
On Approximately Fair Allocations of Indivisible Goods

Richard Lipton∗ Evangelos Markakis† Elchanan Mossel‡ Amin Saberi†

ABSTRACT
We study the problem of fairly allocating a set of indivis-
ible goods to a set of people from an algorithmic perspec-
tive. Fair division has been a central topic in the economic
literature and several concepts of fairness have been sug-
gested. The criterion that we focus on is envy-freeness. In
our model, a monotone utility function is associated with
every player specifying the value of each subset of the goods
for the player. An allocation is envy-free if every player
prefers her own share than the share of any other player.
When the goods are divisible, envy-free allocations always
exist. In the presence of indivisibilities, we show that there
exist allocations in which the envy is bounded by the max-
imum marginal utility, and present a simple algorithm for
computing such allocations. We then look at the optimiza-
tion problem of finding an allocation with minimum possi-
ble envy. In the general case the problem is not solvable
or approximable in polynomial time unless P = NP. We
consider natural special cases (e.g. additive utilities) which
are closely related to a class of job scheduling problems.
Approximation algorithms as well as inapproximability re-
sults are obtained. Finally we investigate the problem of de-
signing truthful mechanisms for producing allocations with
bounded envy.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-

ity]: Nonnumerical Algorithms and Problems; G.2.1 [Discrete

Mathematics]: Combinatorics—Combinatorial Algorithms

∗Supported by NSF grant CCR-0002299. College of Com-
puting, Georgia Tech and Telcordia Research. Email:
rjl@cc.gatech.edu
†College of Computing, Georgia Tech. Email: {vangelis,
saberi}@cc.gatech.edu
‡Department of Statistics, U.C. Berkeley. Email: mos-
sel@stat.berkeley.edu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EC’04, May 17–20, 2004, New York, New York, USA.
Copyright 2004 ACM 1-58113-711-0/04/0005 ...$5.00.

General Terms
Algorithms, Economics, Theory

Keywords
Fairness, Approximation Algorithm, Truthfulness, Envy

1. INTRODUCTION
Fair division has been a central problem in economic the-

ory. The first attempt for a mathematical treatment of the
problem was made by the Polish school of mathematicians
(Steinhaus, Banach, and Knaster, see e.g. [16]) and was the
source of many interesting questions. Over the past 50 years,
a vast literature has developed [4, 15] and several notions of
fairness have been suggested. We focus on the concept of
envy-freeness. An allocation is envy-free if and only if every
player likes his own share at least as much as the share of
any other player.

The class of envy-free allocations as a fairness concept was
introduced by Foley [9] and Varian [18] and has been stud-
ied extensively since then in the economic literature [15, 4].
However, in most of the models considered so far, either all
goods are divisible or there is at least one divisible good like
money to let the players compensate each other in order to
achieve envy-freeness [1, 17]. Issues of indivisibility should
be taken into consideration.

In this paper, we study the problem of allocating indivis-
ible goods in a fair manner. When goods are indivisible,
an envy-free allocation might not exist and we wish to find
the minimum-envy allocation. We will study this problem
from a computational perspective. The methodology of al-
gorithms and complexity has been used in the last few years
for studying many other game theoretic solution concepts
and analyzing games on discrete structures.

In our model, each player p has a certain utility value
vp(S) for each subset S of the goods. Given an allocation
of the goods to the players, a player p envies player q if her
valuation for the bundle given to player q is more than her
valuation for her own bundle. In that case, her envy is the
difference.

We first show that allocations with bounded maximum
envy exist, and present an algorithm for computing such
allocations. We then look at the optimization problem of
finding an allocation with minimum possible envy. In the
general case the problem is not solvable or approximable
in polynomial time. Therefore we look at natural special
cases and obtain approximation algorithms as well as inap-
proximability results. Finally we investigate the problem

of designing truthful mechanisms for producing allocations
with bounded envy.

In Section 2 we show that there exists an allocation with
maximum envy at most α, where α is the maximum marginal
utility of the goods. The maximum marginal utility is the
maximum value by which the utility of a player is increased
when one more good is added to her bundle. Assuming that
we have oracle access to the players’ utilities, we give an
O(mn3) time algorithm for producing a desired allocation.
The problem of finding allocations with bounded envy in
the presence of indivisible goods was introduced in [8]. A

bound of O(αn3/2) was obtained, where n is the number of
players. Our bound is a substantial improvement and it is
also tight.

In Section 3 we look at the optimization problem of com-
puting allocations with minimum possible envy. We show
that in most cases the problem is hard. First, using a sim-
ilar argument as in [14], we show that any algorithm needs
exponential time to obtain enough information about the
valuations of players even if the valuations are provided via
an oracle. We then look at the special case of additive util-
ities, i.e., vp(S) =

P

i∈S vp({i}). Even in this case we prove

that for any constant c, there can be no 2mc

-approximation
algorithm for the minimum envy problem unless P = NP,
where m is the number of goods.

