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Belief propagation (BP) is a message-passing algorithm that computes the exact marginal

distributions at every vertex of a graphical model without cycles. While BP is designed to

work correctly on trees, it is routinely applied to general graphical models that may contain

cycles, in which case neither convergence, nor correctness in the case of convergence is

guaranteed. Nonetheless, BP has gained popularity as it seems to remain effective in many

cases of interest, even when the underlying graph is ‘far’ from being a tree. However, the

theoretical understanding of BP (and its new relative survey propagation) when applied to

CSPs is poor.

Contributing to the rigorous understanding of BP, in this paper we relate the convergence

of BP to spectral properties of the graph. This encompasses a result for random graphs

with a ‘planted’ solution; thus, we obtain the first rigorous result on BP for graph colouring

in the case of a complex graphical structure (as opposed to trees). In particular, the analysis

shows how belief propagation breaks the symmetry between the 3! possible permutations

of the colour classes.
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1. Introduction and results

1.1. Message-passing algorithms

This paper deals with a rigorous analysis of the belief propagation (‘BP’ for short)

algorithm on certain instances of the 3-colouring problem. Originally BP was introduced

by Pearl [16] as a message-passing algorithm to compute the marginals at the vertices of

a probability distribution described by an acyclic ‘graphical model’, i.e., a representation

of the distribution’s dependency structure as an acyclic graph. Although in the worst case

BP will fail if the graphical representation features cycles, various versions of BP are in

common use as heuristics in artificial intelligence and statistics, where they frequently

perform well empirically as long as the underlying model does at least not contain

(many) ‘short’ cycles. However, there is currently no general theory that could explain

the empirical success of BP (with the notable exception of the use of BP in LDPC

decoding [13, 14, 17]).

A striking recent application of BP is to instances of NP-hard constraint satisfaction

problems such as 3-SAT or 3-colouring; this is the type of problem that we are dealing with

in the present work. In this case the primary objective is not to compute the marginals of

some distribution, but to construct a solution to the constraint satisfaction problem. For

example, BP can be used to (attempt to) compute a proper 3-colouring of a given graph.

Indeed, empirically BP (and its sibling survey propagation , ‘SP’) seems to perform well on

problem instances that are notoriously ‘hard’ for other current algorithmic approaches,

including the case of sparse random graphs.

For instance, let G(n, p) be the random graph with vertex set V = {1, . . . , n} that is

obtained by including each possible edge with probability 0 < p = p(n) < 1 independently.

Thus, the expected degree of any vertex in G(n, p) is (n − 1)p ∼ np. Then there exists a

threshold τ = τ(n) such that, for any ε > 0, the random graph G(n, p) is 3-colourable with

probability 1 − o(1) if np < (1 − ε)τ, whereas G(n, p) is not 3-colourable if np > (1 + ε)τ [1].

In fact, random graphs G(n, p) with average degree np just below τ were considered

prime examples of ‘hard’ instances of the 3-colouring problem, until statistical physicists

discovered that BP/SP can solve these graph problems efficiently in a regime considered

‘hard’ for any previously known algorithms (possibly right up to the threshold density)

[4, 6]. While there are exciting and deep arguments from statistical physics that provide a

plausible explanation of why these message-passing algorithms succeed, these arguments

are non-rigorous, and indeed no mathematically rigorous analysis is currently known.

The difficulty in understanding the performance of BP/SP on G(n, p) actually lies in

two aspects. The first aspect is the combinatorial structure of the random graph G(n, p)

with respect to the 3-colouring problem, which is not very well understood. In fact,

even the basic problem of obtaining the precise value of the threshold τ is one of the

current challenges in the theory of random graphs. Furthermore, we lack a rigorous

understanding of the ‘solution space geometry’, i.e., the structure of the set of all proper

3-colourings of a typical random graph G(n, p) (e.g., how many proper 3-colourings are

there typically, and what is the typical Hamming distance between any two). But according

to the statistical physics analysis, the solution space geometry affects the behaviour of BP

significantly.
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The second aspect, which we focus on in the present work, is the actual BP algorithm:

given a graph G, how/why does the BP algorithm ‘construct’ a 3-colouring? Thus far there

has been no rigorous analysis of BP that applies to graph colouring instances except for

graphs that are globally tree-like (such as trees or forests). However, it seems empirically

that BP performs well on many graphs that are just locally tree-like (i.e., do not contain

‘short’ cycles). Therefore, in the present paper our goal is to analyse BP rigorously on a

class of graphs that may have a complex combinatorial structure globally, but that have a

very simple solution space geometry. More precisely, we shall relate the success of BP to

spectral properties of the adjacency matrix of the input graph. In addition, we point out

that the analysis comprises a natural random graph model (namely, a ‘planted solution’

model).

