
SIAM J. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 36, No. 5, pp. 1342–1359

ONLINE CONFLICT-FREE COLORING FOR INTERVALS∗

KE CHEN† , AMOS FIAT‡ , HAIM KAPLAN‡ , MEITAL LEVY‡ , JIŘÍ MATOUŠEK§ ,

ELCHANAN MOSSEL¶, JÁNOS PACH‖, MICHA SHARIR#, SHAKHAR SMORODINSKY††,

ULI WAGNER‡‡, AND EMO WELZL††

Abstract. We consider an online version of the conflict-free coloring of a set of points on the
line, where each newly inserted point must be assigned a color upon insertion, and at all times the
coloring has to be conflict-free, in the sense that in every interval I there is a color that appears
exactly once in I. We present deterministic and randomized algorithms for achieving this goal,
and analyze their performance, that is, the maximum number of colors that they need to use, as a
function of the number n of inserted points. We first show that a natural and simple (deterministic)
approach may perform rather poorly, requiring Ω(

√
n) colors in the worst case. We then derive

two efficient variants of this simple algorithm. The first is deterministic and uses O(log2 n) colors,
and the second is randomized and uses O(logn) colors with high probability. We also show that
the O(log2 n) bound on the number of colors used by our deterministic algorithm is tight on the
worst case. We also analyze the performance of the simplest proposed algorithm when the points
are inserted in a random order and present an incomplete analysis that indicates that, with high
probability, it uses only O(logn) colors. Finally, we show that in the extension of this problem to
two dimensions, where the relevant ranges are disks, n colors may be required in the worst case.

Key words. conflict-free coloring, online algorithms, randomized algorithms, branching pro-
cesses

AMS subject classifications. 05C15, 52C45, 68Q25, 68W20, 68W40

DOI. 10.1137/S0097539704446682

1. Introduction. Let P be a set of n points in R
d and R a set of subsets of

R
d, called ranges (e.g., the set of all disks in the plane). A coloring of P is called

∗Received by the editors December 14, 2004; accepted for publication (in revised form) June 23,
2006; published electronically December 26, 2006. Part of the work on the paper was carried out at
MSRI, Berkeley, when several of the authors visited this institute during the fall of 2003. This paper
combines and extends results from [5, 11].

http://www.siam.org/journals/sicomp/36-5/44668.html
†Department of Computer Science, University of Illinois, 201 N. Goodwin Ave., Urbana, IL 61801

(kechen@uiuc.edu). Work by this author was partially supported by NSF award CCR-0132901.
‡School of Computer Science, Tel Aviv University, Tel Aviv, Israel (fiat@post.tau.ac.il, haimk@

post.tau.ac.il, levymeit@post.tau.ac.il). Work by the third author was partially supported by German
Israeli Foundation (GIF) grant 2051-1156-6/2002.

§Department of Applied Mathematics and Institute for Theoretical Computer Science (ITI),
Charles University, Prague, Czech Republic (matousek@kam.mff.cuni.cz).

¶Department of Statistics, University of California at Berkeley, Berkeley, CA 94720 (mossel@stat.
berkeley.edu). Work by this author was supported by a Miller Fellowship in Statistics and Computer
Science, University of California at Berkeley.

‖Courant Institute of Mathematical Sciences, New York University, New York, NY 10012 (pach@
cims.nyu.edu).

#School of Computer Science, Tel Aviv University, Tel Aviv, Israel, and Courant Institute of
Mathematical Sciences, New York University, New York, NY 10012 (michas@post.tau.ac.il). Work
by this author was supported by a grant from the U.S.–Israeli Binational Science Foundation, by
a grant from the Israel Science Fund (for a Center of Excellence in Geometric Computing), by
NSF grants CCR-97-32101 and CCR-00-98246, and by the Hermann Minkowski–MINERVA Center
for Geometry at Tel Aviv University. Part of the work was carried out during a visit to Charles
University, which was supported by COMBSTRU.

††Institute for Theoretical Computer Science, ETH Zürich, Zürich, Switzerland (sshakhar@inf.
ethz.ch, emo@inf.ethz.ch).

‡‡Department of Applied Mathematics, Charles University, Prague, Czech Republic (uli@kam.mff.
cuni.cz). Work by this author was supported by COMBSTRU.

1342

ONLINE CONFLICT-FREE COLORING FOR INTERVALS 1343

conflict-free (CF) with respect to R if for each r ∈ R with P ∩ r �= ∅, there is at least
one color that appears exactly once in r.

We consider the following dynamic scenario of CF coloring of points on the line,
with respect to interval ranges. We maintain a finite set P ⊂ R. Initially, P is empty,
and we repeatedly insert points into P , one point at a time. We denote by P (t) the
set P after the tth point has been inserted. Each time we insert a point p, we need to
assign a color c(p) to it, which is a positive integer. Once the color has been assigned
to p, it cannot be changed in the future. The coloring should remain CF at all times.
That is, as in the static case, for any interval I that contains points of P (t), there is
a color that appears exactly once in I.

The static version of CF coloring has been studied recently in several papers
[9, 10, 12, 14, 15] in considerably more general settings, involving point sets in higher
dimensions and ranges that are disks, balls, axis-parallel boxes, or more general ranges
that satisfy certain geometric conditions. The study of this problem is motivated by
the problem of frequency-assignment in cellular networks. Specifically, cellular net-
works are heterogeneous networks with two different types of nodes: base stations
(that act as servers) and clients. The base stations are interconnected by an exter-
nal fixed backbone network. Clients are connected only to base stations; connections
between clients and base stations are implemented by radio links. Fixed frequencies
are assigned to base stations to enable links to clients. Clients, on the other hand,
continuously scan frequencies in search of a base station with good reception. The
fundamental problem of frequency-assignment in cellular networks is to assign fre-
quencies to base stations so that every client, located within the receiving range of
at least one station, can be served by some base station, in the sense that the client
is located within the range of the station and no other station within its reception
range has the same frequency (such a station would be in “conflict” with the given
station due to mutual interference). The goal is to minimize the number of assigned
frequencies (“colors”) since the frequency spectrum is limited and costly.

Suppose we are given a set of n base stations, also referred to as antennae. As-
sume, for simplicity, that the area covered by a single antenna is given as a disk in the
plane. Namely, the location of each antenna (base station) and its radius of transmis-
sion are fixed and given (the transmission radii of the antennae are not necessarily
equal). Even et al. [10] have shown that one can find an assignment of frequencies to
the antennae with a total of at most O(log n) frequencies such that each antenna is
assigned one of the frequencies and the resulting assignment is free of conflicts, in the
preceding sense. Furthermore, it has been shown that this bound is worst-case opti-
mal [10, 13, 14]. When the given antennae all have the same radius of transmission
(say, unit radius), the problem is easily seen to be equivalent to that of coloring n
points in the plane such that for any unit radius disk that contains more than one of
the given points, at least one of the colors in that disk is unique. This is the scenario
whose online version is studied in this paper. We do not address the dual version, in
which the goal is to color n given ranges so that, for each point p that lies in their
union, there is a color that appears exactly once among the ranges that contain p.
See [10, 12, 14] for many variants of both (static) versions of the problem.

