i.i.d. random
variables. In other words, each site in a DNA sequence is assumed
to mutate independently from its neighbors according to the same
mutation mechanism. Naturally, this is an over-simplification of
the underlying biology. Nonetheless, the model above may be a
good model for the evolution of some DNA subsequences and is the
most popular evolution model in molecular biology, see e.g. [9, 24].
One of the major tasks in molecular biology, the reconstruction of
phylogenetic trees, is to infer the topology of the (unknown) tree
from the characters (sequences) at the leaves (extant species).

In this paper we will be mostly interested in two mutation mod-
els, the Cavender-Farris-Neyman (CFN) model [3, 8, 23], and the
Jukes-Cantor (JC) model [14].

In the CFN model the character states are 0 and 1 and their a
priori probability at the root is 1/2 each (the 0 and 1 originally
corresponded to the Purine and Pyrimidine groups). To each edge
e corresponds a mutation parameter p(e) which is the probability
that the character mutates along the edge e. In the JC model the
character states are A, C, G and T with a priori probability 1/4
each. To each edge e corresponds a mutation parameter p(e) and it
is assumed that every state mutates with probability p(e) to each of
the other states.
The reconstruction problem. A problem that is closely related
to the phylogenetic problem is that of inferring the ancestral state,
i.e. the character state at the root of the tree, given the character
states at the leaves. This problem was studied earlier in statistical
physics, probability and computer science under the title of the re-
construction problem, or the extremality of the free Gibbs measure.



See [25, 11, 10]. The reconstruction problem for the CFN model
was analyzed in [2, 6, 12, 1, 15]. In particular, the role of the re-
construction problem in the analysis of the mixing time of Glauber
dynamics on trees was established in [1, 15].

Roughly speaking, the reconstruction problem is solvable when
the correlation between the root and the leaves persists no matter
how large the tree is. When it is unsolvable, the correlation decays
to 0 for large trees. The results of [2, 6, 12, 1, 15] show that for the
CFN model, if for all e, it holds that p(e) ≤ pmax < p∗ then the
reconstruction problem is solvable, where

p∗ =

√
2− 1√

8
.

If, on the other hand, for all e it holds that p(e) ≥ pmin > p∗ and
the tree is balanced in the sense that all leaves are at the same dis-
tance from the root, then the reconstruction problem is unsolvable.
Moreover in this case, the correlation between the root state and
any function of the character states at the leaves decays as n−Ω(1).
Our results. M. Steel [26] conjectured that when 0 < pmin ≤
p(e) ≤ pmax < p∗ for all edges e, one can reconstruct with high
probability the phylogenetic tree from O(log n) characters. Steel’s
insightful conjecture suggests that there are deep connections be-
tween the reconstruction problem and phylogenetic reconstruction.

This conjecture has been proven to hold for trees where all the
leaves are at the same distance from the root in [20]. It is also
shown there that the number of characters needed when p(e) ≥
pmin > p∗ for all e is nΩ(1). The second result intuitively follows
from the fact that the topology of the part of the tree that is close to
the root is essentially independent of the characters at the leaves if
the number of characters is not at least nΩ(1).

The basic intuition behind Steel’s conjecture is that, since, in
the regime where p(e) ≤ pmax < p∗, there is no decay of the
quality of reconstructed sequences, it should be as easy to recon-
struct deep trees as it is to reconstruct shallow trees. In [5] (see
also [19, 7]) it is shown that “shallow” trees can be reconstructed
from O(log n) characters if all mutation probabilities are bounded
away from 0 and 1/2 (the results of [5] also show that in this
regime, any tree can be recovered from sequences of polynomial
length). The same high-level reasoning has also yielded a com-
plete proof that O(log n) characters suffice for a “homoplasy-free”
mutation model when all edges are short [22].

Here we give a complete proof of Steel’s conjecture. We show
that, if 0 < pmin ≤ p(e) ≤ pmax < p∗ for all edges e of the
tree, then the tree can be reconstructed from c(pmin, pmax)(log n+
log 1/δ) characters with error probability at most δ. This result
implies that sequences of logarithmic length suffice to reconstruct
phylogenetic trees in the Jukes-Cantor model, when all the edges
are sufficiently short.

1.1 Definitions and results
Let T be a tree. Write V(T ) for the nodes of T , E(T ) for the

edges of T and L(T ) for the leaves of T . If the tree is rooted, then
we denote by ρ(T ) the root of T . Unless stated otherwise, all trees
are assumed to be binary (all internal degrees are 3) and it is further
assumed that L(T ) is labeled.

Let T be a tree equipped with a length function on its edges, d :
E(T ) →R+. d will also denote the induced path metric on V(T ):
d(v, w) =

P
{d(e) : e ∈ pathT (v, w)}, for all v, w ∈ V(T ),

where pathT (x, y) is the path (sequence of edges) connecting x to
y in T .

We will further assume below that the length of all edges is
bounded between f and g for all e ∈ E. In other words, for all
e ∈ E(T ), f ≤ d(e) ≤ g.

We now define the evolution process on a rooted tree equipped
with a path metric d. The process is determined by a rooted tree
T = (V, E) equipped with a path metric d and a mutation rate
matrix Q. We will be mostly interested in the case where Q =`−1 1

1 −1

´
corresponding to the CFN model and in the case where Q

is a 4× 4 matrix given by Qi,j = 1− 4δ(i = j) corresponding to
the Jukes-Cantor model. To edge e of length d(e) we associate the
mutation matrix Me = exp(d(e)Q).

