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Abstract

We study thesPPROXIMATE-COLORING(g, Q) problem: Given a grapy, decide whethey(G) < ¢
or x(G) > @ (wherex(G) is the chromatic number af). We derive conditional hardness for this
problem for any constart < ¢ < Q. Forq > 4, our result is based on Khot%to-1 conjecture
[Khot'02]. For g = 3, we base our hardness result on a certain Shaped’ variant of his conjecture.

We also prove that the problem.M0OST-3-COLORING:; is hard for any constant > 0, assuming
Khot's Unique Games conjecture. This is the problem of dagidor a given graph, between the case
where one cam-color all but ac fraction of the vertices without monochromatic edges, dreldase
where the graph contains no independent set of relativeasieast.

Our result is based on bounding various generalized neéd®lisy quantities using the invariance
principle of Mossel et al [MOQO'05].
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1 Introduction

For a graphG = (V, E) we let x(G) be the chromatic number @, i.e., the smallest number of colors
needed to color the vertices 6fwithout monochromatic edges. We study the following proble

APPROXIMATE -COLORING (g,Q) : Given a grapitz, decide betweer(G) < g andx(G) > Q.

The problemAaPPROXIMATE-COLORING(3, @) is notorious for the wide gap between the valueiofor
which an efficient algorithm is known and that for which a hreersls result exists. The best known polynomial-
time algorithm solves the problem f@f = O(n3/14) colors, where is the number of vertices[[3] (In fact,
that algorithm solves theearch problenof finding a@Q-coloring given ag-colorable graph. Since we are
mainly interested in hardness results, we restrict ounttte to the decision version of the problem). In
contrast, the strongest known hardness result shows thgtrdblem is NP-hard fof) = 5 [12,[8]. Thus,
the problem is open for all < Q < O(n3/1). In this paper we give some evidence that this problem is
hard for any constant value ¢f. We remark that any hardness resultdee 3 immediately carries over for
all ¢ > 3.

The best algorithm known for larger valuesqis due to Halperin et al.! [9], improving on a previous
result of Karger et al [11]. Their algorithm solve®PROXIMATE-COLORING(q, ) for Q = n®* where
0 < a4 < 1is some function of;. For examplens ~ 0.37. Improving on an earlier result ofiffer [7],

Khot has showr [13] that for any large enough consgeantd( = q%, APPROXIMATE-COLORING(q, Q)
is NP-hard. A related problem is that of approximating theoatatic number(-) of a given graph. For this
problem, an inapproximability result af: —°() is known [6/13].

Constructions: Our constructions follow the standard composition panadigitiated in [2, 10], which
has yielded numerous inapproximability results by now. un@ntext, this means that we show reductions
from variants of a problem known as label-cover to approxéng@aph coloring problems. In the label-cover
problem, we are given an undirected graph and a nurRb&ach edge is associated with a binary relation
on{l,..., R} and we refer to it as eonstraint The goal is to label the vertices with values fréi . . ., R}
such that the number of satisfied constraints is maximizéeyeva constraint is satisfied if its two incident
vertices satisfy the relation associated with it.

As is the case with other composition-based reductionsrexuctions work by replacing each vertex
of the label-cover instance with a block of vertices, knowragadget In other reductions, the gadget is
often the binary hypercubf, 1}, sometimes known as the long-code. In our case, the gadietjsary
hypercube{1, ..., q}. We then connect the gadgets in a way that “encodes” the-taivelr constraints.
The idea is to ensure that afycoloring of the graph (wher€ is some constant greater tha)) can be
“decoded” into a labeling for the underlying label-covestamce that satisfies many label-cover constraints.

We note that the idea of using theary hypercube as a gadget has been around for a number sf year
This idea has been studied in [1] and some partial resulte wietained. The recent progress|ofi[17] has
provided the necessary tool for achieving our result.

Conjectures: Let us now turn our attention to the label-cover problem. &aohthe known NP-hard
variants of the label-cover problem (or even more generd BY3tems) seems suitable for composition in
our setting. An increasingly popular approach is to rely fom ‘tUnique-Games’ conjecture of Khat [14].
The conjecture states that a very restricted version ofdeddeer is hard. The strength of this restriction is
that in a sense, it reduces the analysis of the entire cantistnto the analysis of the gadget alone.
However, this conjecture suffers from inherent imperfeshpleteness, which seems to prevent it from
being used in a reduction to approximate coloring (althoitighuseful foralmostapproximate coloring).
Therefore, we consider some restrictions of label-covatrdio have perfect completeness. Our approach is



to search for the least-restricted such label-cover probfat would still yield the desired result. In all, we
consider three variants, which result in three differeduisions.

e \We show thabLMOST-3-COLORINGIs as hard as Khot's Unique Games problem.

e We show thahPPROXIMATE-COLORING(4, () is as hard as Khot'8-to-1 problem for any constant
() > 4. This also holds fonPPROXIMATE-COLORING(gq, Q) for anyq > 4.

e \We introduce a new conjecture, which states that label+agsVeard when the constraints are restricted
to a form we call><-constraints (read: alpha constraints). We show that fgrcamstanty) > 3,
APPROXIMATE-COLORING(3, () is as hard as solving the<-label-cover problem. We remark that
><-constraints have already appeared in [5].

The plausibility of the Uniqgue Games Conjecture, as welhasof other variants, is uncertain. Recently,
Trevisan [18] showed that these conjectures are false wieepdrameters are pushed beyond certain sub-
constant values. This has been followed by additional #lyos [?, ?] for various sub-constant settings.
Hopefully, these results will trigger more attempts to wstend these type of constraint systems from both
the algorithmic side, and the inapproximability side.

Techniques: Our main technique is based on the recent progress of Masai[1&]. There, they present
a powerful technique for bounding the stability of funcsamder noise operators. For example, one special
case of their result says that among all balanced Booleariifuns that do not depend too strongly on any
one coordinate, the one that is most stable under noise @ity function. In other words, among all
such functions, the majority function is least likely to fiip value if we flip each of its input bits with some
small constant probability. In fact, this special case was@nted as a conjecture in the work[of|[15] on
MAx CuT and motivated the result of [17].

The technique of [17] is based on what is calledimrariance principle This principle allows one
to translate questions in the discrete setting (such aslbeeaguestion on the Boolean hypercube) to
corresponding questions in other spaces, and in partiGdaissian space. One then applies known (and
powerful) results in Gaussian space.

In this paper we extend their approach is several respects.

e We consider more general noise operators that are givenrbg adbitrary Markov operator. We then
apply this to three operators, one for each of the aforemeati constructions.

e \We show that when the inner product under noise of two funstiteviates notably from that of two
majority functions, there must exist a variable that is iefitial in bothfunctions (see Theorem 3.1).
A direct application of[[1[7] only yields a variable that ilirential inoneof the functions. This latter
statement was enough for the application taMCuT in [15].

e We also present another result tailored for theconstraints (see Theorém B.2).

We believe that the general framework developed here wdlfirany applications. It also demonstrates the
flexibility of the approach of [17].

Future work:  Our constructions can be extended in several ways. Fiiisig sgmilar techniques, one can
show hardness afPPROXIMATE-COLORING(q, Q) based on thé-to-1 conjecture of Khot for larger values
of d (and not onlyd = 2 as we do here). It would be interesting to find out hpdepends orl. Second,
by strengthening the current conjectures to sub-constdnés, one can obtain hardnessdbthat depends



onn, the number of vertices in the graph. Again, it is interegtimsee how largé) can be. Finally, let us
mention that in all our reductions we in fact show in the soesd case that there are no independent sets of
relative size larger thanfor arbitrarily small constant (note that this is somewhat stronger than showing
that there is n@)-coloring). In fact, a more careful analysis can be used tainlthe stronger statement that
are no ‘almost-independent’ sets of relative size larganth

2 Preliminaries

2.1 Approximate coloring problems

We now define the coloring problems that we study in this paparany graplt, let x(G) be its chromatic
number. Namelyy(G) is the smallest number of colors needed in order to color #ngces ofG without
monochromatic edges. For aBy< ¢ < ), we define

APPROXIMATE -COLORING (g, @): Given a grapl, decide betweer(G) < g or x(G) > Q.
For anys > 0 we define

ALMOST-3-COLORING .: Given a graplG = (V, E), decide between
e Thereexistsasat’ C V, |V'| > (1—¢)|V|such thaty(G|y) = 3 whereG|y- is the graph induced
by V.
e Everyindependentsét C V in G has sizgS| < ¢ |V].

Observe that these two items are mutually exclusive far1 /4.

2.2 Functions on theg-ary hypercube

Let [¢] denote the s€ft0, ..., g — 1}. For an element of [¢]™ write |z|, for the number of coordinatésof
z such thatr, = a and|z| = 3_, , [[; for the number of nonzero coordinates.

In this paper we are interested in functions fr@j¥ to R. We define an inner product on this space by
(f,g) = q% > f(z)g(x). In our applications, we usually taketo be some constant (s&), andn to be
large.