To capture a dynamic scenario where antennae can be added to the network,
we introduce and study an online version of the CF coloring problem, as described
above. As we show in this paper, the online version of the problem is considerably
harder, even in the one-dimensional case, where the static version is trivial and fully
understood. We begin by proposing a natural, simple, and obvious coloring algorithm
(which we call the UniMax greedy algorithm), but show that in the worst case it

1344 CHEN ET AL.

has poor performance. Specifically, the UniMax greedy algorithm may require Ω(
√
n)

colors in the worst case. We still do not have any nontrivial (i.e., sublinear) upper
bound on the performance of the algorithm.

The UniMax greedy algorithm is indeed greedy in nature, but there are several
different greedy approaches, and we briefly discuss another greedy alternative, about
which almost nothing is known.

We next remedy the situation by presenting two more efficient algorithms. We
describe a 2-stage deterministic variant of the UniMax greedy algorithm and show
that the maximum number of colors that it uses is Θ(log2 n). We also describe a ran-
domized version of the UniMax greedy algorithm which uses, with high probability,1

only O(log n) colors.

The best known general lower bound for this problem is Ω(logn), which holds
also for the static case (see [10, 13, 14]), so there still remains a gap between the
upper and lower bounds in the deterministic case.

Our randomized algorithm works against an oblivious adversary. That is, we
assume that the sequence of points is fixed by the adversary before starting to feed
them one by one to the online algorithm. The adversary cannot choose its next point
based on the actions or the random choices that the online algorithm has made so far.
The coloring that our algorithm produces is CF no matter which random choices it
makes. For further discussion on different kinds of adversaries in online computations,
see [4] for the general case and [2] for the specific case of online CF coloring.

Next, we return to the UniMax greedy algorithm, which can be inefficient in the
worst case, and analyze its performance when the points are inserted in a random
order. We reduce the problem to a certain stationary stochastic process, and present
partial analysis of its performance, as well as a fairly reasonable set of conjectures,
strongly supported by simulations, that indicate that the expected number of colors
that the simple algorithm uses in this case is only O(log n).

Finally, we consider the extension of the online version to point sets in the plane.
Unfortunately, we show that, in the simple case where the ranges that are required
to be CF are disks (or arbitrary radii), n colors may be needed in the worst case.
Nevertheless, (much) better solutions might still exist for random distributions of the
points, for other ranges, or for relaxed versions of the problem, in which each range
has a color that appears in it at least once and at most k times for some constant
k [14]. A recent follow-up study by Chen, Kaplan, and Sharir [6] (see also [5]) gives
randomized online CF coloring algorithms for points in the plane, with respect to half-
planes, unit disks, or nearly equal axis-parallel rectangles. The algorithms use O(log n)
colors with high probability. An even more recent result of Bar-Noy, Cheilaris, and
Smorodinsky [3] provides a general randomized online CF coloring algorithm, which
achieves the same performance as [6] in the special cases just mentioned.

There are many open problems that our study raises: Obtain, if possible, an
improved algorithm-independent deterministic lower bound for online CF coloring
for intervals; get a better understanding of the problem behavior in the plane and
in higher dimensions; design and analyze other strategies, and so on (see additional
problems posed throughout the paper). We note that CF coloring is closely related to
the problem of vertex ranking in graphs (see, e.g., [8]). Some of our algorithms, which
maintain the property that the maximum color in any interval is unique, actually per-

1This means that the probability of failure is at most 1/p(n), where p(n) is polynomial in n,
whose degree can be made arbitrarily large by adjusting the constants of proportionality in the
performance bound.

ONLINE CONFLICT-FREE COLORING FOR INTERVALS 1345

form online vertex ranking in paths. Extending our analysis to online vertex ranking
in other kinds of graphs (trees, for example) raises yet another set of interesting open
problems.

2. The UniMax greedy coloring algorithm. Instead of the usual CF prop-
erty, we wish to maintain the following stronger unique maximum invariant (in which
we assume that the colors are positive integers):

At any given step t and for any interval I that contains points of
P (t), there is only one element of P (t)∩ I that attains the maximum
color in that set.

This invariant implies that the coloring of P (t) is CF at any time t. It is indeed
a stronger condition: CF coloring requires only that for each interval there exists a
color (not necessarily the maximum) that appears there only once.

We employ the following simple-minded algorithm for inserting a point p into the
current set P (t). In a nutshell, the rule is simply to assign to p the smallest possible
color that maintains the invariant. This rule is implemented as follows. We say that
the newly inserted point p sees a point x if all the colors of the points between p and
x (exclusive) are smaller than c(x). In this case we also say that p sees the color c(x).
We then give p the smallest color that it does not see. (Note that a color can be
seen from p either to the left or to the right, but not in both directions; see below.)
We refer to this algorithm as the Unique Maximum Greedy algorithm, or the UniMax
greedy algorithm, for short.

Below is an illustration of the coloring rule of the UniMax greedy algorithm. The
left column gives the colors (integers in the range 1, 2, . . . , 6) assigned to the points
in the current set P and the location of the next point to be inserted (indicated by a
period). The right column gives the colors “seen” by the new point. The colors seen
to the left precede the ·, and those seen to the right succeed the ·.

1· [1·]
1 · 2 [1 · 2]
1 · 32 [1 · 3]
12 · 32 [2 · 3]
121 · 32 [21 · 3]
121 · 432 [21 · 4]
121 · 3432 [21 · 34]
1215 · 3432 [5 · 34]
1215 · 13432 [5 · 134]
12152 · 13432 [52 · 134]
121526 · 13432 [6 · 134]

Correctness. The correctness of the algorithm is established by induction on the
insertion order. First, note that no color can be seen twice from p: This is obvious for
two points that lie both to the left or both to the right of p. If p sees the same color
at a point u to its left and at a point v to its right, then the interval [u, v], before
p is inserted, does not have a unique maximum color; thus this case is impossible,
too. Next, if p is assigned color c, any interval that contains p still has a unique
maximum color: This follows by induction when the maximum color is greater than
c. If the maximum color is c, then it cannot be shared by another point u in the
interval, because then p would have seen the nearest such point and thus would not
be assigned color c. It is also easy to see that the algorithm assigns to each newly
inserted point the smallest possible color that maintains the invariant of a unique

1346 CHEN ET AL.

maximum color in each interval. This makes the algorithm greedy with respect to the
unique maximum condition.

Special insertion orders. Denote by C(P (t)) the sequence of colors assigned to
the points of P (t), in left-to-right order along the line. Let cmax(P (t)) denote the
maximum color in C(P (t)).

The complete binary tree sequence Sk of order k is defined recursively as S1 = (1)
and Sk = Sk−1‖(k)‖Sk−1, for k > 1, where ‖ denotes concatenation. Clearly, |Sk| =
2k − 1.

For each pair of integers a < b, denote by C0(a, b) the following special sequence.
Let k be the integer satisfying 2k−1 ≤ b < 2k. Then C0(a, b) is the subsequence
of Sk from the ath place to the bth place (inclusive). For example, C0(5, 12) is the
subsequence (1, 2, 1, 4, 1, 2, 1, 3) of (1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1).

Lemma 2.1. (a) If each point is inserted into P to the right of all preceding
points, then C(P (t)) = C0(1, t).