In the mutation model on the tree T rooted at ρ each vertex itera-
tively chooses its state from the state at its parent by an application
of the Markov transition rule Me, where e is the edge connect-
ing it to its parent. We assume that all edges in E are directed
away from the root. Thus the probability distribution on the tree is
the probability distribution on {0, 1}V ({A, C, G, T}V ) given by
µ[σ] = π(σ(ρ))

Q
(x→y)∈E M

(x→y)

σ(x),σ(y), where π is given by the
uniform distribution at the root, so that π(0) = π(1) = 1/2 for the
CFN model and π(A) = π(C) = π(G) = π(T ) = 1/4 for the
JC model. We let the measure µ denote the marginal of µ on the
set of leaves which we identify with [n]. Thus µ(σ) =

P
{µ(τ) :

∀i ∈ [n], τ(i) = σ(i)}. The measure µ defines the probability
distribution at the leaves of the tree.

We note that both for the CFN model and for the JC model, the
mutation matrices Me are in fact very simple. For the CFN model,
with probability p(e) = (1− exp(−2d(e)))/2, there is a mutation
and, otherwise, there is no mutation. Similarly for the JC model
with probability p(e) = (1 − exp(−4d(e)))/4 each of the three
possible mutations occur. In particular, defining

g∗ =
log 2

4
, (1)

we may formulate the result on the reconstruction problem for the
phase transition of the CFN model as follows: “If d(e) ≤ g < g∗

for all e then the reconstruction problem is solvable.”
We will be interested in reconstructing phylogenies in this regime.

The objective is to reconstruct the underlying tree T whose internal
nodes are unknown from the collection of sequences at the leaves.
Since for both the CFN model and the JC model, the distribution
µ[σ], described above, is independent of the location of the root
we can only aim to reconstruct the underlying un-rooted topology.
Let T represent the set of all binary topologies (i.e. unrooted undi-
rected binary trees) andMCFN

f,g the family of CFN mutation matri-
ces, as described above, which correspond to distances d satisfying:

0 < f ≤ d ≤ g < g∗,

where g∗ is given by (1) and f is an arbitrary positive constant.
Let T ⊗MCFN

f,g denote the set of all unrooted phylogenies, where
the underlying topology is in T and all mutation matrices on the
edges are in MCFN

f,g . Rooting T ∈ T ⊗ MCFN
f,g at an arbi-

trary node, let µT be the measure at the leaves of T as described
above. It is well known, e.g. [5, 4] that different elements in T ⊗
MCFN

f,g correspond to different measures; therefore we will iden-
tify measures with their corresponding elements of T ⊗MCFN

f,g .
We are interested in finding an efficiently computable map Ψ such
that Ψ(σ1

∂ , . . . , σk
∂) ∈ T , where

˘
σi

∂

¯k

i=1
are k characters at the

leaves of the tree. Moreover, we require that for every distribution
µT ∈ T ⊗ MCFN

f,g , if σ1
∂ , . . . , σk

∂ are generated independently
from µT , then with high probability Ψ(σ1

∂ , . . . , σk
∂) = T . The

problem of finding an efficiently computable map Ψ (with small
value of k) is called the phylogenetic reconstruction problem for
the CFN model. The phylogenetic reconstruction problem for the
JC model is defined similarly. In [5], it is shown that there exists
a polynomial time algorithm that reconstructs the topology from



k = poly(n, 1/δ) characters, with probability of error δ. Our re-
sults are the following.

THEOREM 1. Consider the CFN model on binary trees where
all edges satisfy: 0 < f ≤ d(e) ≤ g < g∗. Then there exists
a polynomial time algorithm that reconstructs the topology of the
tree from k = c(f, g)(log n+log 1/δ) characters with error prob-
ability at most δ; in particular, c(f, g) = c(g)

f2 . Moreover, the value
g∗ given by (1) is tight.

Our algorithm can be used to reconstruct phylogenies from DNA
sequences if we replace all occurrences of characters ‘A’ and ‘G’
by ‘0’ and all occurrences of ‘C’ and ‘T’ by ‘1’. Note that this
mapping is in accordance with the biological role of purines and
pyrimidines if we interpret symbol ‘0’ as purine and symbol ‘1’ as
pyrimidine. In fact, we prove the following.

COROLLARY 1. Consider the JC model on binary trees where
all edges satisfy

0 < f ≤ d(e) ≤ g < g∗JC, where g∗JC := g∗/2.

Then there exists a polynomial time algorithm that reconstructs the
topology of the tree from c′(f, g)(log n + log 1/δ) characters with
error probability at most δ; c′(f, g) = c′(g)

f2 .

Theorem 1 and Corollary 1 extend also to cases where the data at
the leaves is given with an arbitrary level of noise. For this “Robust
Phylogenetic Reconstruction Problem” both values g∗ and g∗JC are
tight.

1.2 Organization of the Paper
The paper is organized as follows. We start with an overview

of the algorithm and techniques used in Section 2. In Section 3
we provide a high-level description of our analysis of the recon-
struction algorithm. Proofs for the combinatorial part of the ar-
gument can be found in sections 4 and 5. Proofs for the prob-
abilistic part of the argument are omitted from the extended ab-
stract. All proofs can be found in the full version of the paper at
http://arxiv.org/abs/math.PR/0509575.

2. ALGORITHM OVERVIEW
Our reconstruction algorithm has two components. The proba-

bilistic part, which consists in reconstructing estimates of sequences
at internal nodes, borrows heavily from the work of [20] where
Steel’s conjecture is proved for the special case of balanced trees.
The main tool there is recursive majority, as detailed in Subsec-
tion 2.1. Our main contribution lies in the combinatorial compo-
nent of the algorithm, which is significantly more involved than
in [20]. The combinatorial component is detailed in Subsection 2.2.

2.1 Properties of the majority function
In this subsection we quote some of the results we are using

from [20] and explain briefly how they are used in our reconstruc-
tion algorithm. The results of [20] are stated assuming that the
character values are ±1 instead of 0/1. Furthermore, instead of
using the mutation probability 0 ≤ p(e) ≤ 1/2, they use θ(e) =
1 − 2p(e) which satisfies 0 ≤ θ(e) ≤ 1. Note that in terms of θ
we have reconstruction solvability whenever θ(e) ≥ θ > θ∗ for all
e where 2θ2

∗ = 1.
For the CFN model both the majority algorithm [11] and recur-

sive majority algorithm [17] are effective in reconstructing the root
value. (For other models in general, most simple reconstruction al-
gorithms are not effective all the way to the reconstruction thresh-
old [18, 21, 13].)