Definition 2.1 Let f : [¢|® — R be a function. The influence of tii¢h variable on f, denoted’;(f) is
defined by

Li(f) = E[Vy[f ()21, . 2im1, Tig1, - -+, T
wherez, ..., z, are uniformly distributed.

Consider a sequence of vectarigs= 1, a1, ..., ay—1 € R? forming an orthonormal basis &“. Equiv-
alently, we can think of these vectors as functions friginto R. These vectors can be used to form an
orthonormal basis of the space of functions frigif to R, as follows.

Definition 2.2 Letag = 1, a1, ..., ag—1 be an orthonormal basis @?. For = € [¢]", write «, for
Oz @Oy @+ ® Oy, .
Equivalently, we can defing, as the function mapping € [¢]"™ t0 o, (Y1), (Y2) - - - @, (Yn)-

Clearly, any function ifjg]” — R can be written as a linear combinationcf for « € [¢]". This leads
to the following definition.



Definition 2.3 For a functionf : [¢]" — R, definef(a.,) = (f, a,) and notice thatf = 3" f(az)a.

Claim 2.4 For any functionf : [¢]" — Rand any; € {1,...,n},

LH= > o)
z:z; #0
We include the proof in Appendix] F. Notice that this claim d®for any choice of orthonormal basis
ap,...,04—1 aslong asyy = 1.

Definition 2.5 Let f : [¢]" — R be a function, and let < n. The low-level influence of th&h variable
on f is defined by
= o).

x:x; #0,|z|<k

Itis easy to see that for any functigh 3=, 1= (f) = 3 ,.1<k /2 () [2] < kS, f2(aw) = K[ f]3- In
particular, for any functiorf obtaining values in0, 1], >, If’“(f) < k. Moreover, let us mention thdf"
is in fact independent of the particular choice of basgisa,...,o,—1 as long asyy = 1. This can be
verified from the above definition.

There is a natural equivalence betwégi"” and[¢?]". As this equivalence is used often in this paper,
we introduce the following notation.

Definition 2.6 Foranyz € [¢]>" we denote by the element df;?]" given byz = ((z1,72), ..., (T2n_1, T2,)).
For anyy € [¢%]™ we denote by the element ofg]*" given byy = (y1,1,¥1,2, ¥2,1, 2,2, - - - » Yn,1, Yn,2)- FOT

a functionf on [¢]?" we denote by the function orig?]" defined byf(y) = f(y). Similarly, for a function

f on[g?]™ we denote by the function orig]*" defined byf (z) = f(Z). -

Claim 2.7 For any functionf : [¢]*" — R, anyi € {1,...,n}, and anyk > 1,
IEA(F) < 525 () + 157 (F).

Proof: Fix some basimonf [¢)>" as above and lei; be the basis ofg?|" defined byaz(7) = a.(y).

Then, itis easy to see th#foz) = f(ay). Hence,

_ ~2 N N
= Y Tlas Y )+ Y Pla) = B+ )
z:7;7#(0,0),|Z|<k x:wo;—17#0,|z| <2k z:w; #0,|z| <2k

where we used that| < 2|z|. >0

For the following definition, recall that we say that a Marlaperator]” is symmetridf it is reversible
with respect to the uniform distribution, i.e., if the trétit matrix representing’ is symmetric.

Definition 2.8 LetT" be a symmetric Markov operator ¢fi. Letl = Ao > Ay > Ay > ... > \,_; be the
eigenvalues of . We define(7T'), thespectral radiusf 7', by r(T") = max{| 1], [A\s—1]}

For T as above, we may define a Markov operdf6i™ on [¢|" in the standard way. Note that if

T is symmetric therf®" is also symmetric and(7*") = r(T). If we chooseny,...,a,_1 to be an
orthonormal set of eigenvectors férwith corresponding eigenvalues, ..., \;—1 (S0 ap = 1), we see
that

T®n04x = <Ha7é0)‘(‘zx|a> Q.
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and hence

T f =3 (Mapo ) flew).

holds for any functiory : [¢]" — R.
We now describe two operators that we use in this paper. T$tadithe Beckner operatdr,. For any
p € [-727, 1], itis defined byl ,(z — ) = L + (1 — {)pandT,(z — y) = ;(1 - p) foranyz # y in

[¢]. It can be seen th&t, is a Markov operator as in Definition 2.8 with = ... = A\,_; = p and hence its
spectral radius ifp|.
Another useful operator is the averaging operatgy, For a subset C {1,...,n}, itacts on functions

on [¢]™ by averaging over coordinates i) namely,As(f) = E..[f]. Notice that the functioms(f) is
independent of the coordinates$n

2.3 Functions in Gaussian space

We let denote the standard Gaussian measurRanWe denote byE., the expected value with respect
toy and by(., ), the inner product o.2(R",~). Notice thatE,[f] = (f, 1), wherel is the constant
function. Forp € [—1, 1], we denote by/, the Ornstein-Uhlenbeck operatowhich acts or.%(R, v) by

Upf () = Eynry[f(pz + /1 = p?y)].

Finally, for0 < p < 1, let F, : R — {0, 1} denote the functiod,(z) = 1, wheret is chosen in such a
way thatE, [F),] = . One useful value that will appear later(i5;,, Upr>7. For our purposes it is useful
to know that for any,, » > 0, and anyp € [—1, 1], it holds that

(Fr, Uva—>,y < <F777 Upr>,y <,
wherer = min(n, v). Moreover, for allr > 0 andp > —1 it holds that

(Fy, UpFT>7 > 0.

3 An Inequality for Noise Operators

The main result of this section, Theorém|3.1, is a genetaizaf the result of[[17]. It shows that if the
inner product of two functiong andg under some noise operator deviates from a certain rangetibes
must exist an indexsuch that the low-level influence of thin variable is large in botlf andg. This range
depends on the expected valuefadndg, and the spectral radius of the operdtor

Theorem 3.1 Let g be a fixed integer and |éf' be a symmetric Markov operator dn| such thatp =
r(T) < 1. Then for any > 0 there exist > 0 andk € N such that iff, g : [¢]" — [0, 1] are two functions
satisfyingE[f] = u, E[g] = v and
min (I=F(f), 155 (g)) < 6
for all Z, then it holds that
(f,T%"g) > (Fu Up(1 = Fi,)), — ¢ (1)

and
(},T%"g) < (Fy,UpFy), +e. )



Note that[(1) follows from((2). Indeed, applyl (2)te- g to obtain(f, 7" (1 — g)) < (F},, UpFiy), +e
and then use

<f7 T®n(1 - g)> = <f> 1> - <f7 T®ng> = u—= <f7 T®ng> = <FH7 UP1>7 - <f> T®ng>'

From now on we focus on provingl(2).

Following the approach of [17], the proof consists of two poiul techniques. The first is an inequality
by Christer Borell[[4] on continuous Gaussian space. Thers#ts an invariance principle shown [n [17]
that allows us to translate our discrete question to themontis Gaussian space.

Definition 3.2 (Gaussian analogue of an operator)etT' be an operator as in Definitidn 2.8. We define
its Gaussian analogue as the operafoon L*(R?~!, v) given byl’ = Uy, @ Uy, ® ... @ Uy_,.

For example, the Gaussian analogudpis Up®(q_l). We need the following powerful theorem by Borell
[4]. It says that the functions that maximize the inner pridunder the operatal/, are the indicator
functions of half-spaces.

Theorem 3.3 (Borell [4]) Let f,¢g : R* — [0, 1] be two functions and lgt = E,[f],v = E,[g]. Then
S US"9), < (Fu UpF).,

The above theorem only applies to the Ornstein-Uhlenbeekatpr. In the following corollary we
derive a similar statement for more general operators. Toeffollows by writing a general operator as a
product of the Ornstein-Uhlenbeck operator and some ofherrador.

Corollary 3.4 Let f,g : R4—1" — [0, 1] be two functions satisfying, [f] = u, E,[g] = v. LetT be an
operator as in Definition 218 and lgt= r(T'). Then(f,T®"g), < (F,,U,F,).

Proof: Forl <i < ¢q—1,lety; = \;/p. Note that|s;| < 1 for all i. LetS be the operator defined by
S = U51 () U52 ®X...R U5q—1' Then,

U?(q_l)S = UpU51 R...Q UpU(;q_1 = Ups, ®R...xQ Up5q—1 = T

(this is often called thsemi-group properiy It follows that 7" = U,?(q_l)”S@". The functionS®"g
obtains values if0, 1] and satisfie®, [S®"g] = E,[g]. Thus the claim follows by applying Theorém 3.3
to the functionsf and.S®"g. >0

Definition 3.5 (Real analogue of a function)Let f : [¢]” — R be a function with decompositiof =
> f(az)a,. Consider thelg — 1)n variableszy, ..., z; y,...,27,..., 2 and letl’, = [T 220 zk .