(b) If each point is inserted into P to the left of all preceding points, then C(P (t))
= C0(2

k − t, 2k − 1), where k satisfies 2k−1 ≤ t < 2k.
(c) If each point is inserted into P either from the left or from the right, then

C(P (t)) is some subsequence of the form C0(a, b), where b ≤ |P (t)|.
Proof. The proof is easy and therefore omitted.

2.1. Lower bound for the UniMax greedy algorithm.
Theorem 2.2. The UniMax greedy algorithm may require Ω(

√
n) colors in the

worst case for a set of n points.
Proof. For each integer k, define the sequence

Ck = (1, 2, 1, 3, 2, 1, . . . , k − 1, k − 2, . . . , 1, k, k − 1, . . . , 1).

Note that Ck is the concatenation of k sequences D1‖D2‖ · · · ‖Dk, where Dj =
(j, j − 1, . . . , 2, 1). Put nk = k(k + 1)/2. We prove the following property, from
which the assertion of the theorem is an immediate corollary.

(∗) There exists an insertion order of nk points for which the color sequence
produced by the UniMax greedy algorithm is Ck.

The proof proceeds by induction on k. We note that the claim easily holds for
k = 1, 2. Suppose that there is an insertion sequence Sk for which the UniMax greedy
algorithm produces the color sequence Ck. We insert the next point between Dk−1

and Dk and observe that it is assigned color k + 1. We then insert a point between
Dk−2 and Dk−1, which is assigned color k. Proceeding in this manner from right
to left, we insert k points between consecutive subsequences Dj−1, Dj . The color
sequence now becomes

D2‖D3‖D4‖ · · · ‖Dk‖Dk+1.

To complete the step, we insert one additional point to the left of the whole sequence,
which gets the color 1, thereby producing the color sequence Ck+1. This completes
the proof of (∗) and thus of the theorem.

Open problem. Obtain an upper bound for the maximum number of colors that
the algorithm uses for n inserted points. We conjecture that the bound is close to the
Ω(

√
n) lower bound. At the moment, we do not have any sublinear upper bound.

2.2. Related algorithms.
The First-Fit algorithm—another greedy strategy. The UniMax greedy algorithm

is greedy for maintaining the unique maximum invariant, namely, that in each interval

ONLINE CONFLICT-FREE COLORING FOR INTERVALS 1347

the maximum color appears exactly once. Perhaps it is more natural to consider a
greedy approach in which we want only to enforce the standard CF property. That
is, we want to assign to each newly inserted point the smallest color for which the CF
property continues to hold. There are cases where this First-Fit greedy algorithm uses
fewer colors than the UniMax greedy algorithm: Consider an insertion of five points
in the order (1 3 2 4 5). The UniMax greedy algorithm produces the color sequence
(1 3 2 1 4), whereas the First-Fit algorithm produces the coloring (1 3 2 1 2).

Very recently, after the original submission of this paper, Bar-Noy, Cheilaris, and
Smorodinsky [2] have shown that in the worst case the First-Fit algorithm uses about
n/2 colors. More precisely, there are sequences with 2i + 3 elements that force the
algorithm to use i + 3 colors, and this bound is tight.

CF coloring for unit intervals. Consider the special case where we want the CF
property to hold only for unit intervals. In this case, O(log n) colors suffice: Partition
the line into the unit intervals Ji = [i, i + 1) for i ∈ Z. Color the intervals Ji with
even i as white, and those with odd i as black. Note that any unit interval meets
only one white and one black interval. We color the points in each Ji independently,
using the same set of “light colors” for each white interval and the same set of “dark
colors” for each black interval. For each Ji, we color the points that it contains using
the UniMax greedy algorithm, except that new points inserted into Ji between two
previously inserted points get a special color, color 0. It is easily checked that the
resulting coloring is CF with respect to unit intervals. Since we effectively insert
points into any Ji only to the left or to the right of the previously inserted points,
Lemma 2.1(c) implies that the algorithm uses only O(log n) (light and dark) colors.
We remark that this algorithm satisfies the unique maximum color property for unit-
length intervals.

We note that, in contrast to the static case (which can always be solved with
O(1) colors), Ω(log n) colors may be needed in the worst case. Indeed, consider a
left-to-right insertion of n points into a sufficiently small interval. Each contiguous
subsequence σ of the points will be a suffix of the whole sequence at the time the
rightmost element of σ is inserted. Since such a suffix can be cut off the current set
by a unit interval, it must have a unique color. Hence, at the end of insertion, every
subsequence must have a unique color, which implies (see [10, 14]) that Ω(logn) colors
are needed.

3. An efficient deterministic algorithm. In this section we modify the Uni-
Max greedy algorithm into a deterministic 2-stage coloring scheme and show that it
uses only O(log2 n) colors. We refer to this algorithm as the leveled UniMax greedy
algorithm.

Let x be the point which we currently insert. We assign a color to x in two steps.
First we assign x to a level, denoted by �(x). Once x is assigned to level �(x) we give it
an actual color among the set of colors dedicated to �(x). We maintain the invariant
that each color is used by at most one level. Formally, the colors that we use are pairs
(�(x), c(x)) ∈ Z

2, where �(x) is the level of x and c(x) is its integer color within that
level.

Modifying the definition from the UniMax greedy algorithm, we say that point x
sees point y (or that point y is visible to x) if and only if for every point z between
x and y, �(z) < �(y). When x is inserted, we set �(x) to be the smallest level � such
that either to the left of x or to the right of x (or in both directions) there is no point
y visible to x at level �.

To give x a color, we now consider only the points of level �(x) that x can see.

1348 CHEN ET AL.

level

new point gets level 4

3

1
2

Fig. 3.1. Illustrating the 2-stage deterministic algorithm. An insertion order that realizes the
depicted assignment of levels to points is to first insert all level-1 points from left to right, then
insert the level-2 points from left to right, and then the level-3 points.

That is, we discard every point y such that �(y) �= �(x), and every point y such
that �(y) = �(x) and there is a point z between x and y such that �(z) > �(y). We
apply the UniMax greedy algorithm so as to color x with respect to the sequence Px

of the remaining points, using the colors of level �(x) only. That is, we give x the
color (�(x), c(x)), where c(x) is the smallest color that ensures that the coloring of
Px maintains the unique maximum color condition. This completes the description
of the algorithm. See Figure 3.1 for an illustration.

We begin the analysis of the algorithm by making a few observations on its per-
formance.

(a) Suppose that a point x is inserted and is assigned to level i > 1. Since x was
not assigned to any level j < i, it must see a point �j at level j that lies to its left, and
another such point rj that lies to its right. Let Ej(x) denote the interval [�j , rj]. Note
that, by definition, these intervals are nested, that is, Ej(x) ⊂ Ek(x) for j < k < i.
See Figure 3.1.

(b) We define a run at level i to be a maximal sequence of points x1 < x2 <
· · · < xk at level i, such that all points between x1 and xk that are distinct from
x2, x3, . . . , xk−1 are assigned to levels smaller than i. Whenever a new point x is
assigned to level i and is inserted into a run of that level, it is always inserted either
to the left or to the right of all points in the run. Moreover, the actual color that x gets
is determined solely from the colors of the points already in the run. See Figure 3.1.