The function Maj : {−1, 1}d → {−1, 1} is defined by

Maj(x1, . . . , xd) = sign

 
dX

i=1

xi + 0.5ω

!
where ω is±1 with prob 1/2 and is independent of the xi. In other
words, the Maj outputs the majority value unless there is a tie in
which case it outputs ±1 with probability 1/2 each.

DEFINITION 1. Let T = (V, E) be a tree rooted at ρ with leaf
set ∂T . For functions θ′ : E → [0, 1] and η′ : ∂T → [0, 1],
let CFN(θ′, η′) be the CFN model on T where θ(e) = θ′(e) for
all e which is not adjacent to ∂T , and θ(e) = θ′(e)η′(v) for all
e = (u, v), with v ∈ ∂T . Let

dMaj(θ′, η′) = E[+Maj(σ∂T )|σρ = +1] = E[−Maj(σ∂T )|σρ = −1],

where σ is drawn according to CFN(θ′, η′).

For functions θ and η as above, we abbreviate by writing min θ

for mine∈E θ(e), max η for maxv∈∂T η(v), etc. The function dMaj
measures how well majority calculates the character value at the
root of the tree.

THEOREM 2. [20] Let b and θmin be such that bθ2
min > h2 >

1. Then there exist `(b, θmin), α(b, θmin) > h` and β(b, θmin) >
0, such that any CFN(θ, η) model on the `-level b-ary tree satis-
fying min θ ≥ θmin and min η ≥ ηmin must also satisfy:dMaj(θ, η) ≥ min{αηmin, β}. (2)

The previous theorem allows to reconstruct the root state of an
l-level balanced binary tree given values at the leaves. The estimate
is guaranteed to have a positive correlation with the true value. For
a balanced tree that contains more than l levels, the theorem can be
applied recursively and, this way, one can estimate internal states
deep inside the tree with correlation at least β.

Our main use of reconstructed sequences is in estimating dis-
tances between internal nodes of the tree. Note that, if nodes u and
v obtain sequences σu, σv ∈ {±1}k by the CFN model, then the
following quantity

dDist (σu, σv) = −1

2
log

" 
1

k

kX
t=1

σt
uσt

v

!
+

#
, (3)

measures the correlation between sequences σu and σv and serves
as an estimate of how far nodes u and v are in the tree, i.e. it is an
estimate of d(u, v). However, we do not know the true sequences at
the internal nodes of the tree, so we will apply (3) to reconstructed
sequences σ̂u, σ̂v . The effect of this is discussed in the following
comments regarding our application of Theorem 2:

1. Below, we consider general trees. In particular, when esti-
mating the sequence at an internal node u, we apply Theo-
rem 2 to a subtree “below” u, but this subtree is not balanced.
This can be tackled by “completing” the subtree into a bal-
anced tree and assuming that all added edges have length 0.

2. We are not given access to the true sequences at the internal
nodes, but only estimated sequences. By Theorem 2, the re-
construction procedure introduces a “bias” in the sequence.
One may think of this bias as an extra edge in the Markov
model. Therefore, our estimate of the distance is itself bi-
ased (upwards). However, as shown in Figure 1, a correct
estimate of the length of the internal edge of a quartet (i.e.
a tree on four leaves) can still be obtained because the esti-
mation of the length of the internal edge is unaffected by the
biases at the leaves of the quartet.
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e

τu

σ̂v
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τv

σ̂u
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σy

Figure 1: The estimation of d(e) is not affected by the bias at
the leaves, represented as dashed edges.

3. To apply Theorem 2, all edges in the subtree below the recon-
structed node need to be “small enough”. In our algorithm,
some of the edges in these subtrees are actually paths in the
true tree so we need to verify that these paths are sufficiently
short.

4. For dDist (σ̂u, σ̂v) to be a “good” estimate of d(û, v̂) (where
by û and v̂ we denote the “biased” images of nodes u and
v; see Figure 1), we need the biases at u and v to be inde-
pendent. For this to hold, the subtrees we use to reconstruct
sequences at u and v must be “disjoint”, i.e. the path between
them must go “above” u and v. This task is nontrivial when
only partial information is known about the topology.

To use Theorem 2, it is important to make sure that properties 3
and 4 above hold whenever we perform a sequence reconstruction.
One last point to note is that, given that we use O(log n) length
sequences, only small (in fact O(1)) distances can be estimated
with accuracy. This follows from standard concentration inequali-
ties. Therefore, given a reconstructed subforest of the true tree and
estimated sequences at its internal nodes, we only get local metric
information about the “rest” of the tree.

2.2 The Reconstruction Algorithm
Recall that, in a binary tree, a cherry is a pair of leaves at graph

distance 2. At a high level, our reconstruction algorithm proceeds
from a simple idea: it builds the tree one level of cherries at a time.
To see how this works, imagine that we had access to a “cherry
oracle”, i.e. a function C(u, v, T ) that returns the parent of the pair
of leaves {u, v} if the latter forms a cherry in the tree T (and say 0
otherwise). Then, we could perform the following “cherry picking”
algorithm:

• Currently undiscovered tree: T ′ := T;

• Repeat until T ′ is empty,

– For all (u, v) ∈ L(T ′)× L(T ′), if
w := C(u, v, T ′) 6= 0, set Parent(u) := Parent(v) :=
w;

– Remove from T ′ all cherries discovered at
this step;

Unfortunately, the cherry oracle cannot be simulated from short
sequences at the leaves. Indeed, short sequences provide only local
metric information on the structure of the tree. Nevertheless, the
above scheme can be roughly followed by making a number of
modifications, which we now describe briefly. The description of
the algorithm uses the following notation and conventions:

• TChild
≤w is the tree made of the descendants of w as defined

by the descendance function Child.