We define the real analogue pto be the functiorf : R*(¢~1) — R given byf = > f(aw)l“w.

Claim 3.6 For any two functiong/, g : [¢]" — R and operator”on[q]", (f, 9) = (f,3) and(f, T®"g) =

<f, T®”§>ﬂ, wheref, g denote the real analogues ¢fg respectively and’ denotes the Gaussian analogue
of T.

Proof: Both a, andI',, form an orthonormal set of functions hence both sides of ttet éiquality are
Yow f(az)j(ay). For the second claim, notice that for everya, is an eigenvector of'®" andI’,, is an
eigenvector of®" and both correspond to the eigenva[[{g#o)\f‘”. Hence, both sides of the second
equality are

>~ (Mo Flaw)g(en). "



Definition 3.7 For any functionf with rangeR, define the functionhop(f) as

flx) if f(z) €[0,1]
chop(f)(x) =< 0 if f(z) <0

1 if f(z)>1
The following theorem is proven in [17]. It shows that undertain conditions, if a functiorf obtains
values in[0, 1] then f andchop( f) are close. Its proof is non-trivial and builds on the mairhtécal result
of [17], a result that is known as an invariance principaledsence, it shows that the distribution of values

obtained byj: and that of values obtained hyare glose. In pa[ticular, singénever deviates froro, 1], it
implies thatf rarely deviates fronf0, 1] and hencef andchop(f) are close. Seé [17] for more details.

Theorem 3.8 ([17, Theorem 3.18])For anyn < 1 ande > 0 there exists & > 0 such that the folloyving
holds. For any functionf : [¢]" — [0,1] such thatvz |f(a.)| < ni*l andVi Li(f) < 6, then|f —
chop(f)[| <e.

We are now ready to prove the first step in the proof of Thebrdini8is here that we use the invariance
principle and Borell's inequality.

Lemma 3.9 Letq be a fixed integer and 16t be a symmetric Markov operator &g such thatp = »(T') <
1. Then for any > 0, n < 1, there exists & > 0 such that for any function§, g : [¢|™ — [0, 1] satisfying
E[f] = 11, Elg] = v, Vi max ([;(f), Li(g)) < § andVa |f(az)| < 1"l, [g(a)| < 7/l it holds that

(f,T%"g) < (Fu, U, ), +e.

Proof: Let ' = E,[chop(f)] andv’ = E,[chop(g)]. We note thatF},, U, F,, ) is a uniformly continuous
function of, andv. Lete; be chosen such that|ifi — 1| < e; and|v — /| < ¢; then it holds that

(Eu, UpyEy)y — (Fu Uy Fy) | < €/2.
Letey, = min(e/4,¢1) and letd = §(n, e2) be the value given by Theorém B.8 witliaken to bes,. Then,
using the Cauchy-Schwartz inequality,
|1 = | = |By[chop(f) — f]| = [(chop(f) — f,1),| < [lchop(f) — f|| < &2 <e1.
Similarly, we havey’ — v| < e1. Now,
(f,T%"g) = (f, T®"g), (Claim[3.8)
= (chop(f), T*"chop()),+
(chop(f), T" (g — chop(§)))+ + (f — chop(f), T*"g),

< (chop(f), T"chop(§)) + 2e2

< (Fu,UyFyr)y + 229 (Corollary(3.4)

<(Fu,UyF))y+€/2+ 260 < (Fu,UyF,)y +¢

where the first inequality follows frorrj the Cauchy-Schwanequality together with the fact thahop( f )
andg haveLs norm at mostl and thatl'™®™ is a contraction otis. ©

Due to lack of space, the rest of the proof is deferred to AgpeBl There, we complete the proof
of the theorem by essentially showing how to replacenthe(Z;(f), I;(g)) by min(Z;(f), I;(g)), as in the
statement of the theorem. This is based on the idea of usiagrifluence ‘thresholds’. We also present
there a theorem tailored to tinec constraint, which is somewhat more involved technically.
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4 Approximate Coloring

In this section we describe and prove reductions to the gmag@lems described in Sectibh 2, based on three
conjectures on the hardness of label-cover. These congsgtalong with some definitions, are described
in Sectior 4.l. The three reductions are very similar, eachbining a conjecture with an appropriately
constructed noise operator. In Secfion 4.2 we describéntiee hoise operators, and in Secfior 4.3 we spell
out the constructions. Due to space limitations, Se¢ti8rcdntains only one of the three reductions (along
with proofs of completeness and soundness). The remaiwimgeductions are deferred to Appendix E.

4.1 Label-cover problems

Definition 4.1 A label-cover instance is a tripl& = ((V, E), R, ¥) where(V, E) is a graph, R is an
integer, and¥ = {we c{,... ,R}2 ‘ e € E} is a set of constraints (relations), one for each edge. For a
given labelingL : V' — {1,..., R}, let

saty,(G) = e:(Eg)EE[(L(u), L(v)) € 1], sat(G) = mgx(satL(G)) .

Fort, R € N let (ft) denote the collection of all subsets{df, ..., R} whose size is at most

Definition 4.2 A t-labeling is a functionZ : V — (£) that labels each vertex € V with a subset of
valuesL(v) C {1,..., R} such thaiL(v)| < ¢ forall v € V. At-labeling L is said tosatisfya constraint
¢ C {1,...,R}? over variables: and v iff there area € L(u), b € L(v) such that(a,b) € ¢. In other

words, iff(L(u) x L(v)) N # 0.

For the special case ¢f= 1, al-labeling is like a labelind. : V' — {1, ..., R} (except that some vertices
get no label). In this case, a constrajnbveru, v is satisfied byL iff (L(u), L(v)) € 9.

Similar to the definition ofat(G), we also definésat(G) (“inducedsat”) to be the relative size of the
largest set of vertices for which there is a labeling thasBasall of the induced edges.

isat(G) = max {% ' dL: S — {1,..., R} that satisfies all the constraints inducedby V}.

Letisat;(GG) denote the relative size of the largest set of verti€as V' for which there is a@-labeling that
satisfiesll the constraints induced k.
. |S] R - o
isat;(G) = max v L : S — <4 that satisfies all the constraints induced®dy V ;.
We now consider three conjectures on which our reductiombased. The main difference between the
three conjectures is in the type of constraints that arevallb The three types are illustrated in FigurelA.1.
Due to lack of space, we only describe the first conjecturedaier the remaining two to Appendix C.

Definition 4.3 (1«1-constraint) A 1«1 constraint is a relation{ (i, 7(i))},, wherer : {1,...,R} —
{1,..., R} is any arbitrary permutation. The constraint is satisfiedbyb) iff b = 7(a).

Conjecture 4.4 (11 Conjecture) For anye,( > 0 andt € N there exists somg& < N such that given a
label-cover instancé& = ((V, E), R, ¥) where all constraints aré«—1-constraints, it is NP-hard to decide
between the caseat(G) > 1 — ¢ and the casésat,(G) < e.

It is easy to see that the above problem is in P when0.
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4.2 Noise operators

We now define the noise operators corresponding td4h&-constraintsi=<-constraints, ang—2-constraints.
The noise operator that corresponds to thel-constraints is the simplest, and acts{@n1,2}. For the
other two cases, since the constraints involve pairs ofdinates, we obtain an operator ¢f, 1, 2}2 and
an operator oH0, 1, 2, 3}2. See Figure AJ2 for an illustration.

Lemma 4.5 There exists a symmetric Markov operafoon {0, 1,2} such that-(7") < 1 and such that if
T(x < y) > 0thenz # y.

Proof: Take the operator given by
0 1/2 1/2
T=11/2 0 1/2
1/2 1/2 0

The two remaining noise operators are described in Appdddix

4.3 The Reductions

The basic idea in all three reductions is to take a labelicatance and to replace each vertex with a
block of ¢t vertices, corresponding to theary hypercubdg]®. The intended way tg-color this block

is by coloringz € [q]" according tox; wherei is the label given to this block. One can think of this
coloring as an encoding of the labelWe will essentially prove that any other coloring of thisdk that
uses relatively few colors, can be “list-decoded” into asimdabels from{1, ..., R}. By properly defining
edges connecting these blocks, we can guarantee that theléisoded from two blocks can be used as
t-labelings for the label-cover instance.

In this section we will describe only the reduction faMmoST-3-COLORING. We defer the two (similar)
remaining reductions (foRPPROXIMATE-COLORING(4, ) and for APPROXIMATE-COLORING(3, 7)) to
AppendixXE.