(c) The runs keep evolving as new points are inserted. A run may either grow
when a new point of the same level is inserted at its left or right ends (note that other
points at smaller levels may separate the new point from the former end of the run)
or split into two runs when a point of a higher level is inserted somewhere between
its ends.

(d) As in observation (a), the points at level i define intervals, called i-intervals.
Any such interval E is a contiguous subsequence [x, y] of P , so that x and y are both
at level i and all the points between x and y have smaller levels. E is formed when
the second of its endpoints, say x, is inserted. We say that x closes the interval E
and refer to it as a closing point. Note that, by construction, x cannot close another
interval.

(e) Continuing observation (a), when x is inserted, it destroys the intervals Ej(x),
for j < i, into which it is inserted, and only these intervals. That is, each of these
intervals now contains a point with a level greater than that of its endpoints, so it
is no longer a valid interval. We charge x to the set of the closing endpoints of all
these intervals. Clearly, none of these points will ever be charged again by another
insertion (since it is the closing endpoint of only one interval, which is now destroyed).
We maintain a forest F , whose nodes are all the points of P . The leaves of F are all
the points at level 1. When a new point x is inserted, we make it a new root of F , and
the parent of all the closing points that it charges. Since these points have smaller

ONLINE CONFLICT-FREE COLORING FOR INTERVALS 1349

levels than x, and since none of these points becomes a child of another parent, it
follows that F is indeed a forest.

Note that the nonclosing points can only be roots of trees of F . Note also that a
node at level i has exactly i− 1 children, exactly one at each level j < i. Hence, each
tree of F is a binomial tree (see [7]); if its root has level i, then it has 2i nodes.

This implies that if m is the maximal level assigned after n points have been
inserted, then we must have 2m ≤ n, or m ≤ log n. That is, the algorithm uses at
most log n levels.

We next prove that our algorithm uses only O(log n) colors at each level. We
recall the way runs evolve: They grow by adding points at their right or left ends,
and split into prefix and suffix subruns, when a point with a larger level is inserted in
their middle.

Lemma 3.1. At any time during the insertion process, the colors assigned to
the points in a run form a sequence of the form C0(a, b) (as defined in section 2).
Moreover, when the jth smallest color of level i is given to a point x, the run to which
x is appended has at least 2j−2 + 1 elements (including x).

Proof. The proof proceeds by induction through the sequence of insertion steps
and is based on the following observation. Let σ be a contiguous subsequence of the
complete binary tree sequence Sk−1, and let x be a point added, say, to the left of σ.
If we assign to x color c(x), using the UniMax greedy algorithm, then (c(x))‖σ is a
contiguous subsequence of either Sk−1 or Sk. The latter happens only if σ contains
Sk−2‖(k − 1) as a prefix. Symmetric properties hold when x is inserted to the right
of σ. We omit the straightforward proof of this observation.

As a consequence, we obtain the following result.
Theorem 3.2. (a) The algorithm uses at most (2 + log n) log n colors.
(b) At any time, the coloring is CF.
(c) In the worst case the algorithm may be forced to use Ω(log2 n) colors after n

points are inserted.
Proof. (a) We have already argued that the number of levels is at most logn.

Within a level i, the kth smallest color is assigned when a run contains at least 2k−2

points. Hence 2k−2 ≤ n, or k ≤ 2 + log n, and (a) follows.
To show (b), consider an arbitrary interval I. Let � be the highest level of a point

in I. Let σ = (y1, y2, . . . , yj) be the sequence of the points in I of level �. Since � is
the highest level in I, σ is a contiguous subsequence of some run, and, by Lemma 3.1,
the sequence of the colors of its points is also of the form C0(a

′, b′). Hence, there is a
point yi ∈ σ which is uniquely colored among y1, y2, . . . , yj by a color of level �.

To show (c), we construct a sequence P so as to force its coloring to proceed
level by level. We first insert 2k−1 points from left to right, thereby making them
all be assigned to level 1 and colored with k different colors of that level. Let P1

denote the set of these points. We next insert a second batch of 2k−2 points from
left to right. The first point is inserted between the first and second points of P1, the
second point between the third and fourth points of P1, and so on, where the jth new
point is inserted between the (2j − 1)th and (2j)th points of P1. By construction, all
points in the second batch are assigned to level 2, and they are colored with k − 1
different colors of that level. Let P2 denote the set of all points inserted so far. P2

is the concatenation of 2k−2 triples, where the levels in each triple are (1, 2, 1). We
now insert a third batch of 2k−3 points from left to right. The first point is inserted
between the first and second triples of P2, the second point between the third and
fourth triples of P2, and so on, where the jth new point is inserted between the
(2j − 1)th and (2j)th triples of P2. By construction, all points in the third batch are

1350 CHEN ET AL.

assigned to level 3, and they are colored with k − 2 different colors of that level.
The construction is continued in this manner. Just before inserting the ith batch

of 2k−i points, we have a set Pi−1 of 2k−1 + · · ·+2k−i+1 points, which is the concate-
nation of 2k−i+1 tuples, where the sequences of levels in each of these tuples are all
identical and equal to the “complete binary tree sequence” C0(1, 2

i−1 − 1), as defined
in section 2 (whose elements now encode levels rather than colors). The points of the
ith batch are inserted from left to right, where the jth point is inserted between the
(2j−1)th and (2j)th tuples of Pi−1. By construction, all points in the ith batch are as-
signed to level i and are colored with k−i+1 different colors of that level. Proceeding
in this manner, we end the construction by inserting the (k−1)th batch, which consists
of a single point that is assigned to level k. Altogether we have inserted n = 2k − 1
points and forced the algorithm to use k + (k− 1) + · · ·+ 1 = k(k + 1)/2 = Ω(log2 n)
different colors.

Remark. One can modify the algorithm so that the set of colors that it uses
can be identified with (a subset of a prefix of) the integers, and so that it maintains
the property of the UniMax greedy algorithm: At any time t and for any interval I,
there is a unique point in I with maximum color. The modified algorithm also uses
O(log2 n) colors.

Specifically, we proceed as follows. Suppose first that n is known in advance.
Order the pairs (k, i) ∈ {1, . . . , log n}×{1, . . . , 2+logn} lexicographically, i.e., (k, i) <
(k′, i′) if k < k′ or (k = k′ and i < i′). Let f(k, i) be the rank of the pair (k, i) in this
lexicographic order. Then the set of numbers f(k(p), i(p)), where p ∈ P is assigned
level k(p) and the i(p)th color within that level, is (a subset of) a prefix of the integers,
and the unique maximum color property is satisfied.

If n is not known in advance, we apply the same strategy as the one discussed at
the end of the preceding section. That is, when the number of inserted points reaches
one of the values 22i

for i ≥ 0, we start coloring new points with a completely new
set of colors, which are mapped lexicographically onto integer values that are larger
than the largest integer color used so far.

4. An efficient randomized algorithm. We next modify the UniMax greedy
deterministic algorithm into the following randomized algorithm, which we call the
randomized UniMax greedy algorithm. The randomized UniMax greedy algorithm
does not partition the points into levels but assigns a color directly, using the following
randomized variant of the UniMax greedy strategy.