• A g-cherry is a cherry where both edges have length less or
equal to g.

• Let M > 0. Let T be a tree and F be the subforest of T
where we keep all the leaves and only those nodes with the
following property: they are on a path of length at most M
between two leaves of T . We say that a pair of leaves {u, v}
is an M -local g-cherry in T if {u, v} is a g-cherry in F and
there are at least two other leaves u′, v′ s.t.

max{d(u, u′), d(u, v′), d(v, u′), d(v, v′)} ≤ M

(the leaves u′, v′ will act as “witnesses” of the cherry {u, v}).

• A pseudoleaf is a current active node. The set of active nodes
at iteration i of the algorithm will be denoted by bLi and will
correspond to the leaves of the currently undiscovered part
of the tree.

The high-level idea of the algorithm, which we call BLIND-
FOLDED CHERRY PICKING (BCP), is to apply the cherry pick-
ing scheme above using the local metric information obtained from
short sequences at the leaves and reconstructed sequences at inter-
nal nodes as outlined in the previous section. However, because of
the local nature of our information, some of the cherries we pick
will turn out not to be cherries. This only becomes apparent once a
larger fraction of the tree is reconstructed, at which point a subrou-
tine identifies the “fake” cherries and removes them.

Consider for instance the tree depicted in Figure 2a. It is made
of a large complete binary tree (on the right) with a small 3-level
complete binary tree attached to its root (on the left). All edges
have length g, except (v, x), (x, v′) and the two edges attached to
the root which have length g/2. In the figure, the subtree currently
discovered by BCP is made of solid arrows and full circles. The
remaining (undiscovered) tree is in dotted lines and empty circles.
Assume that the length of the sequences at the leaves allows us to
estimate accurately distances up to 5g (the actual constants used by
the algorithm can be found later).

a. Suppose we join into cherries all pairs of leaves that “look”
like g-cherries in this local metric, i.e. they form a g-cherry
in all quartets of leaves. In particular, these selected pairs of
leaves form 5g-local g-cherries. We are guaranteed to find
all true g-cherries (actually we keep only those for which we
can locate the top of the cherry). However, consider pairs of
leaves such as u, v for which there is no local evidence that
it does not form a cherry. Even though u, v is not a cherry, it
is joined into a cherry by BCP. Figure 2a depicts the current
forest after the first iteration of BCP. The top of the cherries
are called pseudoleaves. Before proceeding further, we ap-
ply the majority function of the previous section to obtain
reconstructed sequences at all pseudoleaves and recompute
the local metric.

b. We subsequently proceed to join local g-cherries one level at
a time, reconstructing internal sequences as we do so. After
many iterations, we find ourselves in the situation of Fig-
ure 2b where most of the large complete tree has been re-
constructed (assume for now that edges (u′, v′′), (v′, v′′),
(u, v′), (v, v′) represented in dashed lines are present). Now,
the new information coming from sequences at y1, . . . , y4

provides evidence that (u, v′, v) is not a cherry and that there
is in fact a node x on edge (v, v′). For example, the quar-
tet {y1, y2, u, v} suggests that u, v forms a cherry with a
3g/2-edge, which cannot hold in a g-cherry. At this point,
we remove the “fake” cherry (u, v′, v) as well as all cher-
ries built upon it, here only (u′, v′′, v′). Note that we have
removed parts of the tree that were in fact reconstructed cor-
rectly (e.g., the path between u and u′) in order to maintain
properties 3 and 4 which are essential for the sequence re-
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Figure 2: Illustration of BCP’s unraveling.



construction component to work properly. This aspect of the
algorithm is explained in more detail in Section 3.

c. Subsequently, BCP continues to join local cherries and “re-
discovers” the parts of the tree that we removed. For in-
stance, in Figure 2c, the edge (u′, v′′) is reconstructed again
but this time it forms a cherry with (u′′, v′′) rather than
(v′, v′′).

d. Eventually, the full tree is correctly reconstructed except may-
be for a few (at most 3) remaining edges. Those are easy to
add separately. For example in Figure 2d only the three edges
around x remain to be uncovered. Note that the reconstructed
tree has a root which is different from that of the original tree
(i.e. the two trees differ as directed trees).

We now summarize the various routines needed for the recon-
struction. Details are provided in figures 3, 4, 5, and 6.

1. DISTEST. This routine relies on the reconstructed sequences
(computed in the routine SEQREC) and computes distances
between pseudoleaves as indicated in Section 2.1 (see Fig-
ure 1). Details are omitted from this extended abstract.

2. CHERRYID. This routine identifies local cherries – these are
pairs of pseudoleaves that appear as cherries under the local
metric in all quartets.

3. SEQREC. This routine reconstructs sequences as indicated in
Section 2.1. Details are omitted from this extended abstract.

4. FAKECHERRY. This routine identifies “fake” cherries. The
routine is rather involved – see Figure 5 for the algorithm and
Section 5 for proof of its correctness.

5. BUBBLE. This routine cleans up “fake” cherries and removes
all cherries built upon “fake” cherries.

6. FOURPOINT. This routine uses the four-point method to find
the right quartet split of a given quadruple of pseudoleaves
and also computes estimates of the lengths of the edges using
(5 times) a scheme similar to DISTEST. Details are omitted
from this extended abstract.

3. ANALYSIS
In this section, we establish that BCP reconstructs the phylogeny

correctly. There are two main technical aspects to the proof. The
probabilistic part follows [20]. We focus rather on the combinato-
rial part where the novelty and complexity of BCP lies. There, we
first establish a number of combinatorial properties of the current
forest bFi grown by BCP. We then prove that the “correctly recon-
structed subforest” of bFi increases in size at every iteration.