We believe that a more suitable objective function is the
maximum envy-ratio. The envy ratio of player p for player
q is the utility of p for q’s bundle over her utility for her own
bundle. If all players have the same utility function, the
problem is closely related to a class of scheduling problems
on identical processors. If we think of players as processors
as jobs, then our problem is equivalent to scheduling the jobs
so as to minimize the ratio of the maximum completion time
over the minimum completion time. In [5] it is shown that
Graham’s greedy algorithm [10] achieves an approximation
factor of 1.4 for the envy-ratio problem. We improve this
result and derive a polynomial time approximation scheme.

Finally the issue of incentive compatibility is addressed.
We prove that any mechanism that produces an allocation
with minimum envy cannot be truthful. We also show that
randomly allocating the goods to the players results in an
allocation with envy at most O(

√
α n1/2+ε) with high proba-

bility. We conclude in the last section with many interesting
open problems.

2. EXISTENCE OF ALLOCATIONS WITH
BOUNDED MAXIMUM ENVY

Let N = {1, 2, ..., n} be a set of players and M = {1, 2, ...,
m} be a set of indivisible goods. A utility function vp is
associated with each player p. For S ⊆ M , vp(S) is the
happiness player p derives if she obtains the subset S. We
assume that vp is non-negative and monotonic i.e. vp(S) ≤
vp(T) for every S ⊆ T and every p.

An allocation A is a partition of the goods A = (A1, A2, ...,
An) where ∪n

p=1Ap = M and Ap∩Aq = ∅ for all p 6= q. Ap is
the subset allocated to player p. Note that some of the sets
Ap may be empty. A partial allocation will be a partition
of some subset of M .

Given an allocation A = (A1, A2, . . . , An), we say that
player p envies player q if she prefers the bundle allocated
to q to her own i.e. vp(Ap) < vp(Aq). We will denote by epq

the envy of p for q:

epq(A) = max{0, vp(Aq) − vp(Ap)}.
We define e(A) to be the maximum envy between any pair

of players.

e(A) = max{epq(A), p, q ∈ N}.
We will often omit the parameter A in the notation.

A natural question is whether there exist allocations with
bounded envy. We obtain a bound on the envy in terms of
the maximum marginal utility of the goods, α. The marginal
utility of a good i with respect to a player p and a subset of
goods S, is the amount by which it increases the utility of
p, when added to S, i.e., vp(S∪{i})−vp(S). The maximum
marginal utility is:

α = max
S,p,i

vp(S ∪ {i}) − vp(S)

In addition to proving a bound on the envy, we present an
efficient algorithm that computes a desired allocation. For
that, we assume that the algorithm can ask an oracle for the
utility of a player p for any subset S. A similar assumption
has been used before in the context of auctions[14].

Theorem 2.1. For any set of goods and any set of play-
ers, there exists an allocation A such that the maximum envy
of A is bounded by the maximum marginal utility of the
goods, α. Furthermore, given oracle access for the utility
functions of the players, there is an O(mn3) time algorithm
for finding such an allocation.

Given an allocation A, we define the envy graph of A as
follows: every node of the graph represents a player and
there is a directed edge from p to q iff p envies q. The proof
of Theorem 2.1 is based on the following Lemma:

Lemma 2.2. For any partial allocation A with envy graph
G, we can find another partial allocation B with envy graph
H such that:

• e(B) ≤ e(A)

• H is acyclic.

Proof. If G has no directed cycles, we are done. Suppose
that C = p1 → p2 → · · · → pr → p1 is a directed cycle in
G. If A = {A1, ..., An}, we can obtain A′ = (A′

1, ...A
′
n)

by re-allocating the goods as follows: A′
p = Ap for all p /∈

{p1, . . . , pr}, and A′
p1

= Ap2
, A′

p2
= Ap3

, . . . , A′
pr

= Ap1
.

Note that all players evaluate what they have in A′ at
least as much as what they have in A. Therefore it is easy
to see that e(A′) ≤ e(A).

We can also show that the number of edges in the envy
graph G′ corresponding to A′ has decreased. To see this,
first note that the set of the edges between pairs of vertices
in N\C has not changed. Also every edge of the form p → pj

for p ∈ N \C and pj ∈ C has now become the edge p → pj−1

(or p → pr if j = 1) in G′ and no more edges of this form
have been added. The number of edges of the form pj → p
has either decreased or remained the same since players in
C are strictly happier. Finally for pi ∈ C the number of
edges from pi to vertices in C has decreased by at least 1.

Thus by repeatedly removing cycles using the above pro-
cedure, we will obtain an allocation B with corresponding

envy graph H such that e(B) ≤ e(A) and H is acyclic. Since
the number of edges decreases at every step, the process will
terminate.