Let p be the next point inserted. Recall that p sees a point x (alternatively, the
color c(x)) if all the colors of points between p and x (exclusive) have color smaller
than c(x). We say that p is eligible for color m if p does not see m. To give p a color,
we scan all colors in increasing order. For each color i, if p is not eligible for color i,
we continue to color i + 1. Otherwise, if p is eligible for color i, we set c(p) = i with
probability 1/2 and continue to color i + 1 with probability 1/2.

By the same reasoning as for the UniMax greedy algorithm, the coloring produced
by the randomized UniMax greedy algorithm is CF at any stage. We next show that
it uses O(log n) colors with high probability.

Lemma 4.1. If the algorithm reaches color i when processing a point p, then p
gets the color i with probability at least 1/8. More formally, let Ci (resp., C≥i) be
the random variable which is equal to the set of points of color i (resp., of color ≥ i).
Then

Pr

{
p ∈ Ci | p ∈ C≥i

}
≥ 1

8
.

ONLINE CONFLICT-FREE COLORING FOR INTERVALS 1351

Proof. Assume first that p is neither the leftmost nor the rightmost point at the
time of its insertion. Let Q be the set of points inserted before p. Fix a point p� ∈ Q
to the left of p, and a point pr ∈ Q to the right of p. Consider all random choices
(which we refer to as “executions”) of the randomized UniMax algorithm, in which
p�, p, and pr end up as three consecutive points in C≥i.

In at least 1/2 of these executions p� gets a color greater than i (either because it
is ineligible for color i or because the coin toss has moved it to color i+ 1); similarly,
in at least 1/2 of these executions pr gets a color greater than i. Since the coin tosses
of pr are independent of those of p�, both p� and pr get color greater than i in at least
1/4 of these executions. In these cases, p is eligible for color i and with probability 1/2
does get that color. Hence, in at least 1/8 of the above executions p gets color i. Since
this is true for every choice of p� and pr, the lemma follows.

If p is the leftmost or rightmost point, then it is eligible for color i (assuming
it has reached C≥i) with probability 1/2, and if p is the first inserted point, then it
is eligible for color i with probability 1. Hence, the preceding argument implies the
lemma in this case too.

Theorem 4.2. The randomized UniMax greedy algorithm uses O(log n) colors
with high probability.

Proof. Using the same notation as above, Lemma 4.1 implies that

E (|C≥i+1|) ≤
7

8
E (|C≥i|) .

Since |C≥1| = n, we have for i ≥ 1

E (|C≥i+1|) ≤
(

7

8

)i

n.

For i = c log8/7 n, we get that E (|C≥i+1|) ≤ 1/nc−1. Hence, by Markov’s inequality,

Pr

{
|C≥i+1| ≥ 1

}
≤ 1/nc−1,

from which the lemma follows.
Remark. We leave it as an open problem to determine whether a nonoblivious

adversary can cause the algorithm to use more than Θ(logn) colors.

5. Random insertion order. In this section we consider the special case where
the points are inserted in a random order, and where we color them by the UniMax
greedy algorithm of section 2. We have simulated the execution of the UniMax greedy
algorithm under such an insertion order. The results of the simulation strongly suggest
the following conjecture.

Conjecture 5.1. For each integer k ≥ 1, the expected frequency of the color k

in C(P (t)), as generated by the UniMax greedy algorithm, converges to 1
3

(
2
3

)k−1
as

t → ∞.
Assuming Conjecture 5.1, the following is an easy consequence.
Corollary 5.2. If each point is inserted into P at a random place, the expected

value of cmax(P (t)), under the UniMax greedy algorithm, is O(log t). This also holds
with high probability if the constant of proportionality is chosen sufficiently large.

Proof. Let P (n) be a set of n points inserted in a random order. Let Xk be
a random variable counting the number of points in P (n) that were colored with k

1352 CHEN ET AL.

by the UniMax greedy algorithm. Let Ik be the indicator variable for the color k to
appear at all.

We are interested in the number of colors used, that is, Y :=
∑

k Ik.
Assume that E(Xk) = 1

3 (2
3)k−1n. Then, using Markov’s inequality, E(Ik) =

Pr{Ik = 1} = Pr{Xk ≥ 1} ≤ E(Xk). Hence,

E(Y) = E

(∑
1≤k

Ik

)
= E

(∑
1≤k<1+log3/2 n

Ik

)
+ E

(∑
k≥1+log3/2 n

Ik

)

≤ 1 + log3/2 n +
∑

k≥1+log3/2 n

1

3

(
2

3

)k

n

≤ 1 + log3/2 n +
∑
i≥0

1

3

(
2

3

)i

= log3/2 n + 2.

Arguing as in the proof of Theorem 4.2, we also have

Pr

{
more than c log3/2 n colors are used

}
= Pr

{
I�c log3/2 n� = 1

}

≤ 1

3

(
2

3

)�c log3/2 n�−1

n ≤ 1

2nc−1
.

At this stage, we do not have a complete proof of Conjecture 5.1. We do have
some partial results that we now present. In particular, they show that Conjecture 5.1
holds for k = 1, 2, 3. Completing the proof is one of the major open problems raised
in this paper.

Lemma 5.3. The expected number of points assigned the color 1, after a random
insertion of t points, is t+1

3 for t ≥ 2.
Proof. Denote by Xi the random variable whose value is the number of 1’s after

the insertion of the first i points. Then Xi+1 = Xi + Yi, where Yi is an indicator
variable, equal to 1 if the (i+1)st point pi+1 is colored by 1, and to 0 otherwise. Note
that pi+1 is colored by 1 if and only if it is inserted at a place that is not adjacent
to any point colored 1. Each of the current Xi 1-colored points has two adjacent
insertion places, and all these places are distinct, because P (i) does not contain two
adjacent points colored 1. Hence, out of the i+1 available insertion places, i+1−2Xi

will cause pi+1 to be colored 1. Taking expectations, we obtain

E(Xi+1) = E(Xi) + E(Yi) = E(Xi) + E(E(Yi | Xi))

= E(Xi) + E

(
i + 1 − 2Xi

i + 1

)
= E(Xi) +

i + 1 − 2E(Xi)

i + 1
,

or E(Xi+1) = i−1
i+1E(Xi)+1, for i ≥ 2. The solution of this recurrence, with the initial

value E(X2) = 1, is easily seen to be E(Xt) = t+1
3 for t ≥ 2.

Analysis for k ≥ 2. We next present a framework for estimating the expected
number of points that are assigned the color k for k ≥ 2. We apply this framework
to get a complete solution for k = 2, 3. We fix k, and define a k-state to be any valid
contiguous sequence of colors in {1, . . . , k} that may show up in C(P (t)), delimited
on both sides by ∗, which designates a color greater than k. The validity of a state

ONLINE CONFLICT-FREE COLORING FOR INTERVALS 1353

means that it satisfies the unique maximum color invariant: Any contiguous nonempty
subsequence of s has a unique largest element. We refer to the portion of a state that
excludes the ∗’s as its core.