3.1 Preliminaries
The following notation will be used in the proofs: T is the phy-

logenetic tree that produced the data; 0 < f < g < +∞ are lower
and upper bounds on the length of every edge in T , where g < g∗;
k = c log n is the number of samples available at the leaves, where
c = c(f, g, δ) is determined by the proof, δ being the probability
of error. The proof yields a bound of exp(−c′′(f, g)k) ≤ n−γ

on the probability of failure for each distance estimation. We will
have at most n10 distance estimations and will therefore require
that n10−γ ≤ δ.

In the following discussion, a subtree refers to a subgraph of a
tree induced by a subset of the nodes. (We sometimes apply this
definition to a directed tree, in which case we actually refer to the
undirected version of the tree.)

DEFINITION 2 (EDGE DISJOINTNESS [19]). Denote by
pathT (x, y) the path (sequence of edges) connecting x to y in T .
We say that two subtrees T1, T2 of T are edge disjoint if

pathT (u1, v1) ∩ pathT (u2, v2) = ∅,

for all u1, v1 ∈ L(T1) and u2, v2 ∈ L(T2). We say that T1, T2

are edge sharing if they are not edge disjoint. (If T1 and T2 are di-
rected, we take this definition to refer to their underlying undirected
version.)

DEFINITION 3 (COLLISIONS). Suppose that T1 and T2 are
edge disjoint rooted subtrees of T . We say that T1 and T2 collide
at distance d, if the path pathT (ρ(T1), ρ(T2)) has non-empty in-
tersection with E(T1) ∪ E(T2) and the length of the shortest path
between T1 and T2 is at most d. In other words, T1 and T2 collide
at distance d, if the shortest path between T1 and T2 is of length at
most d and this path does not contain either ρ(T1) or ρ(T2).

DEFINITION 4 (FIXED SUBFOREST). Let F be a rooted di-
rected edge disjoint subforest of T with implicit descendance rela-
tionship Child. Let u ∈ V(F). We say that u is fixed if TChild

≤u

is fully reconstructed (or in other words, TChild
≤u can be obtained

from T by removing (at most) one edge adjacent to u). Note that
descendants of a fixed node are fixed themselves. We denote by F∗
the (directed) subforest of F made of all fixed nodes of F . We say
that F∗ is the maximal fixed subforest of F .

3.2 Probabilistic Analysis
Assume that g satisfies the inequality 2e−2g > 1, which defines

the space of values of g for which full reconstruction with O(log n)
samples at the leaves is not forbidden by [20]. Also, fix the constant
ε < f/2 such that if g′ = g + ε then g′ satisfies 2e−2g′

> 1. Fix
ε2 < ε/8. In both subroutines DISTEST and FOURPOINT, we take
a number of samples large enough so that all distances smaller or
equal to 25g are computed within ε2 with high probability when the
biases at endpoints are independent. The next lemma bounds the
error on estimated distances between pseudoleaves in the presence
of collisions. The proof is omitted from this extended abstract.

PROPOSITION 1 (LOCAL METRIC). Suppose that
F = {T1, T2, . . . , Tα} is a forest of rooted full binary trees with
the following properties:

1. [Edge Disjointness] {T1, T2, . . . , Tα} is an edge disjoint
subforest of T .

2. [Edge Lengths] All edges in F have length at most g′.

3. [Collisions] There is no collision at distance 20g in F .
Then, using routine DISTEST to estimate the distances between ev-
ery pair of roots of trees in F , the following property is satisfied by
the estimated distance d̂ with probability at least 1−n−γ+2, where
γ = γ(f, g, ε2):

d̂(u, v) ≤ 12g ∨ d(u, v) ≤ 12g ⇒ |d(u, v)− d̂(u, v)| < ε2.

3.3 Combinatorial Analysis
The following proposition establishes a number of properties of

the forest grown by BCP. The proof can be found in Section 5. Re-
call that bLi is the set of pseudoleaves (i.e. active nodes) at iteration
i (see the algorithm in Figure 3 for a precise definition).

PROPOSITION 2 (PROPERTIES OF bFi). The following proper-
ties hold at the beginning of BCP’s i-th iteration, ∀i ≥ 1:

1. [Edge Disjointness] bFi =
n

TChild
≤u : u ∈ bLi

o
is an edge

disjoint subforest of T .



Algorithm BLINDFOLDED CHERRY PICKING (Input: samples at the leaves; Output: estimated topology)

• 0) Initialization: i := 0; j := n; bL0 := [n]; ∀α ∈ [n], σ̂α := σα;

• 1) Distance Estimation: For all (u, v) ∈ bLi × bLi, set d̂i(u, v) := DISTEST(u, v) [see text];

• 2) Cherry Identification: bLi+1 := bLi; bCi := ∅; For all (u0, v0) ∈ bLi × bLi such that u0 < v0, apply CHERRYID (u0, v0);

• 3) Sequence Reconstruction: For all (u, w, v) ∈ bCi, set σ̂w := SEQREC(u, w, v) [see text];

• 4) Fake Cherry Detection: For all (u0, u1) ∈ bLi+1 × bLi+1 with u0 < u1, perform FAKECHERRY(u0, u1);

• 5) Termination: If |bLi+1| ≤ 3, join pseudoleaves in bLi+1 (star if 3, single edge if 2) and compute the length of the missing edges;
Output the reconstructed tree; Else, set i := i + 1, and go to Step 1.

Figure 3: Algorithm BLINDFOLDED CHERRY PICKING.