In the rest of this section, we use the following notatiorr. &weectorr = (x4, . .., z,) and a permutation
mon{l,...,n}, we definex™ = (z(1),- .., Tr(n))-

ALMOST-3-COLORING

LetG = ((V, E), R, ¥) be a label-cover instance as in Conjectdi®. Forv € V write [v] for a collection
of vertices, one per point if0, 1, 2}R. Lete = (v,w) € E, and lety) be thel—1-constraint associated with
e. By Definition[4.3 there is a permutatiensuch that(a, b) € ¢ iff b = 7(a). We now write[v, w] for the
following collection of edges. We put an ed@e y) forx = (z1,...,2r) € [v]andy = (y1,...,yr) € [w]
iff

Vie{l,...,R}, T (xi< ypu)) #0

whereT is the noise operator from Lemrha 4.5. In other wordis adjacent ta) whenever

R

TR (2 o y™) = HT (mz — yﬂ(i)) £ 0.
=1

The reduction outputs the grapfi] = ([V], [E]) where[V] is the disjoint union of all block&] and[E] is
the disjoint union of all collections of edgés, w].



Completeness. If isat(G) > 1 —¢, then there is som& C V of size(1 —¢) |V| and alabelingd : S — R
that satisfies all of the constraints induced $y We 3-color all of the vertices inJ,cg[v] as follows.
Let ¢ : Uyes[v] — {0,1,2} be defined as follows. For every € S, the color ofx = (x1,...,2zR) €
{0,1, 2} = [v] is defined to be(z):=x;, wherei = ¢(v) € {1,...,R}.
To see that is a legal coloring onJ,cg[v], observe that if: € [v] andy € [w] share the same color, then

x; = y; for i = ¢(v) andj = ¢(w). Sincel satisfies every constraint induced Byit follows that if (v, w)

is a constraint with an associated permutatiothen; = 7(i). SinceT(z < z) = 0forall z € {0, 1,2},
there is no edge betwearandy.

Soundness. Before presenting the soundness proof, we need the folgpeorollary. It is simply a special
case of Theorem 3.1 stated in the contrapositive, witiaying the role ofv and .. Here we use the fact
that(F.,Up(1 — Fi—¢)), > 0 whenevee > 0.

Corollary 4.6 Letgq be a fixed integer and |4t be a reversible Markov operator dg| such that-(7") < 1.
Then for any > 0 there exist > 0 andk € N such that the following holds. For anfy g : [¢|" — [0, 1],
if E[f] > ¢, Elg] > &, and{f,T®"g) = 0, then

Jief{l,....n}, IFNf)>6 and I7F(g)>4.

)

We will show that if[G] has an independent s&tC [V] of relative size> 2¢, thenisat;(G) > ¢ for
a fixed constant > 0 that depends only ox. More explicitly, we will find a set/ C V, and at-labeling
L:J— (ft) such thatJ| > ¢ |V| and L satisfies all the constraints 6f induced by.J. In other words,
for every constraint) over an edgéu,v) € E N J2, there are values € L(u) andb € L(v) such that
(a,b) €.

Let J be the set of all vertices € V' such that the fraction of vertices belonging%an [v] is at least.
Then, sincdS| > 2¢ |[V]|, Markov’s inequality implieg.J| > ¢ |V|.

For eachv € J let f, : {0,1,2}" — {0,1} be the characteristic function of S restricted/#f so
E[f,] > . Select, k according to Corollarly 416 with and the operatdf of Lemmd 4.5, and set

L(v) = {z e{l,....R}| I7*(f,) 25} .

Clearly,|L(v)| < k/& becaus& 2 | I=(f) < k. Thus,L is at-labeling fort = k/é. The main point to
prove is that for every edge= (v1,v2) € E N J? induced onJ, there is some € L(v;) andb € L(vs)
such thata, b) € 1. This would imply thaisat,(G) > |J|/|V| > e.

Fix (v1,v2) € E N J?, and letr be the permutation associated with the 1 constraint on this edge.
(It may be easier to first think of = id.) Recall that the edges im,, v2] were defined based aon and
on the noise operatdf defined in Lemma 4]5. Lef = f,,, and defing by g(z™) = f,,(z). SinceS is
an independent sef(z) = f,,(x) = 1 andg(y™) = fu,(y) = 1 implies thatz, y are not adjacent, so by
constructiorl®#(z « y™) = 0. Therefore,

(f,T%Rg) =377 " f(2)T®Fg(x) =377 f(a) Y TR (x = yT)g(y™) =Y 0=0.
z T yT z,y"

Also, by assumptionfZ[g] > € andE|[f] > . Corollary[4.6 implies that there is some index {1, ..., R}
for which bothI=*(f) > & andI="(g) > &. By definition of L, i € L(v1). Since thei-th variable ing is
ther(¢)-th variable inf,,, 7(i) € L(ve). It follows that there are valugsc L(v,) andn (i) € L(v2) such
that (i, (7)) satisfies the constraint m;, v2). This means thasat:(G) > |J|/|V| > e.

10



5 Omitted proofs and discussions

We have omitted from this extended abstract a comparisevdegtthe conjectures we have used and Khot's
original conjectures. A detailed comparison is given in Apgix[G. The rest of the main Fourier theorem
is given in Appendix B. The reductions faPPROXIMATE-COLORINGare given in Appendik E.
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Figure A.1: Three types of constraints (top to bottofir}:1, ><<, 2«2

) (b)

Figure A.2: Three noise operators (edge weights not shoamgsponding to: (a)«1, (b) ><, and (c)
242,

(c)

B Rest of Proof of Theorem 3.1

We complete the proof of Theorém B.1 by proving:
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Lemma B.1 Letq be a fixed integer and 16t be a symmetric Markov operator ¢4j such thap = r(T') <
1. Then for any > 0, there exists @ > 0 and an integek such that for any functiong, g : [¢|” — [0, 1]

satisfyingE[f] = u, E[g] = v and
Vi min (I=F(f), 155 (9)) < 6 (3)

then
<f7T®ng> < <FMaUpFu>7+5‘ (4)

Proof: Let f; = 7" f andg; = T,%""g wheren < 1is chosen so that/ (1 — n*/) < e/4 for all j. Then
[(f1, T®"g1) — (f, T®"g)| = ‘ Z Flow)g(on) 11 Alle (1 — p?l)

a#0
< Z plel(1 — gp2lely

f(ax)g(oz
where the last inequality follows from the Cauchy-Schwarérjuality. Thus, in order to provel(4) it suffices
to prove

)| <e/d

(1. T®"g1) < (F,, UpF,), + 3/4. (5)
Let d(¢/4, n) be the value given by Lemnia 3.9 pluggingeiid for . Letd’ = d(¢/4,7n)/2. Letk be
chosen so thaj?* < min(¢’,e/4). DefineC = k/§ ands = (¢/8C)? < &' . Let
By ={i: I7"(f) 28"}, By ={i:[7"(g) 2 9'}.

We note thatB; and B, are of size at most' = k/&'. By (3), we have that whenever By, I="(g) < 4.
Similarly, for everyi € B, we have[f’“(f) < 4. In particular,B; and B, are disjoint.
Recall the averaging operatdr We now let

fo(z) = ABffl Z f%amﬂ

ac:L’BffO

g2(x) = Ap,(g1) = Z g ognl®

:L’:acBg:0

Clearly, E[f2] = E[f] andE[g2] = Elg], and for allz fa(x),g2(z) € [0,1]. It is easy to see that
Ii(f2) = 0if i € By andI;(f2) < Ifk(f) + n?k < 26’ otherwise and similarly foy,. Thus, for any

i, max (I;(f2), Ii(g2)) < 26'. We also see that for any, | f2(a,)| < n/*l and the same fay,. Thus, we can

apply Lemma 3.9 to obtain that

(f2, T®"g2) < (Fu, U, Fy)., +¢/4.
In order to show((5) and complete the proof, we show that

[(f1, T 1) — (f2, T""g2)| < e/2.
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This follows by

T = (T = | > Flaw)glan) T Aen

CE:l‘BfuBg;éO zz;éO

<t Z f(aw)g(aw) + Z{

z:|z| >k

</t > S {|flanien)

i€B;UBy
<c/at Y IO
i€BfUBy
< e/4+ V5(|Bs| + |Byl)
<e/4+20V5=¢/2,

f(aw)g(am)

rzpsuB, # 0, ]7] < k}

:xi;é(),]:dgk}

where the next-to-last inequality holds because for 6aghB; U B, one of I="(f), I="(g) is at mosts

and the other is at mo$t 0

The final theorem of this section is needed only for Al ROXIMATE-COLORING(3, Q) result. Here,
the operatofl” acts onj¢?] and is assumed to have an additional property. Before pdingst is helpful to
recall Definitior 2.6.