Proof of Theorem 2.1. We give an algorithm that pro-
duces the desired allocation. The algorithm proceeds in m
rounds. At each round one more good is allocated to some
player.

In the first round, we allocate good 1 to some player arbi-
trarily. Clearly the maximum envy is at most α. Suppose at
the end of round i, the goods {1, ..., i} have been allocated
to the players and the maximum envy is at most α. At
round i + 1, we construct the envy graph corresponding to
the current allocation. We use the procedure of Lemma 2.2
to obtain an allocation A in which the maximum envy is
at most α and the new envy graph G is acyclic. Since G
is acyclic, there is a player p ∈ N with in-degree 0, which
implies that nobody envies p. We then allocate good i + 1
to p. Let B = (B1, ..., Bn) be the new allocation. Clearly
for for any 2 players q, r with q, r 6= p, eqr(B) = eqr(A) ≤ α.
For q ∈ N \ {p}, since eqp(A) = 0 we have:

eqp(B) = max{0, vq(Ap ∪ {i}) − vq(Aq)}
≤ max{0, α + vq(Ap) − vq(Aq)} ≤ α

We use a simple amortized analysis for the running time
of the algorithm. In Lemma 2.2, we keep removing cycles
until the envy-graph is acyclic. Finding a cycle and remov-
ing it takes at most O(n) time and it decreases the number
of edges by at least one. Initially the envy graph has no
edges. Allocating a good at any round adds at most n edges
to the new envy graph. Since every cycle removal decreases
the number of edges, the number of times we have to re-
move a cycle is at most O(nm) and the total running time
is O(mn3). 2

In [8], a similar model has been defined with the difference
that the utility function of every player is additive and we
have a combination of divisible and indivisible goods. More
formally, in [8] the problem is to partition a measurable
space (Ω,F). Each player has a utility function which is a
probability measure vp on (Ω,F) such that for each vp the
maximum value of an atom is α. A subset S ⊆ Ω is an
atom for vp if vp(S) > 0 and ∀E ⊂ S, either vp(E) = 0 or
vp(E) = vp(S). It is shown that there exist allocations with

envy at most O(αn3/2).
We can prove that our result also holds for their model

and hence it improves the bound of O(αn3/2) to α. The idea
is that we can partition Ω into indivisible goods of value at
most α and then apply Theorem 2.1.

Theorem 2.3. When the utilities of the players are prob-
ability measures on (Ω,F) = ([0, 1], Borel sets) with atoms
of value at most α, there exists a partition A = (A1, ..., An)
of Ω such that e(A) ≤ α.

Proof. Since each measure vp has atoms of value at most
α, this means that for every x ∈ [0, 1], vp({x}) ≤ α. The
case α = 0 corresponds to an infinitely divisible cake and
an envy-free allocation always exists [8]. For α > 0 we can
reduce the problem to allocating indivisible goods of value
at most α and then use Theorem 2.1.

Lemma 2.4. The interval [0, 1] can be partitioned in m
disjoint sets S1, ..., Sm such that m = O(n/α) and vp(Sj) ≤
α for every p = 1, ..., n, j = 1, ..., m

Proof. Find the minimum possible value for x ∈ [0, 1]
such that vp([0, x]) ≤ α for every player p. Such an x
exists since atoms have value at most α. Set S1 = [0, x]
and consider the interval (x, 1]. Again find the minimum
value of y ∈ (x, 1] such that vp((x, y]) ≤ α for every p. Set
S2 = (x, y]. We can continue in the same manner until we
partition the whole interval [0, 1]. It is easy to check that
the number of disjoint intervals S1, S2, ..., Sm of the partition
will be O(n/α).

We can now treat the intervals S1, ..., Sm produced in the
previous Lemma as indivisible goods and Theorem 2.1 will
complete the proof.

3. MINIMIZING ENVY AS AN OPTIMIZA-
TION PROBLEM

Although we can produce an allocation with bounded
envy, in many instances the maximum envy can be smaller
than α. Therefore we would like to look at the following two
optimization problems:

Problem 1: minimum-envy

Compute an allocation A that minimizes the envy

max
p,q

{0, vp(Aq) − vp(Ap)}

Problem 2: envy-ratio

Compute an allocation A that minimizes the envy-ratio

max
p,q

{1,
vp(Aq)

vp(Ap)
}

As we will see it is not always possible to have a polynomial
time algorithm for computing an optimal solution, hence
we will also be interested in obtaining approximation algo-
rithms. Given a minimization problem Π, we say that an al-
gorithm has an approximation factor of ρ, if for any instance
I of Π, the algorithm outputs a solution which is guaran-
teed to be at most ρ OPT (I), where OPT (I) is the optimal
solution. We will say that an algorithm is a Polynomial
Time Approximation Scheme (PTAS) if for any instance I
and any error parameter ε > 0, the algorithm runs in time
polynomial in the input size and outputs a solution which
is at most (1+ ε)OPT (I). If in addition the running time is
polynomial in 1/ε then we say that the algorithm is a Fully
Polynomial Time Approximation Scheme (FPTAS).