1.2. Belief propagation and spectral techniques

The main contribution of this paper is a rigorous analysis of BP for 3-colouring. We

basically show that if a certain (simple) spectral heuristic for 3-colouring succeeds, then so

does BP. Thus, the result does not refer to a specific random graph model, but to a special

class of graphs – namely graphs that satisfy a certain spectral condition. More precisely,

we say that a graph G = (V , E) on n vertices is (d, ε)-regular if there exists a 3-colouring

of G with colour classes V1, V2, V3 such that the following is true. Let �1Vi
∈ R

V be the

vector whose entries equal 1 on coordinates v ∈ Vi, and 0 on all other coordinates. Then:

R1 for all 1 � i < j � 3, the vector �1Vi
−�1Vj

is an eigenvector of the adjacency matrix

A(G) with eigenvalue −d, and

R2 if ξ ⊥�1Vi
for all i = 1, 2, 3, then ‖A(G)ξ‖ � εd‖ξ‖.

We shall state a few elementary properties of (d, ε)-regular graphs in Proposition 3.3 below

(assuming that ε is sufficiently small, say ε < 0.01). For instance, we shall see that (d, ε)-

regularity implies that each vertex v ∈ Vi has precisely d neighbours in each other colour

class Vj (i �= j). Moreover, (V1, V2, V3) is the only 3-colouring of G (up to permutations of

the colour classes, of course), and for each pair i �= j the bipartite graph consisting of the

Vi–Vj-edges is an expander.

Furthermore, if a graph G is (d, ε)-regular for some ε < 0.01, say, then the following

spectral heuristic is easily seen to produce a 3-colouring.

(1) Compute a pair of perpendicular eigenvectors χ1, χ2 ∈ R
V of A(G) with eigenvalue −d.

(2) Define an equivalence relation ≈ on V by letting v ≈ w if and only if χiv = χiw for

i = 1, 2. Output the equivalence classes of ≈ as a 3-colouring of G.

The equivalence classes of ≈ are precisely the three colour classes V1, V2, V3, for if v, w

belong to the same colour class, then their entries in all three vectors �1Vi
−�1Vj

(i < j)

coincide; hence, as the space spanned by these vectors contains χ1, χ2, we have v ≈ w.

Conversely, if v ≈ w, then the entries of v and w in all the vectors �1Vi
−�1Vj

coincide,

because these vectors lie in the space spanned by χ1, χ2; consequently, v, w belong to the

same colour class Vk .

The main result of this paper is that BP can 3-colour (d, 0.01)-regular graphs in

polynomial time, provided that d is not too small and the number of vertices is sufficiently



884 A. Coja-Oghlan, E. Mossel and D. Vilenchik

large. We defer the description of the actual (randomized, polynomial time) BP colouring

algorithm BPCol, to which the following theorem refers, to Section 2.

Theorem 1.1. There exist constants d0, κ > 0 such that for each d � d0 there is a number

n0 = n0(d) so that the following holds. If G = (V , E) is a (d, 0.01)-regular graph on n = |V | �
n0 vertices, then with probability � κn−1 over the coin tosses of the algorithm, BPCol(G)

outputs a proper 3-colouring of G.

Observe that Theorem 1.1 deals with ‘sparse’ graphs, since the lower bound n0 on

the number of vertices depends on d. The proof yields an exponential dependence, i.e.,

n0 = exp(Θ(d)). Conversely, this means that the average degree of G is at most logarithmic

in n, which is arguably the most relevant regime to analyse BP (see Section 2). Moreover,

by applying BPCol O(n) times independently, the success probability can be boosted to

1 − α for any α > 0. Besides, there is an easy way to modify the (initialization step of)

BPCol so that the success probability of one iteration is at least κ (rather than κn−1): see

Section 2 for details.

Let us emphasize that the contribution of Theorem 1.1 is not that we can now 3-

colour a class of graphs for which no efficient algorithms were previously known, as the

aforementioned spectral heuristic 3-colours (d, 0.01)-regular graphs in polynomial time.

Instead, the new aspect is that we can show that the belief propagation algorithm 3-colours

(d, 0.01)-regular instances, thus shedding new light on this heuristic. Indeed, the proof of

Theorem 1.1, which we present in Section 3, shows that in a sense BPCol ‘emulates’ the

spectral heuristic (although no spectral techniques occur in the description of BPCol).