Theorem B.2 Let ¢ be a fixed integer and Iéf be a symmetric Markov operator dg?] such thatp =
r(T) < 1. Suppose moreover, thdt has the following property. Givefry,x2) chosen uniformly at
random andy;, y2) chosen according té' applied to(x1, z2) we have thatxs, y2) is distributed uniformly
at random. Then for any > 0, there exists & > 0 and an integert such that for any functiong, g :
[q*" — [0,1] satisfyingE[f] = u, E[g] = v,andfori = 1,...,n

min (75%,(f), 155, (9)) <6, min (I5",(/), I5"(9)) <6, and  min (I5(f), 15", (9)) <6

it holds that
<f7 T®n§> > <F,u> Up(l - Fl*l/)>,y — £ (6)
and B
<f7 T®n§> g <FM7 UpFl/>'y + €. (7)
Proof: As in Theoren 3.1 (6) follows fromh [7) so it is enough to pr@#e Assume first that in addition to
the three conditions above we also have that fof alll, ..., n,
min (I5*(f), I5;" (9)) < 6. (8)

Then it follows that for all, either both/s* | () andI5"(f) are smaller than or bothI5* () andI5" (g)
are smaller thaa. Hence, by Clairh 217, we know that for alve have

[t}

min (If’“/ 2(7), I=% 2(@)) <26

and the result then follows from Lemrha B.1. However, we dohaste this extra condition and hence we
have to deal with ‘bad’ coordinatégor which min (75" (f), I5:*(g)) > 4. Notice for such it must be the

case that bottis" | (f) andI5" | (¢) are smaller than. Informally, the proof proceeds as follows. We first
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define functiongf{, g; that are obtained fronfi, ¢ by adding a small amount of noise. We then obtgiry,
from f1, g1 by averaging the coordinates— 1 for badi. Finally, we obtainfs, g5 from fs, g by averaging
the coordinatei for badi. The point here is to maintaifyf, 7°"g) ~ (f,,T%"g,) ~ (f4, T%"q,) ~
(fs, T®"g5). The condition in Equatidn 8 now applies fg, g and we can apply LemniaB.1, as described
above. We now describe the proof in more detail.

We first definef; = T, f andgr = T,%""g wheren < 1 is chosen so that/ (1 — 1) < /4 for all j.
As in the previous lemma it is easy to see that

[(F1, T"gr) = (F, T*"g)| < /4
and thus it suffices to prove that
(f1, T%"g1) < (Fu, UpFy)., + 3¢/4.

Letd(e/2,7), k(e/2,n) be the values given by Lemrha B.1 withiaken to be: /2. Letd’ = 6(¢/2,n)/2.
Choose a large enoughso that128kn* < 26’ andk/2 > k(/2,7). We letC = k/§’ andd = £2/128C.
Notice thaty < ¢’ andn® < 6. Finally, let

B={i| 52015020}

We note that is of size at mos€’. We also note that if € B then we havés"  (f) < § andI5" | (g) < .
We claim that this implies thab; _1(f1) < 6+n* < 26 and similarly forg. To see that, take any orthonormal

basisfy = 1, 31, .., B4—1 of R? and notice that we can write
= > f(BIn5e.
CEG ]271
Hence,
Lisi(f)= > @)™ <s+n® > fB)?P<d+n"
@ € [q]*" z € [q]?"
221 #0 lz| > k

where we used that the number of nonzero elementdsrat least half of that inx.
Next, we definefo = Asp_1(f1) andgs = Aap_1(g91) whereA is the averaging operator agd — 1
denotes the sgi — 1| i € B}. Note that

12— Fil3 = l1f2— fill} <D Dica(f1) < 206,
i€EB
and similarly,
19z — 71115 = llg2 — 9113 < 2Cs.

Thus

’<ﬁ7 T®ng_1> - <Ev T®nﬁ>’ < ’<ﬁ7 T®ng_1> - <ﬁ7 T®nﬁ>‘ + ’<E7 T®nﬁ> - <E7 T®ng_2>‘
< 2V2C5 = ¢/4

where the last inequality follows from the Cauchy-Schwaregjuality together with the fact thaf; ||, < 1
and alsd|7T*"gz]|, < 1. Hence, it suffices to prove

(2. T®"G) < (Fu, UpFy), +€/2.
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We now definefs = Asp(f2) andgs = Asp(ge). Equivalently, we havefs; = Ap(fi) andgz =
Ap(g7). We show that fo, T®"gs) = (f3, T®"g3). Leta,, x € [¢?]", be an orthonormal basis of eigen-
vectors of'®™. Then

(f5, T%"g5) = > Ji(02)gi(ay) (0w, T ay)).

x,ye[QQ]n,xB:yBZO

Moreover, sinced is a linear operator anfl can be written agwe[ﬂn ﬁ(am)% and similarly forg;, we
have

(P Tg2) = > Tilow)giloy) (Aap_1(00), T Aap_1(ay)-

z,y€lg?n

First, notice that wherp = 0, Ayp_1(a.) = o Sincea, does not depend on coordinatesinHence, in
order to show that the two expressions above are equalfitessifo show that

(A2p-1(az), T®" Azp—1(ay)) = 0

unlesscp = yp = 0. So assume without loss of generality that B is such that:; # 0. The above inner
product can be equivalently written as

E. e [A2p-1(az)(2) - A2p-1(ay)(?)]

wherez is chosen uniformly at random andis chosen according t6©" applied toz. Fix some arbitrary
values tozy, ..., 21, Zit1,.- -, zn @Ndzy, ..., 21, 2,4, ..., 2, and let us show that

E.. e[A2p-1(0)(2) - A2p-1(ay)(#')] = 0.

Sincei € B, the two expressions inside the expectation do not depenﬁx;tiloandzg’1 (where byz; 1 we
mean the first coordinate of). Moreover, by our assumption @i, z; » andzg’2 are independent. Hence,
the above expectation is equal to

E. cig?[A28-1(02)(2)] - Ereg[A2m-1(ay) ()]

Sincex; # 0, the first expectation is zero. This establishes {fat7*"g) = (f3, T*"g3).
The functionsfs, g3 satisfy the property that for eveiy=1,...,n, either both/5"  (f3) and 5" (f3)

are smaller than’ or bOthI%lil(gg) andlik(gg) are smaller than’. By Claim[2.7, we get that foi =
1,...,n, either[fk/Z(E) or Ifk/Q(g_g) is smaller2é’. We can now apply Lemmia B.1 to obtain

<E7 T®n%> < <F,u; Upr>,y + 5/2-

C The Two Remaining Conjectures

Definition C.1 (2<2-constraint) A 2«2 constraintis defined by a pair of permutatiang 72 : {1,...,2R} —
{1,...,2R} and the relation

22 = {(2i,2i), (2,2 — 1), (2i — 1,26), (20 — 1,2i — 1)} 2, .

The constraint is satisfied ky, b) iff (7, ! (a), 75, 1 (b)) € 252
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Definition C.2 (><-constraint) Anp< constraintis defined by a pair of permutations 75 : {1,...,2R} —
{1,...,2R} and the relation

< = {(2i — 1,20 — 1), (2i,2i — 1), (20 — 1,2i)}2, .
The constraint is satisfied iy, b) iff (77! (a), 75 (b)) € <.

Conjecture C.3 2«2 Conjecture) For anye > 0 andt € N there exists som& € N such that given
a label-cover instancé& = ((V, E),2R, ¥) where all constraints ar@«—2-constraints, it is NP-hard to
decide between the casgt(G) = 1 and the casésat;(G) < e.

The 11 conjecture and the above conjecture are no stronger thacotihesponding conjectures of
Khot. Namely, ourl<1 conjecture is not stronger than Khot’s (bipartite) uniqaengs conjecture, and
our 2+2 conjecture is not stronger than Khot's (bipartiz)-1 conjecture. The former claim was al-
ready proven by Khot and Regev in [16]. The latter claim isvproin a similar way. For completeness,
we include both proofs in Appendix]G. We also make a third ecnijre that is used in our reduction to
APPROXIMATE-COLORING(3, ). This conjecture seems stronger than Khot's conjectures.

Conjecture C.4 (>< Conjecture) For anye > 0 andt¢ € N there exists som& € N such that given a
label-cover instancé’ = ((V, E), 2R, ¥) where all constraints are<-constraints, it is NP-hard to decide
between the caset(G) = 1 and the casésat;(G) < e.

Remark: The (strange-lookingy<-shaped constraints have already appeared before, intigfeTit is (im-
plicitly) proven that for alls, ¢ > 0 given a label-cover instaneg where all constraints ame<-constraints,
it is NP-hard to distinguish between the case(G) > 1 — ¢ and the casésat;—1(G) < . The main
difference between their case and our conjecture is thairic@njecture we consider any constanihile

in their case is 1.

D The Two Remaining Operators

Lemma D.1 There exists a symmetric Markov operafoon {0, 1, 2, 3} such that(T') < 1 and such that
if T((':Cl)xQ) — (yl)yQ)) >0 then{lilva} N {yhy?} — @

Proof: Our operator has three types of transitions, with transitiorobabilitiess;, 85, andg3s.
¢ With probability 3, we have(x, z) < (y,y) wherez # y.
e With probability 5, we have(z, x) < (y, z) wherez, y, z are all different.
¢ With probability 33 we have(x, y) < (z,w) wherex, y, z, w are all different.

These transitions are illustrated in FiglrelA.2(c) with ireticating3, transitions, blue indicating. transi-
tions, and black indicating; transitions. Fofl’ to be symmetric Markov operator, we need that3, and
(3 are non-negative and

301 +682 =1, 202 +208;=1.