Algorithm CHERRYID (Input: pair of pseudoleaves (u0, v0));
• IsCherry := TRUE;

• Test 1 [Distance less than 2g + ε2]: If d̂i(u0, v0) > 2g + ε2, then IsCherry := FALSE;

• Test 2 [Local cherry]: Let R5g be the set of all (u1, v1) ∈ bLi × bLi such that u1 < v1, {u0, v0} ∩ {u1, v1} = ∅, and

max
n

d̂i(x0, x1) : xι ∈ {uι, vι}
o
≤ 5g + ε2. Then:

– If R5g is empty, then IsCherry := FALSE; Otherwise, perform FOURPOINT(u0, v0, u1, v1); If (u0, v0) is not a (g+ε2)-cherry
in {u0, v0, u1, v1}, then set IsCherry := FALSE;

• If IsCherry = TRUE,

– Set j := j+1 and w := j; Add w to bLi+1, add (u0, w, v0) to bCi, and remove u0, v0 from bLi+1; Update parenting relationships;
Let γ̂(u0, w) and γ̂(v0, w) be the estimated lengths of edges (u0, w) and (v0, w).

Figure 4: Subroutine CHERRYID.

Algorithm FAKECHERRY (Input: pseudoleaves u0, u1);
• For ι = 0, 1, set Tι := TChild

≤uι
and denote Cι the set of cherries in Tι;

• Compute all pairwise distances d̂ between T0 and T1 using DISTEST (some of these distances are actually wrong);

• ∀(κ0, κ1) ∈ C0 × C1 with κι = (xι, zι, yι), set d̂M (κ0, κ1) = max{d̂(v0, v1) : vι ∈ {xι, yι}};
• For ι = 0, 1, if u1−ι is not a leaf, do

– Set Stopι := FALSE;
– Inside Loop: For all κι = (xι, zι, yι) ∈ Cι,

∗ Set C′ := {κ ∈ C1−ι : d̂M (κι, κ) ≤ 25g}; Break from Inside Loop if empty;
∗ While C′ 6= ∅ and Stopι = FALSE,

· Let κ = (x, z, y) be the lowest cherry in C′;
· [Collision Test 1] Let w be the node at the intersection of the triplet {xι, x, y} (note that it may be that w 6= z); use

the four point method on {xι, x, y} to compute the distance between x and w, say h (using a scheme similar to that in
routine DISTEST); if |h − γ̂(x, z)| > 2ε2 then set Test1 := TRUE;

· [Collision Test 2] Perform the previous step again with yι rather than xι and Test2 rather than Test1;
· If in both Test1 = TRUE and Test2 = TRUE, then set Stopι := TRUE and set w1−ι := z; otherwise remove κ from

C′.

• For ι = 0, 1,

– If Stopι = TRUE, perform BUBBLE(w1−ι, u1−ι).

Figure 5: Subroutine FAKECHERRY.

Algorithm BUBBLE (Input: node w, pseudoleaf u);

• Add the children of w to bLi+1;
• Set z := w;
• While z 6= u,

– Add Sister(z) to bLi+1;
– Set z := Parent(z).

• Remove u from bLi+1;

Figure 6: Subroutine BUBBLE.



2. [Edge Lengths] ∀u ∈ bLi, TChild
≤u is a rooted full binary tree

with edge lengths at most g′.

3. [Weight Estimation] The estimated lengths of the edges inbFi are within ε2 from their right values.

4. [Collisions] There is no collision at distance 20g.

The next proposition establishes that, in a precise sense, the al-
gorithm makes progress at every iteration. The proof can be found
in Section 5.

PROPOSITION 3 (PROGRESS). LetbFi =
n

TChild
≤u : u ∈ bLi

o
(where bLi is taken at the beginning of iteration i) for all i ≥ 0

with corresponding maximal fixed subforest bF∗i . Then for all i ≥
0 (before the termination step), bF∗i ⊆ bF∗i+1 and |V( bF∗i+1)| >

|V( bF∗i )|.

4. PROOF OF THE MAIN THEOREM
Proof of Theorem 1: By Proposition 2, the current forest is cor-
rectly reconstructed. By Proposition 3, after O(n) iterations, there
remain at most three nodes in bLi and at that point, from Propo-
sition 2, bFi ≡ bF∗i . Therefore the remaining task is to join the
remaining pseudoleaves and there is only one possible topology.
So when the BCP algorithm terminates, it outputs the tree T (as
an undirected tree) with high probability and all estimated edges
are within ε2 of their correct value. This concludes the proof. The
tightness of the value g∗ = log 2

4
is justified by the polynomial

lower bound [20] on the number of required characters if the muta-
tion probability p on all edges of the tree satisfies 2(1− 2p)2 < 1.
�

5. COMBINATORIAL ANALYSIS: PROOFS
Proof of Proposition 2:

i = 0: The set bL0 consists of the leaves of T . The claims are there-
fore trivially true.

i > 1: Assume the claims are true at the beginning of the i-th
iteration. By doing a step-by-step analysis of the i-th iteration, we
show that the claims are still true at the beginning of the (i + 1)-st
iteration. The following lemma follows from Proposition 1.

LEMMA 1 (CORRECTNESS OF DISTEST). After the comple-
tion of step 1, for all u, v ∈ bLi:

d̂i(u, v) ≤ 12g ∨ d(u, v) ≤ 12g ⇒ |d(u, v)− d̂i(u, v)| < ε2.

Proof: From the induction hypothesis (Claim 4), it follows that in
the beginning of the i-th iteration there is no collision at distance
20g. So the claim follows from Proposition 1. (A small detail to
note is that the sequences at the nodes of the forest were recon-
structed in different steps of the algorithm. However, the subtrees
that were used for the reconstruction of each node are exactly those
in the statement of Proposition 1.) �
Next, we analyze the routine CHERRYID.

LEMMA 2 (CORRECTNESS OF CHERRYID). Let u, v be the
input to CHERRYID. Let T ′ = T − bFi (keeping the nodes in bLi)
at the beginning of the i-th iteration. Then we have the following.

• If {u, v} is a 5g-local g-cherry in T ′, then it passes all screen-
ing tests in CHERRYID.

u 

u' 
v 

v' 

z 

u 1 u 2 

Figure 7: Estimating distance d(u, z).

• If {u, v} is not a (5g + 2ε2)-local (g + 2ε2)-cherry in T ′,
then it is rejected by at least one of the tests in CHERRYID.