Thus, we establish a connection between spectral methods and BP. Besides, we note that

no ‘purely combinatorial’ algorithm (that avoids the use of advanced techniques such

as semi-definite programming or spectral methods) is known to 3-colour (d, 0.01)-regular

graphs.

To illustrate Theorem 1.1, and to provide an example of (d, 0.01)-regular graphs, we

point out that the main result comprises a regular random graph model with a ‘planted’

3-colouring. Let Gn,d,3 be the random graph with vertex set V = {1, . . . , 3n} obtained as

follows.

(1) Let V1, V2, V3 be a random partition of V into three pairwise disjoint sets of equal size.

(2) For any pair 1 � i < j � 3, independently choose a d-regular bipartite graph with

vertex set Vi∪· Vj uniformly at random.

For a fixed d we say that Gn,d,3 has a certain property P with high probability (‘w.h.p.’), if

the probability that Gn,d,3 enjoys P tends to 1 as n → ∞. Concerning Gn,d,3, Theorem 1.1

implies the following.

Corollary 1.2. Suppose that d � d0 is fixed. With high probability a random graph G =

Gn,d,3 has the following property: with probability � κn−1 over the coin tosses of the al-

gorithm, BPCol(G) outputs a proper 3-colouring of G.

To prove Corollary 1.2, we show that w.h.p. Gn,d,3 is (d, 0.01)-regular; see Section 4.
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1.3. Related work

Alon and Kahale [2] were the first to employ spectral techniques for 3-colouring sparse

random graphs. They present a spectral heuristic and show that this heuristic finds a 3-

colouring in the so-called ‘planted solution model’. This model is somewhat more difficult

to deal with algorithmically than the Gn,d,3 model that we study in the present work. For

while in the Gn,d,3-model each vertex v ∈ Vi has exactly d neighbours in each of the other

colour classes Vj �= Vi, in the planted solution model of Alon and Kahale the number of

neighbours of v ∈ Vi in Vj has a Poisson distribution with mean d. In effect, the spectral

algorithm in [2] is more sophisticated than the spectral heuristic from Section 1.2. In

particular, the Alon–Kahale algorithm succeeds on (d, 0.01)-regular graphs (and hence on

Gn,d,3 w.h.p.).

There are numerous papers on the performance of message-passing algorithms for

constraint satisfaction problems (e.g., belief propagation/survey propagation) by authors

from the statistical physics community (see [4, 5, 12] and the references therein). While

these papers provide rather plausible (and insightful) explanations of the success of

message-passing algorithms on problem instances such as random graphs Gn,p or random

k-SAT formulae, the arguments (e.g., the replica or the cavity method) are mathematically

non-rigorous.

Feige, Mossel and Vilenchik [9] showed that the warning propagation (WP) algorithm

for 3-SAT converges in polynomial time to a satisfying assignment on a model of random

3-SAT instances with a planted solution. Since the messages in WP are additive in

nature, and not multiplicative as in BP, the WP algorithm is conceptually much simpler.

Moreover, on the model studied in [9], a fairly simple combinatorial algorithm (based on

the ‘majority vote’ algorithm) is known to succeed. In contrast, no purely combinatorial

algorithm (that does not rely on spectral methods or semi-definite programming) is known

to 3-colour Gn,d,3 or even arbitrary (d, 0.01)-regular instances.

A very recent paper by Yamamoto and Watanabe [20] deals with a spectral approach

to analysing BP for the Minimum Bisection problem. Their work is similar to ours in

that they point out that a BP-related algorithm pseudo-bp emulates spectral methods.

However, a significant difference is that pseudo-bp is a simplified version of BP that

is easier to analyse, whereas in the present work we make a point of analysing the BP

algorithm for colouring as it is stated in [4] (see Section 2 for more detailed comments).

The effectiveness of message-passing algorithms for amplifying local information, in

order to decode codes close to channel capacity was recently established in a number

of papers, e.g., [13, 14, 17]. Our results are similar in flavour; however, the analysis

provided here allows us to recover a proper 3-colouring of the entire graph, whereas in

the random LDPC codes setting, message passing allows us to recover only a 1 − o(1)

fraction of the codeword correctly. In [14] it is shown that for the erasure channel, all

bits may be recovered correctly using a message-passing algorithm; however, in this case

the message-passing algorithm is of combinatorial nature (all messages are either 0 or 1)

and the LDPC code is designed so that message passing works for it.