Itis easy to see that the two equations above have solutmmsded away from and that the corresponding
operator has(7") < 1. For example, choos& = 1/12, 52 = 1/8, andgs = 3/8. O
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Lemma D.2 There exists a symmetric Markov operafoon {0, 1, 2}? such that-(T) < 1 and such that if
T((z1,22) < (y1,y2)) > 0thenzy ¢ {y1,y2} andy; ¢ {x1,z2}. Moreover, the noise operatdr satisfies
the following property. Letx;, x2) be chosen according to the uniform distribution gngl, y2) be chosen
according? applied to(x1, z2). Then the distribution ofzs, y2) is uniform.

Proof: The proof resembles the previous proof. Again there3agpes of transitions.

e With probability 5, we have(z, x) < (y,y) wherez # y.
e With probability 5, we have(z, x) < (y, z) wherez, y, z are all different.

o With probability 33 we have(x, y) < (z,y) wherez, y, z are all different.
ForT to be a symmetric Markov operator we requike 52 andgs to be non-negative and

200 +202=1, P2+ PB3=1
Moreover, the last requirement of uniformity @f2, y2) amounts to the equation

B1/3 +2062/3 = 283/3.

Itis easy to see that, = #3 = 0.5 andB; = 0 is the solution of all equations and that the corresponding
operator has(7T') < 1. This operator is illustrated in Figure A.2(b). >0

E The Two Remaining Reductions

The basic idea in all three reductions is to take a labelicinaance and to replace each vertex with a
block of ¢t vertices, corresponding to theary hypercubdg]. The intended way tg-color this block
is by coloringz € [¢]® according toxz; wherei is the label given to this block. One can think of this
coloring as an encoding of the labelWe will essentially prove that any other coloring of thisdk that
uses relatively few colors, can be “list-decoded” into asiidabels from{1, ..., R}. By properly defining
edges connecting these blocks, we can guarantee that theldisoded from two blocks can be used as
t-labelings for the label-cover instance.

In the rest of this section, we use the following notatiorr. &weectorr = (x4, . .., z,) and a permutation
mon{l,...,n}, we definex™ = (z(1),- -, Tr(n))-

APPROXIMATE -COLORING (4,Q): This reduction is nearly identical to the one above, withfthewing
changes:

e The starting point of the reduction is an instai¢e= ((V, E), 2R, V) as in Conjecturg C|3.
e Each vertex is replaced by a copy dfo, 1, 2, 3}*# (which we still denotéuv]).

e For every(v,w) € E, lett be the2«2-constraint associated with By Definition[C.1 there are
two permutationsr;, m» such that(a,b) € o iff (7, '(a), 7, (b)) € 2e+2. We now write[v, w]
for the following collection of edges. We put an edgey) for z = (x1,...,22r) € [v] andy =

(yl, R ,yQR) S [w] if
Vi e {1’ SR R}’ T((‘Tﬂl(%—l)a ‘Tﬂl(zi)) - (yﬂg(%—l)a y7’l’2(2i))) 7& 0

whereT is the noise operator from LemrhaD.1. Equivalently, we putdge if7®% (2™ « y72) #
0.

As before, the reduction outputs the grdph = ([V], [E]) where[V] is the union of all block$v| and[E]
is the union of collection of the edgés w].

18



APPROXIMATE -COLORING (3,Q): Here again the reduction is nearly identical to the abovéh wie
following changes:

e The starting point of the reduction is an instance of latwslec, as in Conjectufe G.4.
e Each vertex is replaced by a copy df, 1, 2}2R (which we again denote]).

e For every(v,w) € E, letm,m be the permutations associated with the constraint, as fmibe
tion[C.2. Define a collectiofv, w| of edges, by including the edde, y) € [v] x [w] iff

Vie{l,...,R}, T((Zry(2i-1)> Tr1(20) < Ura(2i=1)> Yma(2))) 7 0

whereT is the noise operator from LemmaD.2. As before, this coonitian be written a8 (771 «
) # 0.

As before, we look at the coloring problem of the grégh = ([V], [E]) where[V] is the union of all blocks
[v] and[E] is the union of collection of the edgés w].

E.1 Completeness

APPROXIMATE -COLORING (4,Q): Let¢ : V — {1,...,2R} be a labeling that satisfies all the con-
straints inG. We define a legal-coloringe : [V] — {0, 1,2, 3} asfollows. Foravertex = (z1,...,x2R) €
{0,1,2,3}*F = [v] sete(x):=x;, wherei = ((v) € {1,...,2R}.

To see that is a legal coloring, fix ang«—2 constraint(v,w) € E and letr, 72 be the permutations
associated with it. Let = ¢(v) andj = ¢(w), so by assumptiotr; (i), ;' (j)) € 2+2. In other words
thereissomé& € {1,..., R} suchthat € {m;(2k — 1), m(2k)} andj € {ma(2k — 1), m2(2k)}. If x € [v]
andy € [w] share the same color, thep= c(z) = ¢(y) = y;. Since

wi € {z5_ 25} and y; € {y3t 1, ya7
we have that the above sets intersect. This, by Lemmh D.ligshat7®%(z™ « y™2) = 0. So the
verticesz, y cannot be adjacent, hence the coloring is legal.

APPROXIMATE -COLORING (3,Q): Here the argument is nearly identical to the above. d etV —
{1,...,2R} be alabeling that satisfies all of the constraint&;inWe define a legas-coloringc : [V] —
{0, 1,2} like before: ¢(z):=z;, wherei = {(v) € {1,...,2R}. To see that is a legal coloring, fix any
edge(v,w) € E and letr, mo be the permutations associated with the-constraint. Let = ¢(v) and
j = £(w), so by assumptiofir; (i), 7, ' (j)) € ><. In other words there is some< {1,..., R} such
thati € {m(2k — 1), 71(2k)} andj € {ma(2k — 1), m2(2k)} and not bothi = 71(2k) andj = w2 (2k).
Assume, without loss of generality, that m (2k — 1), sox; = 23}, andy; € {y3?_,, 57 }.
If 2 € [v] andy € [w] share the same color, thep= c(z) = ¢(y) = y;, SO

™1 _ R . T2 T2
Lok =i =Y; € {Ysr_1,Yor ) -

By Lemma&D.2 this implie§’((z3;_,, 25;) < (y5;_1,¥52)) = 0, which means there is no edge between
andy.
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E.2 Soundness

APPROXIMATE -COLORING (4,Q): We outline the argument and emphasize only the modificatidas
sume thafG] contains an independent s&tC [V'] whose relative size is at leastQ and set = 1/2(Q).

e Letf, : {0,1,2,3}*" — {0,1} be the characteristic function &fin [v]. Define the set/ C V as
before and for alb € J, define

L(v) = {z € {1,...,2R}' =25 (f,) > g}

wherek, § are the values given by Corollary 4.6 withand the operatof’ of Lemmal[D.1. As
before,|J| > ¢|V| andE[f,] > ¢ for v € J. Now L is at-labeling witht = 4k/§. Fix an edge
(v,w) € EN J? and letr;, 72 be the associated permutations. Deffipg by f(z™):=f,, (x) and

9(Y™):=fuy (y)-

e SinceS is an independent sef(z™) = f,,(z) = 1 andg(y™) = fu,(y) = 1 implies thatz, y are
not adjacent, so by constructi@iz™ < y™) = 0. Thereforef, T'g) = 0.

e Now, recalling Definitioi 2J6, consider the functiofisg : ({0,1,2,3}*)® — {0,1}. Applying
Corollary[4.6 onf,7 we may deduce the existence of an index {1,..., R} for which both
IF4(F) > s and I=5(g) > 6. By Claim[27,6 < I=M(F) < I3%(f) + I;2(f). so either
IS%(f) > 6/2 or I5*(f) > 6/2. Since thej-th variable inf is the z1(j)-th variable inf,,,
this puts eitherr;(2:) or m1(2i — 1) in L(v1). Similarly, at least one ofra(2i), (2 — 1) is in
L(vz). Thus, there are € L(v1) andb € L(vs) such tha(r; ! (a), 7,1 (b)) € 2¢++2 so L satisfies the
constraint onvy, ve).

We have shown that satisfies every constraint induced $ysoisat;(G) > e.

APPROXIMATE -COLORING (3,Q): The argument here is similar to the previous one. The maiierdifice
is in the third step, where we replace Corollaryl 4.6 by thifeihg corollary of Theorer Bl2. The corollary
follows by lettinge play the role ofy, andv, and using the fact thatr., U,(1 — Fl_g))7 > 0 whenever
e>0.