In the following theorem we show that any algorithm
needs an exponential number of queries in the worst case
to produce an optimal or an approximate solution. Our
construction is similar to Nisan and Segall [14].

Theorem 3.1. Any algorithm that computes an alloca-
tion with minimum envy or minimum envy-ratio requires
a number of queries which is exponential in the number of
goods in the worst case.

Proof. We give an outline of the proof. Suppose m = 2k.
We consider the following class of utility functions F . A
function v is in F if:

v(S) = 0 for all S with |S| < k.

v(S) = 1 for all S with |S| > k.
v(S) = 1 − v(S̄) for all |S| = k
Now, consider instances (v, v) in which there are two play-

ers with the same utility function v for some v ∈ F . The
number of such instances is doubly exponential in k. Since
the algorithm asks only a polynomial number of queries, it
can produce only an exponential number of different query
sequences. Therefore, there exist two different functions
u, v ∈ F such that the query sequences corresponding to
the instances defined by u and v are the same.

Consider the instances (u, v) and (v, u). The algorithm
will produce the same query sequences for both instances
and therefore it will produce the same allocation for (u, v)
and (v, u). It is easy to see that although for either case,
there exists an allocation which is envy free, there is no
single allocation that is envy free for both instances.

We would like to note that an interesting fact about The-
orem 3.1 is that it is unconditional, i.e., not dependent on
any complexity theory assumption.

3.1 Additive Utilities
We consider a natural special case of the problem in which

the utility functions of all players are additive i.e. for all
p ∈ N , vp(S) =

P

i∈S vp({i}). In that case, an instance of
the problem is specified by an n × m matrix V = (vp,i).

3.1.1 The minimum envy problem
Still, the problem of finding a minimum-envy allocation

is NP-hard, even when the number of players is two. This
follows from the fact that for two players with the same
utility functions, deciding whether an envy-free allocation
exists is equivalent to deciding if there exists a partition of
a set of positive integers in two subsets of equal sum, which
is NP-complete [19].

Since the objective function of the minimum envy problem
can be zero and since distinguishing the case where the envy
is zero is NP-complete, we cannot have a polynomial time
approximation algorithm unless P = NP. One way to rem-
edy this is to add 1 to our objective function. In that case,
Theorem 2.1 guarantees a (1+α)-approximation algorithm,
where α = max vp,i. We can also show that for any constant

c, there is no 2mc

-approximation algorithm unless P = NP.
The proof is along the same lines as the in-approximability
result for the problem Subset-Sums Difference in [3] and we
omit it.

3.1.2 The minimum envy-ratio problem
We believe that a more suitable objective function is the

the envy-ratio. In the rest of this section, we study the envy-
ratio problem in the case where the players have the same
utility function. In that case, we will denote the utility that
players derive from having good i by v(i).

This special case is closely related to a class of scheduling
problems on identical processors. We can think of the set of
players as a set of identical machines and the set of goods as
a set of m jobs to be scheduled on the machines. Every job
has a positive processing time and the load of every proces-
sor is the sum of the processing times of the jobs assigned
to it. Several objective functions have been considered such
as minimizing the maximum completion time (makespan)
[10, 11] or maximizing the minimum completion time [7, 20,
2]. Our problem is equivalent to minimizing the ratio of the

maximum completion time over the minimum completion
time.

The following greedy algorithm was proposed by Graham
for the minimum makespan problem [10]: Sort the goods in
decreasing order of their values and allocate them one by one
in that order. At every step, allocate the next good to the
player whose current bundle has the least value. In [5] it was
proved (in the context of scheduling) that the approximation
factor of Graham’s algorithm is 1.4 for the ratio problem.

Theorem 3.2. [5] Graham’s algorithm achieves an ap-
proximation factor of 1.4 for the envy-ratio problem.

In the next Theorem, we improve this result and show
that we can achieve any constant factor arbitrarily close to
1 for the envy-ratio problem.

Theorem 3.3. There is a PTAS for the envy-ratio prob-
lem when all players have the same utility for each good.
Furthermore, when the number of players is constant, there
is an FPTAS.

Proof. Before going into the details of the proof we give
a brief outline of the technique. Our algorithm is similar
to [2] and [20]. However our objective function does not fit
in their framework. The algorithm is as follows: Given our
original instance, we round the utility of each good to obtain
a coarsest instance in which there is a constant number of
distinct utilities (i.e., a constant number of different types of
goods). We then show that in the new instance, we can find
an optimal solution by searching for every player among a
constant number of distinct assignments of goods. The con-
stant will be exponential in the approximation parameter
1/ε. This observation enables us to compute the optimal
solution in the rounded instance by solving a series of in-
teger programs with a constant number of variables using
Lenstra’s algorithm [12]. After finding an optimal allocation
in the rounded instance, we will convert it into an allocation
for the original instance. In the whole process, there are 2
sources of error: computing the rounded instance from the
original one and transforming the optimal allocation of the
rounded instance to an allocation of the original instance.
We are able to bound the error by 1 + ε.