It is important to note the difference between our work and the coding work and some

interesting recent work analysing message-passing algorithms. In this work it has been

shown that BP converges if the computation tree has strong correlation decay. Further,
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if the graph does not contain short cycles, then it converges to marginal probabilities

that are close to correct. This was established in [18] and follow-up work. One way of

formulating correlation decay on the computation tree is in terms of spectral properties

of a recursion operator. These spectral properties are not related to those used here,

as we use spectral properties of the underlying graph. Similar comments apply to the

impressive work of [19] and follow-up work which applies also to graph with cycles;

however, this work still requires correlation decay, and does not apply BP but a different

related algorithm.

In our set-up there is no correlation decay, either for the computation tree or for the

graph itself. For the graph itself this follows from the fact that there are only 6 legal

colourings and that any two of them differ in at least n/3 of the vertices. In other words,

fixing the colours of 3 of the vertices determines the colouring of the complete graph.

Similarly, the computation tree is a d − 1 regular tree, and it is easy to set up boundary

conditions that fix the colouring of the inside of the tree: see [7, 11].

2. The belief propagation algorithm for 3-colouring

Following [4], in this section we will describe the basic ideas behind the BP algorithm. Since

BP is a heuristic based on non-rigorous ideas (mainly from artificial intelligence and/or

statistical physics), the discussion of its main ideas will somewhat lack mathematical

rigour. Nonetheless, as we pointed out in the Introduction, BP makes up for this by being

very successful empirically. At the end of this section, we will state precisely the version

of BP that we are going to work with.

The basic strategy behind the BP algorithm for 3-colouring is to perform a fixed-point

iteration for certain ‘messages’, starting from a suitable initial assignment. In the case of

3-colouring, the messages correspond to the edges of the graph and to the three available

colours. More precisely, to each (undirected) edge {v, w} of the graph G = (V , E) and each

colour a ∈ {1, 2, 3}, we associate two messages ηav→w from v to w about a, and ηaw→v from

w to v about a; in general, we will have ηav→w �= ηaw→v . Thus, the messages are directed

objects. Each of these messages ηav→w is a number between 0 and 1, which we interpret

as the ‘probability’ that vertex v takes the colour a in the graph obtained from G by

removing w. Here ‘probability’ refers to the choice of a random (proper) 3-colouring of

G − w, while the graph G is considered fixed. (There is an obvious symmetry issue with

this definition, which we will discuss shortly.)

Having introduced the variables ηav→w , we can set up the belief propagation equations for

colouring, which are the basis of the BP algorithm. The BP equations reflect a relationship

that the probabilities ηav→w should (approximately) satisfy under certain assumptions on

the graph G, namely that

ηav→w =

∏
u∈N(v)\w 1 − ηau→v∑3

b=1

∏
u∈N(v)\w 1 − ηbu→v

(2.1)

for all edges {v, w} of G and all a ∈ {1, 2, 3} (see Figure 1).

The idea behind (2.1) is that v takes colour a in the graph G − w if and only if none

of its neighbours u ∈ N(v) \ w has colour a in G − v. Furthermore, the probability of
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Figure 1. The BP equation.

this event (‘no u has colour a’) is assumed to be (asymptotically) equal to the product∏
u∈N(v)\w 1 − ηau→v of the individual probabilities; that is, the neighbours u �= w of v

are assumed to be asymptotically independent. Of course, this assumption does not hold

for arbitrary graphs G. Finally, the numerator on the right-hand side of (2.1) is just a

normalizing term, which ensures that
∑3

a=1 η
a
v→w = 1.

The reason why, in the above discussion, we refer to the probability that v takes colour

a in the graph G − w obtained by removing w, rather than just to the probability that v

takes colour a in G, is that in the latter case the neighbours u ∈ N(v) would never be

(asymptotically) independent – not even if G is a tree. For in this case the presence of v –

more precisely, the existence of the short path (u, v, u′) for any two neighbours u, u′ ∈ N(v)

of v – would render the colours within the neighbourhood N(v) heavily dependent.

Similarly, if G contains triangles, so that for some vertices v the neighbourhood N(v) is

not an independent set, then the independence assumption that is implicit in (2.1) will be

violated. Nonetheless, if G does not feature (many) short cycles – say, all the cycles are of

length Ω(log |V |) as |V | → ∞ – then the BP equations (2.1) may at least be asymptotically

valid. The random graph model Gn,d,3 provides an example of graphs (essentially) without

such short cycles.

Now, the basic idea behind the BP algorithm is the following. We start with a ‘reasonable’

initial assignment ηav→w(0) and use (2.1) to perform a fixed-point iteration by letting

ηav→w(l + 1) =

∏
u∈N(v)\{w} 1 − ηau→v(l)∑3

b=1

∏
u∈N(v)\{w} 1 − ηbu→v(l)

(2.2)

for all {v, w} ∈ E and a ∈ {1, 2, 3}. As soon as some of the values ηav→w(l + 1) are strongly

‘biased’ toward either 0 or 1, we try to exploit this information to obtain a colouring.