Corollary E.1 Let T be the operator o0, 1,2}2 defined in Lemma D|2. For any > 0, there exists
§ > 0,k e N, such that for any functiong, ¢ : {0,1,2}*% — [0,1] satisfyingE[f] > ¢, E[g] > ¢, there
exists some € {1,..., R} such that either

min (155, (1), I55,(9)) 26 or min (I35, (/). 15" (9)) =6 or min (I5"(f). I5%,(9)) = 6.
Now we have functiong, : {0,1,2}*% — {0,1}, andJ is defined as before. Define a labeling

L(v) = {z € {1,...,23}\ 174(4,) = 8}

wherek, § are the values given by Corolldry E.1 withThenL is at-labeling witht = & /4.

Let us now show thaf. is a satisfyingt-labeling. Let(vq,v2) be am<-constraint with associated
permutationsry, mo. Definef(x™) = f,, (x), g(x™) = f,,(x). We apply Corollary EJ1 oif, g, and obtain
anindexi € {1,..., R}. Since thej-th variable inf is ther;(j)-th variable inf,,, this puts eitherr; (2i)
ormi(2¢—1)in L(vy). Similarly, at least one afq(2i), m2(2i — 1) isin L(v2). Moreover, we are guaranteed
that eitherr (2i — 1) € L(vy) orma(2i — 1) € L(vz). Thus, there are € L(v;) andb € L(vz) such that
(71 (a), 751 (b)) € >< so L satisfies the constraint @, vs).
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F Omitted Proofs

F.1 Proof of Claim[2.4

Let us first fix the values of 1, . .., z;—1, zit1,...,z,. Then

Vol = Vi [ D Flayay| = Vi | 30 flay)ay ],
Y

Yy #0

where the last equality follows from the fact thatif = 0 thenc, is a constant function of;. If y; # 0,
then the expected value of, with respect tar; is zero. Therefore,

( Z f(%l)%/)
y:y; 70

Va, [ Z f(ay)ay} =E,, =E,, Z f(ay)f(az)ayaz
y:yi7#0 Y,2:9:70,2;#0
Thus,
Iz(f) =E; Z f(ay)f(az)ayaz] = Z f(ay)f(az)Em[ayaz] = Z fQ(O‘y)v
Y,2:9i7#0,2; 70 Y,2:9:#0,2;7#0 y:y: 70
as needed. )

G Comparison with Khot's Conjectures

Let us first state Khot's original conjectures. Fbr> 1, an instance of the weighted bipartiteo-1 label
cover problem is given by a tupfe = (X, Y, ¥, W). We often refer to vertices iX asleft vertices and to
vertices inY” asright vertices. The se¥ consists of onel-to-1 relation,, for eachz € X andy € Y.
More preciselyy,, C {1,..., R} x{1,...,R/d}issuchthatforany € {1,..., R/d} there are precisely
d elementsz € {1,..., R} such that(a,b) € 1,,. The setiV includes a non-negative weight,, > 0
for eachz € X, y € Y. We denote byv(®, z) the sumy_ - wsy and byw(®) the sumd_, .y v Way.
A labelingis a functionL mappingX to {1,..., R} andY to {1,..., R/d}. A constrainty,, is satisfied
by a labelingL if (L(x), L(y)) € 1ay. Also, for a labelingL, the weight of satisfied constraints, denoted
by wr,(®), is > w,, Where the sum is taken over alle X andy € Y such that),, is satisfied byL.
Similarly, we definev; (®, z) as) | w,, where the sum is now taken over @l Y such that),,, is satisfied
by L. The following conjectures were presented inl [14].

Conjecture G.1 (Bipartite 1-to-1 Conjecture) For any ¢, > 0 there exists a constar® such that the
following is NP-hard. Given d-to-1 label cover instance with label set{1,...,R} andw(®) = 1
distinguish between the case where there exists a labélisgch thatwy, () > 1 — ¢ and the case where
for any labelingL, wr,(®) < ~.

In the following conjectured is any fixed integer greater thdn

Conjecture G.2 (Bipartite d-to-1 Conjecture) For any~ > 0 there exists a constarit such that the fol-
lowing is NP-hard. Given a bipartité-to-1 label cover instanc@ with label setq 1, ..., R}, {1,..., R/d}
andw(®) = 1 distinguish between the case where there exists a labélisgch thatw; (®) = 1 and the
case where for any labeling, wr,(®) < ~.
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The theorem we prove in this section is the following.

TheoremEG.S Conjecturé 4.4 follows from Conjecture G.1 and Conjedtuf@f@llows from Conjecture G.2
ford=2

The proof follows by combining Lemmas G[4, G.5, 5.7, &A&ch lemma presents an elementary
transformation between variants of the label cover probldime first transformation modifies a bipartite
label cover instance so that &l variables have the same weight. When we say belowdhhas the same
type of constraints a® we mean that the transformation only duplicates existingstraints and hence i
consists ofi-to-1 constraints for somé > 1, then so doe$’.

Lemma G.4 There exists an efficient procedure that given a weightedrbip label cover instanc® =
(X,Y, ¥, W) with w(®) = 1 and a constant, outputs a weighted bipartite label cover instante =
(X',Y, ¥, W') on the same label sets and with the same type of constraititstve following properties:

e Forallz € X', w(®',z) =1.

e Forany( > 0, if there exists a labeling to ® such thatw;,(®) > 1—( then there exists a labelinky
to @' in which1 — /(1 + ;15)¢ of the variables: in X' satisfy thatvy (@', z) > 1— /(1 + 75)C.

In particular, if there exists a labeling such thatwy, (®) = 1 then there exists a labeling' in which
all variables satisfyw;/ (9, z) = 1.

e For any 35,y > 0, if there exists a labelind’ to ®' in which 3, of the variablesr in X’ satisfy
wr/ (P, x) > v, then there exists a labeling to ® such thatw, (®) > (1 — %)527.

Proof: Given® as above, we defin®’ = (X', Y, ¥/, W’) as follows. The seX’ includesk(x) copies of
eachz € X, 2z, ... z*®) wherek(z) is defined ag/ - | X| - w(®, z)]|. For everyz € X,y € Y and
ie{l,...,k(x)}we definezﬁ;(i)y asiy,, and the weightu;(i)y aswg, /w(®,x). Notice thatw(®’, z) =1
forallz € X" and that(¢ — 1)|X| < |X’| < ¢|X|. Moreover, for anyr € X, y € Y, the total weight of
constraints created from,, is k(z)wg, /w(®, z) < £]X |wgy.

We now prove the second property. Given a labeling ¢ that satisfies constraints of weight at least
1 — ¢, consider the labeling’ defined byL’(z(") = L(z) andL/(y) = L(y). By the property mentioned
above, the total weight of unsatisfied constraint®’iis at most’| X |(. Since the total weight i®’ is at least
(¢ —1)|X|, we obtain that the fraction of unsatisfied constraints mast(1 + ,2)¢. Hence, by a Markov

argument, we obtain that for at ledst- | /(1 + ;)¢ of the X’ variablesw (®', ) > 1 — /(1 4+ 727)¢.
We now prove the third property. Assume we are given a lagdlirto ®’ for which (3, of the variables

havew, (®', z) > ~. Without loss of generality we can assume that for every X, the labelingL’ (z(*)

is the same for all. This holds since the constraints betweéh and theY” variables are the same for all

i € {1,...,k(x)}. We define the labeling asL(z) = L'(z(!)). The weight of constraints satisfied By
is:

ZwLCDm E|X|Zk cwr (P, x) /w(P, z)
rzeX
Z wi( <I> , )

:EEX’

> E\X\ﬂz,X Iy > (1— z)ﬂﬂ

We in fact show that for anyg > 2, the natural extension of Conjectlire IC.3itt0-d constraints follows from Conjecture G.2
with the same value af.
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where the first inequality follows from the definition bfz). O

The second transformation createsusmveightedabel cover instance. Such an instance is given by a
tuple® = (X,Y, VU, F). The multisetE includes pairdz,y) € X x Y and we can think of X, Y, E)
as a bipartite graph (possibly with parallel edges). Foheae FE, W includes a constraint, as before.
The instances created by this transformation are leftlaggin the sense that the number of constraints
(z,y) € Eincident to each: € X is the same.

Lemma G.5 There exists an efficient procedure that given a weightedrbip label cover instancé =
(X,Y, ¥, W) withw(®,z) = 1forall z € X and a constant, outputs an unweighted bipartite label cover
instanced’ = (X, Y, ¥’ E’) on the same label sets and with the same type of constraitht$hvei following
properties:

e All left degrees are equal ta = ¢|Y|.

e Foranyg, ¢ > 0, if there exists a labelind. to ® such thatw, (®,z) > 1 — ( for at leastl — /3 of
the variables inX, then there exists a labeling to @’ in which for at leastl — (3 of the variables in
X, atleastl — ¢ — 1/¢ of their incident constraints are satisfied. Moreover, g exists a labeling
L such thatw, (®, z) = 1 for all z then there exists a labeling’ to &’ that satisfies all constraints.

e Foranyg,v > 0, if there exists a labelind.’ to ®' in which 5 of the variables inX have~ of their
incident constraints satisfied, then there exists a lalgelito ¢ such that fors of the variables inX,
wr(®,z) > v —1/L.