Let I be an instance of the problem, with n players, m
goods and utility v(i) for good i. If m < n then the optimal
envy-ratio is ∞ and any allocation is optimal. Hence we
can assume without loss of generality that m ≥ n. We start
with some basic facts about the optimal solution.

Let L be the average utility of the players,

L =
1

n

X

i∈M

v(i)

If all the goods were divisible, we could allocate a fraction of
1/n from each good to a player and everybody would receive
a utility of exactly L.

We briefly sketch how to handle goods with utility greater
than L. Suppose there exists a good i with v(i) ≥ L. If i is
assigned to a player p in an optimal allocation, then there
is an allocation with the same or less envy ratio in which i
is the only good allocated to p. To see this, suppose that
player p receives good i and some other good, say j in an
optimal solution. Let q be the person with minimum utility
and bundle Smin. Then v(Smin) < L and by giving good
j to q, it is easy to see that the ratio does not increase,

and hence the new solution is also optimal. Therefore goods
with high utility can be assigned to players until we are left
with goods that satisfy v(i) < L. This does not necessarily
mean that if we have a PTAS for the case when v(i) < L
for all i, we can derive a PTAS for the general problem
as is the case in [2]. Instead we will have to round “big”
goods appropriately so that in the rounding instance their
utility is also higher than the corresponding average utility,
L. We will then output an optimal solution for the rounded
instance in which such goods are assigned to players with
no other good in their bundle.

We will omit the details for handling goods with v(i) ≥ L
and from now on we will assume that v(i) < L for every i.
We have the following fact:

Claim 3.4. If v(i) < L for every good i, then there ex-
ists an optimal allocation A = (A1, ..., An) such that 1

2
L <

v(Ai) < 2L.

The proof is by showing that if an optimal solution does not
satisfy the conditions of the claim, it is possible to reallocate
the goods so that the envy-ratio does not increase and the
conditions are satisfied.

We will now describe how to round the values of the goods
and obtain an instance in which there is only a constant
number of different types of goods (i.e. a constant number of
distinct values for the goods). The construction is the same
as in [2] and we repeat it here for the sake of completeness.

We will denote the rounded instance by IR(λ), where λ is
a positive constant and will be determined later (λ will be
O(1/ε)). We will often omit λ in the notation.

We first round the value of every good with relatively high
value. In particular, for every good i with v(i) > L/λ, we
round v(i) to the next integer multiple of L/λ2. Roughly
this means that we round up the first least significant digits
of v(i). We cannot afford to do the same for goods with
small value since the error introduced by this process might
be very big. Instead, let S be the sum of the values of
the goods with value less than L/λ. We round S to the
next integer multiple of L/λ, say SR. Instance IR(λ) will
have SRλ/L new goods with value L/λ. This completes the
construction. Note that in IR(λ) all values are of the form
kL/λ2, where λ ≤ k ≤ λ2. Hence we have only a constant
number of distinct values.

Let MR be the set of goods in the new instance and vR(i)
be the value of each good. Let LR = 1

n

P

j∈MR vR(i). It is

easy to see that L ≤ LR and that all values in IR(λ) are at
most LR. Hence by Claim 3.4 there is an optimal solution
AR = (AR

1 , ..., AR
n) such that 1

2
LR < v(AR

p) < 2LR for every
p. In the algorithm below we will search for such a solution.

We represent a player’s bundle by a vector t = (tλ, ..., tλ2),
where tk is the number of goods with value kL/λ2 assigned
to her. We will then say that the player is of type t. The
utility derived from t is v(t) =

P

k tkkL/λ2. Let U be the

set of all possible types t, with 1
2
LR < v(t) < 2LR. It is easy

to see that |U | is bounded by a constant which is exponential
in λ. Hence for a player of type t, there is only a constant
number of distinct values for her utility. Let V (U) be the set
of these values, i.e. V (U) = {u : v(t) = u for some t ∈ U}.