Before we state the BP algorithm precisely, we need to discuss an important issue with

the BP equations (2.1). Namely, in the case of 3-colouring the set of all 3-colourings is

symmetric under permuting the colour classes. Therefore, if we actually define ηav→w to

equal the probability w.r.t. a random 3-colouring of G − w, then trivially ηav→w = 1
3

for

all a, v, w. In fact, this trivial solution is actually a fixed point of (2.2). Hence, we need

to ‘break symmetry’. In particular, it is not a good idea to choose the initial assignment

ηav→w(0) = 1
3

for all a, v, w. Therefore, we do not start from ηav→w(0) = 1
3
, but we assign to

each ηav→w the value 1
3

plus a small random error δ. The hope is that this random error

will cause the fixed-point iterations (2.2) to converge to a non-trivial fixed point (other

than ηav→w(0) = 1
3

for all a, v, w), and that this fixed point yields sufficient information to
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Algorithm 2.1. BPCol(G)

Input: A graph G = (V , E). Output: An assignment of colours to the vertices of G.

1. Let δ = exp(− log3 n).

For each v ∈ V perform the following independently:
choose a ∈ {1, 2, 3} uniformly at random and assign ηav→w(0) = 1

3
+ δ and

ηbv→w(0) = 1
3

− δ
2

for all b ∈ {1, 2, 3} \ {a} and w ∈ N(v).

2. For l = 1, . . . , l∗ = �log4 n�
compute ηav→w(l + 1) using (2.2) for all a, v, and w.

3. For each v ∈ V and each a ∈ {1, 2, 3} compute βa
v = |N(v)|−1

∑
u∈N(v) 1 − ηau→v(l

∗).

Assign to each v ∈ V a colour a ∈ {1, 2, 3} such that βa
v = maxb∈{1,2,3} β

b
v .

Figure 2. The algorithm BPCol.

3-colour G. For instance, if χ : V → {1, 2, 3} is a 3-colouring of G, then

ηav→w =

{
1 if χ(v) = a

0 otherwise
(a = 1, 2, 3; {v, w} ∈ E)

is a fixed point of (2.2), and clearly the 3-colouring χ can be read out of the above

messages easily. The algorithm BPCol is shown in Figure 2. Observe that step 1 ensures

that

3∑
a=1

ηav→w(0) = 1, for all {v, w} ∈ E. (2.3)

Remarks. (1) Theorem 1.1 states that the probability (over the random decisions in step 1)

that BPCol yields a proper 3-colouring of its (d, 0.01)-regular input graph is Ω(n−1). This

can be boosted to Ω(1) by means of the following slightly more careful initialization.

Instead of choosing a random a for each v ∈ V independently, we choose a random

permutation σ of V and let Wa = {σ((a − 1)n/3 + 1), . . . , σ(an/3)} (a = 1, 2, 3). Then, for

each v ∈ Wa we set ηav→w(0) = 1
3

+ δ and ηbv→w(0) = 1
3

− δ
2

(b ∈ {1, 2, 3} \ {a}, w ∈ N(v)).

The proof of Proposition 3.5 below shows that this leads to a success probability of

Ω(1). Nonetheless, we chose to state BPCol with independent decisions in its initialization,

because this appears more natural (and generic) to us.

(2) Although in the above discussion of the BP equation (2.2) we referred to ‘local’

properties (such as the absence of short cycles), such local properties will not occur

explicitly in our analysis of BPCol. Indeed, relating BPCol to spectral graph properties, the

analysis has a ‘global’ character. Nonetheless, various local conditions (e.g., a relatively

small number of short cycles) are implicit in the ‘global’ assumption that the graph G is

(d, 0.01)-regular (see Theorem 1.1). For more background on spectral versus combinatorial

graph properties see Chung and Graham [8].

(3) BPCol updates the messages ηav→w ‘in parallel’, i.e., the messages carry ‘time stamps’

(cf. (2.2)). An alternative, equally common option would be ‘serial’ updates, e.g., by
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choosing each time a random pair v, w of adjacent vertices along with a colour a ∈ {1, 2, 3}
and updating ηav→w via (2.1).

(4) BPCol exploits the result of the fixed-point iteration (2.2) in a more straightforward

fashion than the version of BP described in [4]. Namely, after performing a fixed-point

iteration of (2.2), the algorithm in [4] does not assign colours to all vertices (as step 3

of BPCol does), but only to a small fraction (the most decisive ones with respect to

the calculated values). Then, the algorithm performs another fixed-point iteration, etc.