Proof: This result is implied by the following claim. Every time
FOURPOINT is called by CHERRYID, on 4 nodes u, v, u′, v′ where
{u, v} is the candidate cherry and {u′, v′} is the witness, then

• the trees rooted at u, v, u′, v′ do not collide,

• the split returned by FOURPOINT is the correct split,

• all edge lengths of the quartet joining u, v, u′, v′ are esti-
mated within ε2 of their correct value.

We now prove this claim. The subroutine FOURPOINT is called by
CHERRYID when the following assumptions are satisfied.

• d̂i(u, v) ≤ 2g + ε2,

• max
n

d̂i(u, u′), d̂i(u, v′), d̂i(v, u′), d̂i(v, v′)
o
≤ 5g + ε2.

From Lemma 1, it follows that the above estimated distances are
within ε2 of their correct values. An application of the triangle in-
equality gives d(u′, v′) < 11g so that |d̂i(u

′, v′)− d(u′, v′)| < ε2

as well. In fact, all pairwise distances of nodes in the set {u, v, u′, v′}
are smaller than 11g. Hence, by the induction hypothesis (Claim 4),
the four trees rooted at u, v, u′, v′ do not collide. Therefore, from
Proposition 1 and the fact that the quartet joining u, v, u′, v′ has
width at most 11g, the split of nodes u, v, u′, v′ is found correctly
by the four point method and the length of the internal edge of the
quartet is estimated within ε2 of its correct value.

It remains to show that all other edges of the quartet are esti-
mated within ε2 of their correct value. Above, we have established
that the quartet split computed for the nodes u, v, u′, v′ is correct.
Also, by the induction hypothesis (Claim 1) the trees rooted at
u, v, u′, v′ are edge disjoint subtrees of T . Suppose the quartet
joining u, v, u′, v′ is as depicted in Figure 7 and we are estimating
d(u, z). Without loss of generality, assume the algorithm applies
the four point method to the set of nodes {u1, u2, v, v′}. It is easy
to see that every pair of nodes in the set {u1, u2, v, v′} has distance
< 7g and so the width of the quartet is < 7g. Thus, Proposition 1
can be applied and the internal edge of the quartet, i.e. (u, z), is
estimated within ε2 of its correct value.�

We are now in a position to prove claims 1, 2, and 3.

LEMMA 3 (CLAIMS 1, 2, AND 3). At the beginning of the
(i + 1)-st iteration, claims 1, 2, and 3 of the induction hypothesis
hold.

Proof: Since FAKECHERRY only removes edges from the current
forest, it is enough to prove that after the completion of Step 3 the
resulting forest satisfies claims 1, 2, and 3.
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Figure 8: Illustration of routine FAKECHERRY.

Claim 1. Suppose the resulting forest is not edge disjoint. Also,
suppose that, along the execution of Step 2, the forest stopped being
edge disjoint when cherry (x, z, y) was added to bCi. Then one of
the following must be true:

1. There is a pseudoleaf z′ ∈ bLi ∩ bLi+1 such that pathT (x, y)
is edge sharing with TChild

≤z′ . Then it is not hard to see that

there is a collision in
n

TChild
≤u : u ∈ bLi

o
at distance 3g which

contradicts the induction hypothesis (Claim 4).

2. There is a pseudoleaf z′ ∈ bLi+1\bLi such that pathT (x, y) is
edge sharing with TChild

≤z′ . We can distinguish the following
subcases.

• (x′, z′, y′) ∈ bCi and pathT (x, y) is edge sharing with
pathT (x′, y′): in this case xy|x′y′ is not the correct
split and, by Lemma 2, it is not hard to see that CHER-
RYID rejects {x, y} when performing Test 2.

• Otherwise, it is not hard to see that there is a collision at
distance 3g in

n
TChild
≤u : u ∈ bLi

o
, which contradicts

the induction hypothesis (Claim 4).

Claim 2. Follows directly from the description of the algorithm:
a cherry (u, x, v) is added to bCi only if d(u, x) and d(v, x) are
estimated to be at most g + ε2, so that the true edge lengths are less
than g′ by Lemma 1 and the choice of ε2.
Claim 3. This follows from proof of Lemma 2. �
It remains to prove Claim 4. This follows immediately from the
following analysis of FAKECHERRY.

LEMMA 4 (COLLISION REMOVAL). Let u0, u1 ∈ bLi+1 af-
ter step 3 of the i-th iteration. Suppose T0 ≡ TChild

≤u0
and T1 ≡

TChild
≤u1

collide at distance 20g. Then after an application of FAKE-
CHERRY the remaining subtrees of T0 and T1 do not collide at dis-
tance 20g.

Proof: Suppose by contradiction that, after applying FAKECHERRY,
there is a collision between two remaining subtrees T ′0 and T ′1 of T0

and T1 respectively. Then, without loss of generality, there exists a
path of length at most 20g between an internal node u0 of T0 and
the inside of an edge e of T1 such that the subpath lying on T0 is
above u0. See Figure 8. Let x0, y0 be the children of u0 (the case
where u0 is a leaf is similar). Consider the set

A0→1 = {v ∈ V(T1) : e is not in the subtree of T1 rooted at v} .