Proof: We define the instancé’ = (X,Y, V', E’) as follows. For each € X, choose somgy(z) € Y
such thatw,,, ) > 0. For everyz € X, y # yo(x), E' contains|aw,, | edges frome to y associated
with the constraint),,. Moreover, for every: € X, £ containsa — >, oy ()} LoWay | €dges frome to
yo(x) associated with the constraints,, ). Notice that all left degrees are equaktoMoreover, for any
z, y # yo(z), we have that the number of edges betweamdy is at mostnw,, and the number of edges
fromz to yo(z) is at Mostvw,y, ) + Y] = a(way(w) + 1/£)-

Consider a labelind. to ® and letz € X be such that(®,z) > 1 — (. Then, in®’, the same
labeling satisfies that the number of incident constraimts that are satisfied is at least — ¢ — 1/¢)a.
Moreover, ifwy (®,z) = 1 then all its incident constraints i’ are satisfied (this uses that,, ) > 0).
Finally, consider a labelind’ to ®’ and letz € X have~ of their incident constraints satisfied. Then,
wr (@, ) >v— 1. >0

In the third lemma we modify a left-regular unweighted lab@ler instance so that it has the following
property: if there exists a labeling to the original instarkbat for many variables satisfies many of their
incident constraints, then the resulting instance has alitapthat for many variables satisfied their
incident constraints. But first, we prove a combinatorialrol.

Claim G.6 For any integerd, d, R and real0 < v < ﬁ, letF C P({1,..., R}) be a multiset containing
subsets of 1, ..., R} each of size at mostwith the property that no element {1,..., R} is contained
in more thany fraction of the sets itF. Then, the probability that a sequence of SBtsF,, . . ., Fy chosen
uniformly fromF (with repetitions) is pairwise disjoint is at least— ¢2d-y.

Proof: Note that by the union bound it suffices to prove tRaltFy N F» # ()] < d~y. This follows by fixing
Fy and using the union bound again:

Pr[FyNFy # 0] < ) Prlz € Fy] < dy.
zeF

23



X0

Lemma G.7 There exists an efficient procedure that given an unweighiieaktite d-to-1 label cover in-
stance® = (X, Y, ¥, F) with all left-degrees equal to someg and a constant, outputs an unweighted
bipartite d-to-1 label cover instanc@®’ = (X', Y, ¥’, E’) on the same label sets with the following proper-
ties:

o All left degrees are equal tb

e Foranyg, ¢ > 0, if there exists a labeling to ® such that for at least — 3 of the variables inX 1—¢
of their incident constraints are satisfied, then theretsxagdabelingL’ to ®’ in which (1 —¢)¢(1 - 5)
of the X’ variables have all theif constraints satisfied. In particular, if there exists a ltibg L to ®
that satisfies all constraints then there exists a labelihgp ®’ that satisfies all constraints.

e Foranysg > 0,0 < v < ﬁ, if in any labelingL to ® at mostg3 of the variables have of their
incident constraints satisfied, then in any labelibigto @, the fraction of satisfied constraints is at
mosts + + + (1 — B)¢%dr.

Proof: We define®’ = (X', Y, V', E') as follows. For each: € X, consider its neighbor&, ..., v.)
listed with multiplicities. For each sequengg,, ...,y ) whereiy, ... i, € {1,..., a} we create a vari-
able inX’. This variable is connected g, , . . ., y;, with the same constraints asnamelyzzjw1 ey zpmyil .
Notice that the total number of variables created from eachX is of. Hence|X'| = of|X|.

We now prove the second property. Assume ihé a labeling toP such that for at least — (5 of the
variables inX, 1 — ¢ of their incident constraints are satisfied. Lgtbe the labeling tad’ assigning to
each of the variables created frame X the valueL(x) and for eachy € Y the valueL(y). Consider a
variablex € X that hasl — ¢ of its incident constraints satisfied and Yetdenote the set of variablgss Y
such that),, is satisfied. Then among the variablesXf created fromz, the number of variables that are
connected only to variables I, is at least (1 — ¢)*. Therefore, the total number of variables all of whose
constraints are satisfied ly is at least

o/ (1-¢) (1= B)X] =1~ - PIX.

We now prove the third property. Assume that in any labelintp ® at mostg of the X variables
have~ of their incident constraints satisfied. LBt be an arbitrary labeling t&’. For eachr € X define
F: € P({1,...,R}) as the multiset that contains for each constraint incident the set of labels ta
that, together with the labeling to thévariables given by, satisfy this constraint. S&, containsx sets,
each of sizel. Moreover, our assumption above implies that for at l@éast( of the variables: € X, no
elementi € {1,..., R} is contained in more than fraction of the sets itF,. By Claim[G.6, for such, at
leastl — ¢2d~ fraction of the variables ik’ created fromx have the property that it is impossible to satisfy
more than one of their incident constraints simultaneousnce, the number of constraintsd satisfied
by L’ is at most

of B |X| -+ ' (1= BIX|((1 = Pay) + () - ¢)
= X' (BL+ (1= B)(1 — Pdy) + (1 = B)(£Pdv)!)
< |E'| (5 + % +(1— ﬁ)é%) .
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The last lemma transforms a bipartite label cover into albipartite label cover. This transformation no
longer preserves the constraint typkto-1 constraints becomé-to-d constraints. We first prove a simple
combinatorial claim.

Claim G.8 LetA;y,..., Ay be a sequence of pairwise intersecting sets of size at'moEhen there exists
an element contained in at leadt/T" of the sets.

Proof: All sets intersect; in atleast one element. Sincé; | < T, there exists an element df contained
in at leastV /T of the sets. 0

For the following lemma, recall from Definitidn 4.2 that-#abeling labels each vertex with a set of at
mostt labels. Recall also that a constraint.ony is satisfied by a-labeling L if there is a label € L(x)
andb € L(y) such tha{a, b) satisfies the constraint.

Lemma G.9 There exists an efficient procedure that given an unweigbigeattite d-to-1 label cover in-
stance® = (X,Y,V, FE) on label sets{1,...,R},{1,...,R/d}, with all left-degrees equal to sonfe
outputs an unweighted-to-d label cover instanc®’ = (X, ¥, E’) on label set{1, ..., R} with the fol-
lowing properties:

e Forany s > 0, if there exists a labelind. to ® in which1 — § of the X variables have all thei¢
incident constraints satisfied, then there exists a lalgelin®’ and a set ofi — 3 of the variables of
X such that all the constraints between them are satisfiedattiqular, if there exists a labeling, to
® that satisfies all constraints then there exists a labelihtp @’ that satisfies all constraints.

e For any3 > 0 and integert, if there exists a@-labeling L’ to " and a set of? variables ofX such
that all the constraints between them are satisfied, there theists a labeling. to ® that satisfies at
least3/t? of the constraints.

Proof: For each pair of constraini{s,y), (z2,y) € E that share & variable we add one constraint
(z1,x2) € E'. This constraint is satisfied when there exists a labelingtttat agrees with the labeling to
x1 andzs. More precisely,

Wiy = {(@1,02) € {1, R} x {1, R} | 30 € {1, R/d} (01,b) € Wy A (a2,5) € iy |-

Notice that if the constraints iff ared-to-1 then the constraints i’ ared-to-d.

We now prove the second property. Liebe a labeling tab and letC' C X be of sizeC| > (1 - 3)|X]|
such that all constraints incident to variable<irare satisfied by.. Consider the labeling’ to ®' given
by L'(x) = L(x). Then, we claim thaL’ satisfies all the constraints @ between variables af'. Indeed,
take any two variables, o € C with a constraint between them. Assume the constraint stedeas
a result of somey € Y. Then, since(L(z1), L(y)) € vz, and (L(x2), L(y)) € z,y, We also have
(L(21), L(x2)) € Y-

It remains to prove the third property. L&t be at-labeling to®” and letC C X be a set of variables
of size|C| > 3| X| with the property that any constraint between variableS @ satisfied byl.’. We first
define at-labeling L” to ® as follows. For each € X, we defineL”(x) = L(x). For eachy € Y, we
defineL”(y) € {1,...,R/d} as the label that maximizes the number of satisfied constragtweer”
andy. We claim that for eacly € Y, L” satisfies at least/t of the constraints betweeti andy. Indeed,
for each constraint betweer andy consider the set of labels gpthat satisfy it. These sets are pairwise
intersecting since all constraints @ between variables af' are satisfied by.’. Moreover, sinceb is a
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d-to-1 label cover, these sets are of size at mosEtlaim[G.8 asserts the existence of a labeling that
satisfies at least/¢ of the constraints betweeT andy. Since at least of the constraints i® are incident
to C, we obtain thaf.” satisfies at least/¢ of the constraints id.

To complete the proof, we define a labelihgo ® by L(y) = L"(y) and L(x) chosen uniformly from
L"(x). Since|L"(z)| < t for all z, the expected number of satisfied constraints is at J&4$t as required.
b &)
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