Denote by Sk the set of all k-states. For example, the set S2 consists of the
following states:

s1 = 〈∗∗〉, s2 = 〈∗1∗〉, s3 = 〈∗2∗〉, s4 = 〈∗12∗〉, s5 = 〈∗21∗〉, s6 = 〈∗121∗〉.
(5.1)

For example, the sequence C(P (t)) = (1 2 1 3 2 4 2 1 3 5 1 2 3) is decomposed into
the following sequence of 2-states:(

〈∗121∗〉, 〈∗2∗〉, 〈∗21∗〉, 〈∗∗〉, 〈∗12∗〉, 〈∗∗〉
)
.

We denote by S+
k the subset of Sk consisting of those k-states that contain the

color k (necessarily at a unique location), and by S−
k the subset of those states that

do not contain k. We refer to states in S+
k (resp., S−

k) as major k-states (resp., minor
k-states). The size |s| of a k-state s is the length of its core plus 1; it designates the
number of places in s at which a new point can be inserted. For example, for 2-states
we have S−

2 = {s1, s2}, S+
2 = {s3, s4, s5, s6}. Also, we have |s1| = 1, |s2| = |s3| = 2,

|s4| = |s5| = 3, and |s6| = 4.
Let s ∈ S+

k . It has the form (∗ukv∗), where u and v can be regarded as the
cores of two respective (k − 1)-states, sL and sR. We refer to sL and sR as the left
wing and the right wing of s, respectively. We have |s| = |sL| + |sR|. Care should
be exercised in the treatment of sL and sR. Specifically, we will consider the actual
sequence of colors C(P (t)) as a concatenation of states, which depends on the choice
of k. We denote by C(k)(t) the (unique) partition of C(P (t)) into the concatenation
of k-states, and refer to it as the k-scenario. Then, for a major state s ∈ S+

k , its left
and right wings are not counted as separate states in the k-scenario but as states in
the (k − 1)-scenario.

We need one more notion. When we insert a new point into a k-state s, there
are two possible outcomes: (i) The point gets a color smaller than or equal to k, in
which case s is transformed to another, single state in Sk. (ii) The point gets a color
greater than k, in which case s is split into two new k-states. Note that, for case (ii)
to occur, s must be a major state (if s were minor, we could have assigned the color
k to the new point). Moreover, in this case one of the two new states, s′, must be a
major state, and the other, s′′, must be minor. We refer to this case by saying that
s spawns s′′ and is transformed into s′. (Note that not every insertion into a major
state necessarily causes a spawning.)

It is easy to show that the size |Sk| of Sk satisfies |Sk+1| = |Sk|+ |Sk|2; thus |Sk|
is doubly exponential in k. We have |S1| = 2, |S2| = 6, |S3| = 42, and |S4| = 1806.

Let k be fixed. For states s, r ∈ Sk, we denote by asr the expected change in the
number of states r that are generated by an insertion of a new point, conditioned on
having chosen an insertion place at a state s (within C(k)). For example, for k = 2
we have (see (5.1) for the notation)

as4s1 = as4s2 = as4s3 = as4s6 =
1

3
and as4s4 = −2

3

(in two of the three possible insertion places, s4 is destroyed by the insertion, and in
the third insertion it survives, so the net expected increase in the number of s4-states

1354 CHEN ET AL.

is 0 · 1
3 + (−1) · 2

3 = − 2
3). Put wsr = |s|asr, and let W denote the resulting matrix

(wsr).
We first provide some intuitive and informal derivation of the equations that

we will rigorously derive shortly. Let M
(t)
s denote the random variable equal to the

number of k-states s in C(P (t)). Define the frequency of state s at time t to be

X
(t)
s = M

(t)
s /(t + 1). Note that |s|X(t)

s is the frequency of the insertion places that

belong to occurrences of s in C(P (t)). In particular,
∑

s∈Sk
|s|X(t)

s = 1 for each t.
We also have

(t + 2)E(X(t+1)
r) = (t + 1)E(X(t)

r) +
∑
s∈Sk

|s|asrE(X(t)
s).(5.2)

Indeed, |s|X(t)
s is the probability that the next insertion place belongs to an occurrence

of state s in C(P (t)), and asr is the corresponding conditional expected change in

the number of occurrences of state r. Since M
(t)
r = (t + 1)X

(t)
r (resp., M

(t+1)
r =

(t + 2)X
(t+1)
r) is the number of occurrences of state r at time t (resp., t + 1), the

equality follows.
Letting t → ∞, applying an informal limit process to (5.2), and denoting the

limit of E(X
(t)
s) as Xs for s ∈ Sk, we arrive at the equations

Xr =
∑
s∈Sk

|s|asrXs =
∑
s∈Sk

wsrXs.

We now proceed to justify this process rigorously.
Existence of limiting frequencies. The random insertion order defines in a natural

way a multitype branching process (see [1]). We briefly review the ingredients of the
theory of branching processes that we need to apply. A (discrete) branching process
of this kind manipulates objects (referred to as “particles”) that can have a finite
number m of types. Each type i is associated with weights (ξi,J), where J is a
multiset of types. The weight ξi,J should be thought of as the relative frequency at
which a particle of type i gives birth to the multiset J (for each type j that appears
μ times in J , the particle generates μ new particles of type j). Each particle giving
birth dies immediately after doing so. Set ξi =

∑
J ξi,J . The process may then be

formally defined as follows. Let S(t) be the population at time t. Choose x ∈ S(t)
with probability ξi(x)/

∑
y∈S(t) ξi(y), where i(u) is the type of particle u. Then x gives

birth to the multiset J with probability ξi(x),J/ξi(x) and then dies.
In our case, the different particle types correspond to different state types in Sk. A

state s of length � has total weight �. If some insertions into s produce the single state
s′ (without spawning), then ξs,{s′} = j, where j is the number of places at which this
occurs. If some j insertions produce two states s′, s′′ (by spawning), then ξs,{s′,s′′} = j.
The entries of our transition matrix W are then defined as wsr =

∑
r∈J ξs,J for r �= s,

and wss =
(∑

r∈J ξs,J
)
− |s|. See pp. 200–202 in [1] for a similar construction of

a transition matrix for general multitype processes (where the matrix is called the
infinitesimal generator of a corresponding semigroup of mean matrices).

A standard trick in the theory of branching processes is to embed discrete branch-
ing processes of the kind described above into continuous-time branching processes,
in which particles give birth in continuous time. More specifically, S(t) evolves in
continuous time. For any fixed time t, we associate, with each x ∈ S(t) and each
multiset J , an exponential random variable with rate wi(x),J . We then take the one

ONLINE CONFLICT-FREE COLORING FOR INTERVALS 1355

with the smallest actual value—suppose this is the variable wi(x′),J ′ and that it has
the value h. Now the population at time t + h is obtained from the population at
time t by killing x′ and replacing it by J ′. We now obtain a new population S(t+ h)
and a new collection of exponential random variables, and the process continues.

If we extract from the continuous branching process only those times at which
new particles are born, we obtain exactly the same discrete process that we started
with (see [1] for details). In the terminology of the theory of branching processes,
the discrete and continuous processes are the same, up to a time change. The reason
for this roundabout reasoning is that the theory of the continuous-time branching
process is better developed and provides machinery for proving the existence of limit
frequencies and for analyzing their properties. In particular, the limiting frequencies
for the new continuous process (whose existence is established next) are identical to
those of the original discrete process.