The reason is that in the random graph model considered in [4] typically the number

of proper 3-colourings is exponential in the number of vertices, whereas (d, 0.01)-regular

graphs have only one 3-colouring (up to permutations of the colours).

(5) Let us discuss the key differences between BPCol for k = 2 and the algorithm

pseudo-bp analysed in [20].

(a) In pseudo-bp the products in (2.1) are taken over all neighbours of v, including w.

This apparently minor modification has a major impact on the analysis, for including

w causes the messages ηav→w to be independent of w. Consequently, in pseudo-bp

the messages at time l are 2|V |-dimensional objects, whereas in the present work the

dimension is 2k|E|.
(b) pseudo-bp actually works with the logarithms ln(ηav→w) of the messages instead of the

original ηav→w . Of course, the equation (2.1) can be phrased equivalently in terms of

ln(ηav→w) as ln(ηav→w) = F(ln(ηau→v))u∈N(v) for some function F . However, in pseudo-bp

this non-linear function F is replaced by a truncated linear function F̂ .

3. Proof of Theorem 1.1

3.1. Preliminaries and notation

Throughout this section, we let ε > 0 be a sufficiently small constant (whose value will

be determined implicitly in the course of the proof). Moreover, we keep the assumptions

from Theorem 1.1. Thus, we let d > d0 for a sufficiently large constant d0; in particular, we

assume that d0 > exp(ε−2). In addition, we assume that n > n0 for some sufficiently large

number n0 = n0(d), and that G = (V , E) is a (d, 0.01)-regular graph on n = |V | vertices.

This is reflected by the use of asymptotic notation in the analysis, which always refers to

n being sufficiently large.

Furthermore, we let (V1, V2, V3) be a 3-colouring of G with respect to which the

conditions R1 and R2 from the definition of (d, 0.01)-regularity hold. (Actually a (d, 0.01)-

regular graph has a unique 3-colouring up to permutations of the colour classes, but we

will not use this fact.) The following easy observation will be used frequently.

Lemma 3.1. Let i, j ∈ {1, 2, 3}, i �= j. Then in G each vertex v ∈ Vi has precisely d neigh-

bours in Vj . Consequently, |N(v)| = 2d.

Proof. Assume w.l.o.g. that i = 1 and j = 2. By condition R1, ξ =�1Vi
−�1Vj

is an

eigenvector of the adjacency matrix A(G) = (avw)v,w∈V with eigenvalue −d. Hence, letting

η = −dξ = A(G)ξ, we have −d = ηv = −
∑

w∈N(v)∩Vj
avw = −|N(v) ∩ Vj |.
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Let A be the set of all ordered pairs (v, w) such that {v, w} ∈ E. Following [4], we will

denote the elements (v, w) ∈ A as v → w. Furthermore, we shall frequently work with the

vector space R = R
3 ⊗ R

A. Each element Γ ∈ R has a unique representation,

Γ =

⎛
⎝1

0

0

⎞
⎠⊗ Γ1 +

⎛
⎝0

1

0

⎞
⎠⊗ Γ2 +

⎛
⎝0

0

1

⎞
⎠⊗ Γ3,

with Γi = (Γi
v→w)v→w∈A ∈ R

A (i = 1, 2, 3). Hence, we shall denote such a vector as Γ =

(Γi
v→w)v→w∈A,i∈{1,2,3}. Semantically, one can think of Γi

v→w as the ‘message’ that v sends to

w about colour i. Note that the messages ηav→w(l) defined from Section 2 constitute vectors

η(l) = (ηav→w(l))v→w∈A,a∈{1,2,3} ∈ R.

We will denote the scalar product of vectors ξ, η as 〈ξ, η〉. Moreover, ‖ξ‖ =
√

〈ξ, ξ〉
denotes the 2-norm. In addition, if M : R

n1 → R
n2 is linear, then we let

‖M‖ = max
ξ∈R

n1 ,‖ξ‖=1
‖Mξ‖

signify the operator norm of M. Further, MT denotes the transpose of M, i.e., the unique

linear operator R
n2 → R

n1 such that 〈Mξ, η〉 = 〈ξ,MTη〉 for all ξ ∈ R
n1 , η ∈ R

n2 .

3.2. Outline of the analysis

In order to analyse BPCol, we shall relate the fixed-point iteration of (2.2) to the spectral

colouring algorithm from Section 1.2. More precisely, we will approximate the fixed-point

iteration of the non-linear operation (2.2) by a fixed-point iteration for a linear operator.