We can now show how to find the optimal envy ratio in
IR(λ). For all pairs of values u1, u2 ∈ V (U), we will solve
the following decision problem: Is there an allocation in
which the utility of every player is between u1 and u2? Since
|V (U)| is constant, after solving the above problem for all

u1, u2 we can output the allocation corresponding to u∗
1, u

∗
2

for which the minimum ratio u∗
2/u∗

1 is attained.
To solve the decision problem, we will write an integer

program (IP) with a constant number of variables and use
Lenstra’s algorithm [12]. In the following IP, for each t ∈ U
we have an integer variable Xt indicating how many players
are of type t. The first constraint implies that all players
will obtain an allocation of type t ∈ U and the second that
all goods are assigned. It is obvious that the decision prob-
lem with inputs u1, u2 has a solution iff the corresponding
integer program is feasible. Therefore we can find the op-
timal solution of IR(λ) in polynomial time. Note that the
actual running time is exponential in λ which is the reason
why we will finally obtain a PTAS and not an FPTAS.

In the following IP Uu2
u1

is the set of all types t ∈ U such

that u1 ≤ v(t) ≤ u2 and nk is the number of goods in IR(λ)
of value kL/λ2.

X

t∈U

Xt = n

X

t∈U

Xttk = nk ∀k

Xt ≥ 0 ∀Xt with t ∈ Uu2
u1

Xt = 0 ∀Xt with t ∈ U \ Uu2
u1

We need to see how the original instance is related to the
rounded instance. The following Lemma has been proved
in [2]:

Lemma 3.5. Let A = (A1, ..., An) be an allocation in I,
where 1

2
L < v(Ai) < 2L. Then there exists an allocation

B = (B1, ..., Bn) in the rounded instance, IR, such that:

v(Ai) − 1

λ
L ≤ v(Bi) ≤ λ + 1

λ
v(Ai) +

1

λ
L

Also if B = (B1, ..., Bn) is an allocation in IR such that
1
2
LR < v(Bi) < 2LR, then there exists an allocation A =

(A1, ..., An), in I such that:

λ

λ + 1
v(Bi) − 2

λ
L ≤ v(Ai) ≤ v(Bi) +

1

λ
L

We are now ready to prove our Theorem. Our algorithm
will be: Given instance I, compute the instance IR, find
an optimal allocation AR = (AR

1 , ..., AR
n) for IR, and then

convert AR to an allocation A = (A1, ..., An) for I using
Lemma 3.5. Output A.

Suppose without loss of generality that v(AR
1) ≤ ... ≤

v(AR
n) and v(A1) ≤ ... ≤ v(An). Let A∗ = (A∗

1, ..., A
∗
n) be

an optimal solution to I and assume v(A∗
1) ≤ ... ≤ v(A∗

n).
We want to show:

v(An)

v(A1)
≤ (1 + ε)

v(A∗
n)

v(A∗
1

)

By Lemma 3.5 we know that:

v(An) ≤ v(AR
n) +

1

λ
L ≤ v(AR

n) =
1

λ
LR ≤ v(AR

n)(1 +
2

λ
)

Similar calculations yield: v(A1) ≥ v(AR
1)(λ

λ+1
− 4

λ
). There-

fore:

v(An)

v(A1)
≤ v(AR

n)

v(AR
1)

(
1 + 2

λ
λ

λ+1
− 4

λ

)

We need to relate the optimal solution in IR with the
optimal solution in I. By using the first part of Lemma 3.5
and by performing similar calculations we have that there
exists an allocation A′ = (A′

1, ..., A
′
n) in IR such that:

v(A′
n)

v(A′
1)

≤ v(A∗
n)

v(A∗
1)

(
λ+1

λ
+ 2

λ

1 − 2
λ

)

Since AR is an optimal solution in IR the ratio in A′ will
be at least as big as in AR. Hence by combining the above
equations we finally have:

v(An)

v(A1)
≤ v(A∗

n)

v(A∗
1)

(
1 + 2

λ
λ

λ+1
− 4

λ

)(
λ+1

λ
+ 2

λ

1 − 2
λ

)

≤ (λ + 1)(λ + 2)(λ + 3)

(λ − 2)(λ2 − 4λ − 4)
OPT

Thus, if we set λ = 56/ε, we can check that the factor will
be at most 1 + ε.

For the FPTAS in the case that the number of players is
constant, the proof is by rounding the goods and running a
dynamic programming algorithm [19].

4. TRUTHFULNESS
So far we have assumed that we can obtain the actual

utilities of the players for the goods. However, in many sit-
uations players’ utilities are private information and they
might lie about their valuations in order to obtain a better
bundle. We would like to investigate the question of whether
we can have mechanisms that elicit truthful utilities from
the players and also produce allocations with minimum or
bounded envy. A mechanism is truthful if for every player,
her profit is maximized by declaring her true utility i.e. be-
ing truthful is a dominant strategy.

In the last few years, truthful mechanisms have been the
subject of research especially in the context of auctions.
However, unlike our problem, auction mechanisms are al-
lowed to compensate the players with money to keep them
truthful.

We will present a simple argument to prove that a mecha-
nism that computes a minimum-envy allocation can not be
truthful even in the special case where the utility functions
are additive.