It is easy to see that the (continuous) branching process just defined is supercritical
and satisfies the Z logZ moment condition (see, e.g., [1] for background and details).
It therefore follows (see, e.g., Theorem 2, p. 206, in [1]) that the limiting frequencies
exist almost surely. We let Xs denote the expected limit relative frequency of state s
in C(P (t)) when t → ∞, where the nonlimit frequencies are as defined above.

In addition, the just cited Theorem 2, p. 206, in [1] asserts that the limiting
distribution X = (Xs)s∈Sk

is given by the eigenvector of WT corresponding to the
largest eigenvalue. In our case, this does indeed coincide with our informal derivation
and means that X satisfies the linear system

(WTX)r =
∑
s∈Sk

wsrXs = Xr, r ∈ Sk.(5.3)

For example, for k = 2, the transition weights asr between the six states listed in
(5.1) are given in the following matrix A, where Aij = asisj (the fourth row of A has
already been discussed):

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0 0 0 0
0 −1 0 1

2
1
2 0

0 0 −1 1
2

1
2 0

1
3

1
3

1
3 − 2

3 0 1
3

1
3

1
3

1
3 0 − 2

3
1
3

1
2

1
2 0 1

4
1
4 − 1

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and

W =

⎛
⎜⎜⎜⎜⎜⎜⎝

−1 1 0 0 0 0
0 −2 0 1 1 0
0 0 −2 1 1 0
1 1 1 −2 0 1
1 1 1 0 −2 1
2 2 0 1 1 −2

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The system of equations for the limit distribution is WTX = X. To normalize X, we
extend it by the equation∑

i

|si|Xi = X1 + 2X2 + 2X3 + 3X4 + 3X5 + 4X6 = 1,

1356 CHEN ET AL.

which expresses the fact that the sum of lengths of the 2-states that compose C(P (t))
is equal to |C(P (t))| (see above for a similar equation for the nonlimit frequencies

X
(t)
s). The solution of the extended system is

X =

(
1

9
,

1

9
,

2

45
,

1

15
,

1

15
,

2

45

)
.

In particular, the expected limit frequency of color 1 is X2 + X4 + X5 + 2X6 = 1
3

(in accordance with Lemma 5.3), and the expected limit frequency of color 2 is
X3 + X4 + X5 + X6 = 2

9 . We have thus verified Conjecture 5.1 for k = 2.
Lemma 5.4. The limit frequency of color 2 is 2/9.
Analysis of 3-states. The same machinery can be applied to the 42 states in S3.

The solution of (5.3) for k = 3 is presented in Table 5.1.
By adding up the frequencies of all major 3-states (those that contain the color 3),

we verify Conjecture 5.1 for k = 3.
Lemma 5.5. The limit frequency of color 3 is 4/27.
Open problem. Find closed-form expressions for the state frequencies for k = 3

(using the data in Table 5.1) and for k > 3. This may lead to a simple inductive proof
of Conjecture 5.1.

Further analysis of k-states. The system (5.3) becomes considerably harder to
solve explicitly for larger values of k, so we look for simpler relationships. Put

Nk =
∑
s∈S+

k

Xs, Zk =
∑
s∈S−

k

Xs.

Note that Nk is the expected frequency of color k. Recall that Conjecture 5.1 says

that Nk = 1
3

(
2
3

)k−1
.

Lemma 5.6. For each k ≥ 2 we have 2Nk + Zk = Nk−1 + Zk−1.
Proof. Let s be a state in S+

k , and let sL (resp., sR) denote the state obtained
by taking the portion of s to the left (resp., right) of (the unique) k and appending
∗ at the right (resp., left). If we repeat this splitting process to each state of S+

k in
C(P (t)) and add to the output all states in S−

k (which we leave intact), we obtain the
set of all states of Sk−1 that appear in C(P (t)). The sum of the frequencies of these
states is clearly Nk−1 + Zk−1. On the other hand, by our construction, this sum is
2Nk + Zk; thus the lemma follows.

The following conjecture is equivalent to Conjecture 5.1.
Conjecture 5.7. Nk = Zk for each k ≥ 1.
We verify the conjecture for k = 1, where N1 = Z1 = 1

3 ; for k = 2, where
N2 = Z2 = 2

9 ; and for k = 3, where N3 = Z3 = 4
27 (see Table 5.1).

Assuming that Conjecture 5.7 holds and combining it with Lemma 5.6, we obtain
3Nk = 2Nk−1, for k ≥ 2, and N1 = 1

3 . Hence

Nk =
1

3

(
2

3

)k−1

.

The converse direction is established in a similar manner: Conjecture 5.1 and Lemma
5.6 imply

Zk = Zk−1 + Nk−1 − 2Nk = Zk−1 −
1

9

(
2

3

)k−2

,

for k ≥ 2, and Z1 = 1
3 . The solution of this recurrence is Zk = 1

3

(
2
3

)k−1
= Nk, thus

showing that the two conjectures are indeed equivalent.

ONLINE CONFLICT-FREE COLORING FOR INTERVALS 1357

Table 5.1

The frequencies of 3-states. The second column is the numerator of the frequency under the
common denominator 47628000 = 25355372.

State Frequency Numerator As a fraction With factored denominator

0 0.03704 1764000 1/27 1/33

1 0.03704 1764000 1/27 1/33

12 0.02222 1058400 1/45 1/3251

21 0.02222 1058400 1/45 1/3251

2 0.01481 705600 2/135 2/3351

121 0.01481 705600 2/135 2/3351

13 0.00800 381024 1/125 1/53

31 0.00800 381024 1/125 1/53

12321 0.00388 184800 11/2835 11/345171

3 0.00948 451584 32/3375 32/3353

131 0.00652 310464 22/3375 22/3353

123 0.00366 174440 89/24300 89/223552

321 0.00366 174440 89/24300 89/223552

1231 0.00737 350840 179/24300 179/223552

1321 0.00737 350840 179/24300 179/223552

32 0.00167 79576 203/121500 203/223553

23 0.00167 79576 203/121500 203/223553

132 0.00686 326536 833/121500 833/223553

231 0.00686 326536 833/121500 833/223553

213121 0.00156 74466 197/126000 197/24325371

121312 0.00156 74466 197/126000 197/24325371

2321 0.00233 111160 397/170100 397/22355271

1232 0.00233 111160 397/170100 397/22355271

232 0.00093 44464 397/425250 397/21355371

121321 0.00191 90755 2593/1360800 2593/25355271

123121 0.00191 90755 2593/1360800 2593/25355271

12312 0.00307 146405 4183/1360800 4183/25355271

21321 0.00307 146405 4183/1360800 4183/25355271

12131 0.00344 163928 20491/5953500 20491/22355372

13121 0.00344 163928 20491/5953500 20491/22355372

1312 0.00485 231208 28901/5953500 28901/22355372

2131 0.00485 231208 28901/5953500 28901/22355372

1213 0.00588 279848 34981/5953500 34981/22355372

3121 0.00588 279848 34981/5953500 34981/22355372

213 0.00835 397528 49691/5953500 49691/22355372

312 0.00835 397528 49691/5953500 49691/22355372

2132 0.00198 94467 31489/15876000 31489/25345372

2312 0.00198 94467 31489/15876000 31489/25345372

21312 0.00240 114326 57163/23814000 57163/24355372

1213121 0.00099 47206 23603/23814000 23603/24355372

12132 0.00104 49397 49397/47628000 49397/25355372

23121 0.00104 49397 49397/47628000 49397/25355372

6. Lower bound for online CF coloring in the plane. We finally show that
online CF coloring of points in the plane, with respect to disks (of arbitrary radii), may
require n colors in the worst case and is therefore quite impractical. (Nevertheless, as
mentioned in the introduction, the problem can be solved with many fewer colors for
other kinds of ranges; see [5, 6].)