One of the key ingredients in the analysis is to show how symmetry is broken (i.e.,

convergence to the all- 1
3

fixed point is avoided). Indeed, it may not be clear a priori that

this will happen at all, because the random bias generated in step 1 of BPCol is uncorrelated

to the planted colouring. The analysis is based on the following crucial observation (see

Corollary 3.4 below): after a logarithmic number of iterations, for all v ∈ Vi, w ∈ Vj, i �= j

the messages ηav→w are dominated by eigenvectors of the linear operator which we use

to approximate (2.2). Furthermore, these eigenvectors mirror the colouring (V1, V2, V3)

and are (almost) constant on every colour class Vi (with basically 0, 1,−1 values on the

different colour classes). Hence, the (random) initial bias gets amplified so that the planted

3-colouring can eventually be read out of the messages.

To carry out this analysis precisely, we set

Δa
v→w(l) = ηav→w(l) − 1

3
.

Moreover, we let B : R → R denote the (non-linear) operator defined by

(BΓ)av→w = −1

3
+

∏
u∈N(v)\w 1 − 3

2
Γa
u→v∑3

b=1

∏
u∈N(v)\w 1 − 3

2
Γb
u→v

(Γ ∈ R).

Then (2.2) can be rephrased in terms of the vectors Δ(l) = (Δa
v→w(l))v→w∈A, a∈{1,2,3} ∈ R as

Δ(l + 1) = BΔ(l). (3.1)
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We shall see that we can approximate the non-linear operator B in (3.1) by

the following linear operator B′ if ‖Δ(l)‖∞ is small; the operator B′ maps a vector

Γ = (Γa
v→w)a∈{1,2,3},v→w∈A ∈ R to the vector B′(Γ) = (B′(Γ)av→w)a,v→w ∈ R with entries

B′(Γ)av→w = −1

2

∑
u∈N(v)\w

Γa
u→v +

1

6

3∑
b=1

∑
u∈N(v)\w

Γb
u→v. (3.2)

Indeed, B′ : R → R is just the total derivative of B at 0.

We define a sequence Ξ(l) by letting Ξ(0) = Δ(0) and Ξ(l) = B′lΞ(0) for l � 1, thinking

of Ξ(l) as a ‘linear approximation’ to Δ(l). As a first step, we shall simplify the operator

B′ a little.

Lemma 3.2. We have (B′(Ξ(l)))av→w = − 1
2

∑
u∈N(v)\w Ξa

u→v(l) for all l � 0, v → w ∈ A, a ∈
{1, 2, 3}.

Proof. Step 1 of BPCol ensures that the initial vector satisfies

3∑
b=1

Ξb
u→v(0) =

3∑
b=1

Δb
u→v(0) = 0, for all {u, v} ∈ E (cf. (2.3)).

Therefore, by induction and by the definition (3.2) of B′ we see that
∑3

b=1 Ξb
u→v(l) = 0 for

all l � 0. Consequently,
∑3

b=1

∑
u∈N(v)\w Ξb

u→v(l) = 0 for all l � 0, i.e., the second summand

on the right-hand side of (3.2) vanishes.

Due to Lemma 3.2, we may just replace B′ by the simpler linear operator L : R → R
defined by

(LΓ)av→w = −1

2

∑
u∈N(v)\w

Γa
u→v (v → w ∈ A, a ∈ {1, 2, 3}), (3.3)

which satisfies

Ξ(l) = LlΞ(0) = LlΔ(0). (3.4)

We also note for future reference that

3∑
a=1

Ξa
v→w(l) = 0, for all v → w ∈ A, l � 0, (3.5)

because (2.3) entails that (3.5) is true for l = 0, whence the definition (3.3) of L shows

that (3.5) holds for all l > 0.

In order to prove Theorem 1.1, we shall first analyse the sequence Ξ(l) and then

bound the error ‖Ξ(l) − Δ(l)‖∞ resulting from linearization. To study the sequence Ξ(l),

we investigate the dominant eigenvalues of L and their corresponding eigenvectors. More

precisely, we shall see that our assumption on the spectrum of the adjacency matrix A(G)

implies that the dominant eigenvectors of L mirror a 3-colouring of G. We defer the proof

of the following proposition to Section 3.3.
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Proposition 3.3. Let eaij ∈ R be the vector with entries

(eaij)
b
v→w =

{
1 if b = a, v ∈ Vi, and w ∈ N(v) ∩ Vj,

0 otherwise,

for v → w ∈ A, a, b, i, j ∈ {1, 2, 3}, and i �= j. Let E be the space spanned by these 18 vectors.