It is not hard to see that for all v ∈ A0→1 the reconstructed se-
quence at node v is positively correlated with the true sequence
and the bias is independent of the biases of the reconstructed se-
quences at x0 and y0. Thus, from Section 3.2, it follows that
∀v ∈ A0→1 : d(x0, v) ≤ 25g ⇒ |d̂i(x0, v) − d(x0, v)| < ε2

and similarly for y0. Let A′0→1 ⊆ A0→1 be the set that contains
the nodes v ∈ A0→1 such that d̂i(x0, v) ≤ 25g and d̂i(y0, v) ≤
25g. Since the collision is at distance 20g it follows that A′0→1 is
nonempty and in fact contains at least the lower endpoint of edge
e and its sibling in T1. The routine FAKECHERRY scans the cher-
ries of T1 starting from the lowest cherry and going up and, in fact,
only considers cherries formed by pairs of nodes in A′0→1. There-
fore, by the proof of Lemma 2 (correctness of weight estimations),
it stops when it reaches the cherry formed by the lower endpoint
of e and its sibling. It then calls BUBBLE which in turn removes
e. Note that since T is a tree, there is only one path between T0

and T1 and, therefore, at most one fake cherry can be found by
FAKECHERRY. Also, from the proof of Proposition 3 below, it
follows that FAKECHERRY does not stop before reaching this fake
cherry. This leads to a contradiction. �
This concludes the proof of Proposition 2. �
Proof of Proposition 3: We first argue that bF∗i ⊆ bF∗i+1. Note
that the only routine that removes edges is BUBBLE when called
by FAKECHERRY. Because bF∗i is fully reconstructed, it suffices
to show that collisions identified by FAKECHERRY are actual col-
lisions or lie “above” an actual collision—i.e. are on a cherry lo-
cated on the path between the actual collision and the root. Indeed,
since BUBBLE removes only edges “above” presumed collisions,
this would then imply that no edge in bF∗i can be removed. We now
prove the claim by analyzing the behavior of FAKECHERRY. We
use the notation defined in the routine. Consider the collision tests
in FAKECHERRY. The key point is to observe the following:

• if cherry κ = (x, z, y) is in bF∗i ∩T1−ι and κι = (xι, zι, yι),
then at least one of xι or yι has a reconstruction bias that
is independent from the bias at both x and y; therefore this
“correct” witness will not observe a collision (using Propo-
sition 1);

• if cherry κ is in (T− bF∗i )∩T1−ι, then all the cherries above κ

(on the path to u1−ι) cannot be in bF∗i and therefore applying
BUBBLE to κ does not modify bF∗i .

This proves that bF∗i ⊆ bF∗i+1. To prove that |V( bF∗i+1)| > |V( bF∗i )|,
assume bFi = {T1, . . . , Tα} and F ′ ≡ T − bFi = {T ′1, . . . , T ′β}.
F ′ is the forest obtained from T by removing all the edges in the
union of the trees T1, . . . , Tα. The nodes of F ′ are all the end-
points of the remaining edges. Since the trees T1, . . . , Tα are edge
disjoint, the set F ′ is in fact a subforest of T . Each leaf v in F ′
satisfies exactly one of the following:

• Collision Node: v a leaf of F ′ that belongs to a path con-
necting two vertices in Ta ∈ bFi but is not the root of Ta (it
lies in the “middle” of an edge of Ta).

• Fixed Pseudoleaf: v is a root of a fully reconstructed tree
Ta ∈ bFi (i.e. Ta is also in bF∗i );

• Colliding Pseudoleaf: v is a root of a tree Ta ∈ bFi that is
not in bF∗i (the tree Ta contains a collision).

We need the following definition.

DEFINITION 5 (BUNDLE). A bundle is a group of four leaves
such that:

• Any two leaves are at topological distance at most 5;



• It includes at least one cherry.

A fixed bundle is a bundle in F ′ whose leaves are fixed pseu-
doleaves.

We now prove that F ′ contains at least one fixed bundle. This
immediately implies the second claim. Indeed, it is not hard to see
that the cherry in the fixed bundle is found by CHERRYID during
the (i + 1)-st iteration.

LEMMA 5 (FIXED BUNDLE). Assume Proposition 2 holds at
the end of the i-th iteration and let F ′ as above have at least two
internal nodes. Then, F ′ contains at least one fixed bundle.

Proof: We first make a few easy observations:
1. A tree with 4 or more leaves contains at least one bundle. (To

see this: merge all cherries into leaves; repeat at most twice.)

2. Because of Claim 4 in Proposition 2, collision nodes are at
distance at least 20g from any other leaf in F ′. Therefore,
if a tree in F ′ contains a collision node, then it has > 4
nodes and, from the previous observation, it contains at least
one bundle. Moreover, this bundle cannot contain a collision
node (since in a bundle all leaves are close).

3. From the previous observations, we get the following: if a
tree in F ′ contains a collision, then either it has a fixed bun-
dle, or it has at least one colliding pseudoleaf.

It is then easy to conclude. Assume there is no collision node in
F ′. Then, there cannot be any colliding pseudoleaf either and it
is easy to see that F ′ is actually composed of a single tree all of
which leaves are fixed. Then there is a fixed bundle by Observation
1 above.

Assume on the contrary that there is a collision node. Let T ′b be
a tree in F ′ with such a node. Then by Observation 3, T ′b either
has a fixed bundle, in which case we are done, or it has a colliding
pseudoleaf, say v. In the latter case, let Ta be the tree in bFi whose
root is v. The tree Ta contains at least one collision node which it
shares with a tree in F ′, say T ′b′ . Repeat the argument above on
T ′b′ , and so on.

Note that in each step we “exit” a tree Tc ∈ bFi via a node that
is not the root of Tc ∈ bFi and enter a new tree Td ∈ bFi at its
root. Since T is a tree, this process cannot continue forever, and we
eventually find a fixed bundle. �

6. CONCLUSION
The proof of Steel’s Conjecture [26] provides tight results for

the phylogenetic reconstruction. However, many theoretical and
practical questions remain:

• Can the results be extended to other mutation models? Can
the results be extended to deal with “rates across sites” (see
e.g. [9])?

• We have found a tight value g∗JC for the “robust phylogenetic
reconstruction problem” for the JC model. What is the op-
timal value for usual phylogenetic reconstruction? Is it the
same as the critical gq=4 value for the reconstruction prob-
lem for the q = 4 Potts model on the binary tree? We note
that it is a long standing open problem to find gq=4. The best
bounds known are given in [21, 16].
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