Theorem 6.1. There exists a sequence P of n points in the plane, so that when
these points are inserted according to their order in P , any online CF coloring scheme
with respect to disks has to use n different colors.

Proof. We construct a sequence P = (p1, p2, . . . , pn) with the following property:
(*) For every t = 2, 3, . . . , n, the edges of the Delaunay triangu-
lation of the set {p1, p2, . . . , pt} include all the edges {pi, pt}, i =

1358 CHEN ET AL.

q1

qi

qn

o

pn
ε

Di

Fig. 6.1. The construction that requires n colors for the planar case with disk ranges.

1, 2, . . . , t− 1.
We prove the following stronger statement by induction on n:

For every n, every choice of distinct points q1, q2, . . . , qn on the unit
circle S

1, and every ε > 0, there exists a sequence (p1, p2, . . . , pn)
with the property (*) such that ‖pi−qi‖ ≤ ε and pi lies on the radius
oqi for every i.

For the induction step, given q1, . . . , qn and ε < 1
2 , let pn be obtained by moving qn

by ε towards the center o of S
1. We note that the Delaunay graph of {q1, q2, . . . , qn−1,

pn} contains all edges {qi, pn}, i = 1, 2, . . . , n. Indeed, there is a circle γi tangent to
S

1 from the inside at qi and passing through pn, and the closed disk Di bounded by
γi contains qi, pn, and no other qj . See Figure 6.1. Let δi > 0 denote the minimum
distance from any qj , j �= i, to Di.

We apply the induction hypothesis with q1, . . . , qn−1 and with ε∗ < min{ε, δ1, . . . ,
δn−1}, obtaining a sequence (p1, . . . , pn−1). We can now verify that, by construction,
for every i = 1, 2, . . . , n− 1, the disk Di contains pi and pn but no other pj .

7. Conclusion. The paper still leaves many open problems, some of which have
been listed earlier. Here are several concluding open problems.

(a) Theorem 6.1 and the initial encouraging results of Chen, Kaplan, and Sharir [6]
and of Bar-Noy, Cheilaris, and Smorodinsky [3], as reviewed in the introduction, raise
many interesting open problems, such as the following: (i) Obtain deterministic algo-
rithms with good performance for the cases studied in [6], viz. where the ranges are
half-planes, congruent disks, and nearly equal axis-parallel rectangles. (ii) Improve
further the performance of the algorithms of [6]. (iii) Find solutions with good per-
formance for other ranges, such as arbitrary axis-parallel rectangles. (iv) Extend the
results to d ≥ 3 dimensions.

(b) It is likely that the bound in Theorem 6.1 improves significantly if the points
are chosen from some random distribution, extending our conjectured bounds of sec-
tion 5.2 to two (and higher?) dimensions.

(c) Can one obtain better upper bounds for online k-CF coloring (k ≥ 2) of points
in the plane with respect to disks? Namely, online color the points so that, at any
given time t and for any disk D, there is at least one color that is assigned to at least
one but at most k points of P (t) ∩ D. For k = 1, this is the CF coloring problem,
where we have just shown a lower bound of n, but perhaps this can be improved when
k ≥ 2. See [14] for results concerning k-CF coloring in the static case.

ONLINE CONFLICT-FREE COLORING FOR INTERVALS 1359

(d) Finally, can one obtain an efficient randomized algorithm, for the online CF
coloring problem on the line, that works against an adaptive adversary (that is, an
adversary that observes the actions of the randomized online algorithm and decides
where to insert the next point based on these actions)?

REFERENCES

[1] K. B. Athreya and P. E. Ney, Branching Processes, Grundlehren Math. Wiss. 196, Springer-
Verlag, New York, 1972.

[2] A. Bar-Noy, P. Cheilaris, and S. Smorodinsky, Conflict-free coloring for intervals: From
offline to online, in Proceedings of the 18th ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA 2006), 2006, pp. 128–137.

[3] A. Bar-Noy, P. Cheilaris, and S. Smorodinsky, Online Conflict-Free Colorings for Hyper-
graphs, manuscript, 2006.

[4] A. Borodin and R. El Yaniv, Online Computation and Competitive Analysis, Cambridge
University Press, New York, 1998.

[5] K. Chen, How to play a coloring game against a color-blind adversary, in Proceedings of the
22nd Annual ACM Symposium on Computational Geometry, 2006, pp. 44–51.

[6] K. Chen, H. Kaplan, and M. Sharir, Online CF Coloring for Halfplanes, Congruent Disks,
and Axis-Parallel Rectangles, manuscript, 2006.

[7] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, MIT Press,
Cambridge, MA, 1990.

[8] J. S. Deogun, T. Kloks, D. Kratsch, and H. Müller, On vertex ranking for permutation
and other graphs, in STACS 94, Lecture Notes in Comput. Sci. 775, P. Enjalbert, E. W.
Mayr, and K. W. Wagner, eds., Springer-Verlag, Berlin, 1994, pp. 747–758.

[9] K. Elbassioni and N. Mustafa, Conflict-free colorings for rectangle ranges, in Proceedings of
the 23rd International Symposium on Theoretical Aspects of Computer Science (STACS
2006), pp. 254–263.

[10] G. Even, Z. Lotker, D. Ron, and S. Smorodinsky, Conflict-free colorings of simple geo-
metric regions with applications to frequency assignment in cellular networks, SIAM J.
Comput., 33 (2003), pp. 94–136.

[11] A. Fiat, M. Levy, J. Matoušek, E. Mossel, J. Pach, M. Sharir, S. Smorodinsky, U.

Wagner, and E. Welzl, Online conflict-free coloring for intervals, in Proceedings of
the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2005, pp.
545–554.

[12] S. Har-Peled and S. Smorodinsky, On conflict-free coloring of points and simple regions in
the plane, Discrete Comput. Geom., 34 (2005), pp. 47–70.

[13] J. Pach and G. Tóth, Conflict-free colorings, in Discrete and Computational Geometry—The
Goodman–Pollack Festschrift, B. Aronov, S. Basu, J. Pach, and M. Sharir, eds., Springer-
Verlag, Heidelberg, 2003, pp. 665–671.

[14] S. Smorodinsky, Combinatorial Problems in Computational Geometry, Ph.D. dissertation,
School of Computer Science, Tel-Aviv University, Tel-Aviv, 2003.

[15] S. Smorodinsky, On the chromatic number of some geometric hypergraphs, in Proceedings of
the 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), Miami, 2006,
pp. 316–323.