Theorem 4.1. Any mechanism that returns an allocation
with minimum possible envy cannot be truthful. The same is
true for any mechanism that returns an envy-free allocation
whenever there exists one.

Proof. Let M be a mechanism that outputs an alloca-
tion with minimum envy. Consider the following instance:
We have two players, 1 and 2 and k +2 goods. In particular
we have good a, good b and k eggs. Let’s say k = 100. The
k eggs are playing the role of an almost divisible good of
value 0.2. Suppose the players have the following utilities
for the goods:

v1(a) = 0.45, v1(b) = 0.35, v1(egg) = 0.2/k,

v2(a) = 0.35, v2(b) = 0.45, v2(egg) = 0.2/k

The specific instance admits an envy-free allocation: give
to player 1 good a and 25 eggs and give the rest to player
2. Therefore in the allocation that M will output there will
be no envy. Let A be the partition that M outputs for

this instance. Note that in A each player receives exactly
one of the goods a, b because if one player received both
then the other player would envy her. Also we note that
it is Player 1 who receives a. To see this suppose on the
contrary that player 1 receives b. Then in order for A to be
envy-free player 1 should receive at least 75 eggs (otherwise
the bundle S of player 1 is worth: v1(S) < 1/2 and she will
be envious). But then player 2 will receive a and at most 25
eggs so she will be envious, a contradiction. Therefore in A
player 1 receives a and T eggs and player 2 receives b and
k − T eggs. It is also easy to see that 25 ≤ T ≤ 75.
Case 1: T < 74

In this case player 1 can increase her utility by lying and
declaring that good a has less value for her. It is possible for
her to lie in such a way to force the mechanism to give her
the good a and at least T +1 eggs (assuming that 2 does not
change her declaration). She can declare that her valuation
function is: v1(a) = 0.45−δ, v1(b) = 0.35+δ, v1(egg) = 0.2/k
where δ is such that:

0.45 − δ + (T + 1)0.2/k = 1/2

Notice that under this new declaration, there still exists an
envy-free outcome. Let A′ be the new output of M. Again
player 1 will receive a. This is true because if player 1 re-
ceives b then she has to receive at least k−T −1 eggs so that
she won’t be jealous. But then player 2 will receive good a
and at most T + 1 ≤ 74 eggs which in total is worth less
than 1/2. Hence player 1 will get a and at least T + 1 eggs
(otherwise her bundle is worth less than 1/2) which is more
than what she gets if she is honest.
Case 2: T ≥ 74

Now it is player 2 who can try to cheat. In particular she
can announce: v2(a) = 0.35 + δ, v2(b) = 0.45 − δ, v2(egg) =
0.2/k, where δ satisfies:

0.35 + δ + 73(0.2/k) = 0.45 − δ + 27(0.2/k) = 1/2

By a similar argument as in Case 1, if player 1 is honest,
then M will output a partition in which 2 receives b and
at least 27 eggs (otherwise she is jealous). But in A she
received at most 26 eggs since T ≥ 74.

In the rest of the section, we present a simple truthful
mechanism which allocates the goods to the players uni-
formly at random. We assume that the sum of the utilities
of each player over all goods is one. We will show that with
high probability the maximum envy of the resulting alloca-
tion is no more than O(

√
αn1/2+ε).

Theorem 4.2. Suppose that vp,i ≤ α ∀p ∈ N, j ∈ M .
Then for every ε > 0, and for large enough n, there exists
a truthful algorithm such that with high probability the allo-
cation output by the algorithm has maximum envy at most
O(

√
α n1/2+ε).

Proof. The proof is based on the probabilistic method.
Allocate each good independently to player p with probabil-
ity 1/n. Clearly this is a truthful mechanism. We will show
that with high probability, the allocation produced satisfies
the desired bound. Fix two players p, q. Given p and q we
define a random variable Yj indicating the contribution of
good j to the envy of player p for q. The variable Yj is equal
to 1, if good j is allocated to player q, -1, if it is allocated to

player p, and 0 otherwise. Hence: Yj = 1 with probability
1/n, −1 w.p. 1/n and 0 w.p. (n − 2)/n. We now define
the random variable: fpq =

P

j vp,jYj . Clearly the envy of

p for q is epq = max(0, fpq). We will show that with high

probability, for every p, q, fpq ≤ O(
√

α n1/2+ε) and this will
complete the proof.

The expectation of fpq is:

E[fpq] =
X

j

E[Yj]vp,j = 0

To compute the variance, note that the variables {Yj} are
independent. Thus:

V ar[fpq] =
X

j

v2
p,jV ar[Yj] =

2

n

X

j

v2
p,j ≤ 2α

n

X

j

vp,j =
2α

n

By using Chebyshev’s inequality, we have that for any or-
dered pair of players p, q such that p 6= q and for t > 0:

Pr[|fpq | ≥ t] ≤ 2α

nt2

Hence we have:

Pr[max
p,q

fpq < t] = Pr[
\

(p,q)

fpq < t] = 1 − Pr[
[

(p,q)

fpq ≥ t]

≥ 1 −
X

(p,q)

2α

nt2
≥ 1 − 2αn

t2

If we set t = 2
√

α n1/2+ε we have that:

Pr[max. envy < 2
√

αn1/2+ε] ≥ 1 − n−2ε (1)

5. DISCUSSION AND OPEN PROBLEMS
Our algorithm for minimizing the envy ratio works only if

the utility functions of the players are the same. It would be
very interesting to find an approximation algorithm for the
general case. One approach is to use a linear programming
relaxation similar to Lenstra et al. [13].

There are many related notions of fairness such as max-
min fairness or proportional fairness and we would like to
know the complexity of these solution concepts.

Another question concerns the tradeoff between fairness
and optimality of a solution. An allocation is optimal if it
maximizes the sum of the utilities of players. Such a tradeoff
can be seen as the social cost of fairness or the “price of
socialism”.

There might be an interesting connection between finding
market equilibrium and minimizing the envy. Imagine that
we give one dollar to each one of the players and have them
to buy their favorite goods in the market. If market clears
(it might not, because the goods are not divisible) then the
allocation is envy-free. If the market does not clear, the
deficiency of the market according to [6] is closely related to
maximum envy ratio.

6. ACKNOWLEDGMENTS
We would like to thank Ted Hill for many discussions and

encouraging comments. We would also like to thank Steven
Brams, Kamal Jain, David Shmoys, Vijay Vazirani and Ger-
hard Woeginger for useful discussions and pointers to the
literature.

7. REFERENCES

[1] A. Alkan, G. Demange, and D. Gale. Fair allocation of
indivisible goods and criteria of justice. Econometrica,
59:1023–1039, 1991.

[2] N. Alon, Y. Azar, G. Woeginger, and T. Yadid.
Approximation schemes for scheduling on parallel
machines. Journal of Scheduling, 98:55–66, 1998.

[3] C. Bazgan, M. Santha, and Z. Tuza. Efficient
approximation algorithms for the subset-sum problem.
In ICALP, pages 387-396, 1998.

[4] S. J. Brams and A. D. Taylor. Fair Division: from
Cake Cutting to Dispute Resolution. Cambrifge
University press, 1996.

[5] E. G. Coffman and M. A. Langston. A performance
guarantee for the greedy set-partitioning algorithm.
Acta Informatica, 21:409–415, 1984.

[6] X. Deng, C. H. Papadimitriou, and M. Safra. On the
complexity of equilibria. In Annual Symposium on
Theory of Computing, pages 67–71, 2002.

[7] B. L. Deuermeyer, D. K. Friesen, and M. A. Langston.
Scheduling to maximize the minimum procesor finish
time in a multiprocessor system. SIAM Journal of
Algebraic and Discrete Methods, 3:190–196, 1982.

[8] M. Dall’Aglio and T. P. Hill. Maximin-share and
minimax-envy in fair-division problems. Journal of
Mathematical Analysis and Applications, 2003.

[9] D. Foley. Resource allocation and the public sector.
Yale Economics Essays, 7:45–98, 1967.

[10] R. L. Graham. Bounds on multiprocessing timing
anomalies. SIAM Journal of Applied Mathematics,
17:416–429, 1969.

[11] D. S. Hochbaum and D. B. Shmoys. Using dual
approximation algorithms for scheduling problems.
Journal of the ACM, 34:144-162, 1987.

[12] H. W. Lenstra. Integer programming with a fixed
number of variables. Math. Oper. Res., 8:538–548,
1983.

[13] J. K. Lenstra, D. B. Shmoys, and E. Tardos.
Approximation algorithms for scheduling unrelated
parallel machines. Mathematical Programming,
46:259–271, 1990.

[14] N. Nisan and I. Segal. The Communication
requirements of efficient allocations and supporting
lindahl prices. In DIMACS Workshop on
Computational Issues in Game Theory and
Mechanism Design, 2001.

[15] S. J. Robertson and A. D. Webb. Cake-Cutting
Algorithms: Be fair if you can. AK Peters, 1998.

[16] H. Steinhaus. The problem of fair division.
Econometrica, 16:101–104, 1948.

[17] K. Tadenuma and W. Thomson. The fair allocation of
an indivisible good when monetary compensations are
possible. Mathematical Social Sciences, 25(2):117–132,
1993.

[18] H. Varian. Equity, envy and efficiency. Journal of
Economic Theory, 9:63–91, 1974.

[19] V. V. Vazirani. Approximation Algorithms.
Springer-Verlag, 2001.

[20] G. Woeginger. A polynomial time approximation
scheme for maximizing the minimum machine
completion time. Operations Research Letters,

20:149–154, 1997.