Then L operates on E as follows.

S1 There are precisely six linearly independent eigenvectors {ζa2 , ζa3 : a = 1, 2, 3} with eigen-

value λ = d
4

+ 1
4

√
d2 − 8d + 4, which satisfy

‖ζa2 − ea12 − ea13 + ea21 + ea23‖∞ � 100d−1, ‖ζa3 − ea12 − ea13 + ea31 + ea32‖∞ � 100d−1.

(3.6)

These eigenvectors are symmetric with respect to the colours a = 1, 2, 3, i.e., for any two

distinct a, b ∈ {1, 2, 3} and all v → w ∈ A, we have

(ζaj )av→w = (ζbj )bv→w and (ζaj )bv→w = 0. (3.7)

In addition,

‖ζ1
2 ‖ = ‖ζaj ‖, for all j ∈ {2, 3}, a ∈ {1, 2, 3}. (3.8)

S2 The three vectors ea =
∑

i�=j e
a
ij with a = 1, 2, 3 are eigenvectors with eigenvalue 1

2
− d.

S3 For all ξ ∈ E such that ξ ⊥ {ea, ζaj : a = 1, 2, 3, j = 2, 3}, we have ‖Lξ‖ � 1
2
‖ξ‖.

S4 Furthermore, LE ⊂ E and LTE ⊂ E .

Finally, we have

S5 ‖L2ξ‖ � 0.01d2‖ξ‖, for all ξ ⊥ E .

The eigenvectors that we are mostly interested in are ζa2 , ζ
a
3 (a = 1, 2, 3), as (3.6) shows

that these vectors represent the colouring (V1, V2, V3) completely. As a next step, we show

that Ξ(l) can be approximated well by a linear combination of the vectors ζa2 , ζ
a
3 , provided

that l is sufficiently large. To this end, let

xai =
√
n · 〈Δ(0), ζai 〉

‖Δ(0)‖ · ‖ζai ‖ (i = 2, 3, a = 1, 2, 3) (3.9)

be the projection of the initial vector Δ(0) = Ξ(0) onto the eigenvector ζai ; we will see below

that the normalization in (3.9) ensures that xai is bounded away from 0. Furthermore,

recalling from (3.8) that ‖ζai ‖ = ‖ζ1
2 ‖ for all i, a, we set

ν =
‖Δ(0)‖√
n‖ζ1

2 ‖
. (3.10)

Corollary 3.4. Suppose that l � L1 = 2�log n�, and that Ξ(0) ⊥ ea for a = 1, 2, 3. Then

Ξa
v→w(l) = νλl

3∑
a=1

3∑
i=2

(xai + o(1))ζai v→w, for all a ∈ {1, 2, 3} and {v, w} ∈ E.
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Proof. Since by assumption the initial vector Ξ(0) is perpendicular to ea for a = 1, 2, 3,

and because e1, e2, e3 are eigenvectors of L by S2, we have Ξ(l) ⊥ ea. Therefore, we can

decompose Ξ(l) as

Ξ(l) = ξ(l) +

3∑
a=1

3∑
i=2

zai (l)ζai , where ξ(l) ⊥ {ea, ζai : i ∈ {2, 3}, a ∈ {1, 2, 3}}. (3.11)

Thus, to prove the corollary we need to compute the numbers zai (l) and bound ‖ξ(l)‖∞.

With respect to the coefficients zai (l), note that zai (l) = λlzai (0), because by S1, ζai is an

eigenvector with eigenvalue λ. Moreover, zai (0) = ‖ζai ‖−2〈Ξ(0), ζai 〉. Hence, (3.9) and (3.10)

yield zai (0) = xai · ν. Thus,

zai (l) = λlν · xai . (3.12)

To bound the ‘error term’ ‖ξ(l)‖∞, we note that S3–S5 entail

‖L2γ‖ � 0.01d2‖γ‖ � (0.3λ)2‖γ‖, for all γ ⊥ {ea, ζai : i ∈ {2, 3}, a ∈ {1, 2, 3}}, (3.13)

provided that d � d0 for a large enough constant d0 > 0. Let k = �l/2�. Since ξ(2k) =

L2kξ(0), (3.13) implies that

‖ξ(2k)‖ = ‖L2kξ(0)‖ � (0.3λ)2k‖ξ(0)‖ � (0.3λ)2k‖Ξ(0)‖. (3.14)

Moreover, as l � 2k + 1 and ‖L‖ � d − 1
2

by Proposition 3.3, (3.14) yields

‖ξ(l)‖∞ � ‖ξ(l)‖ � d‖ξ(2k)‖ � d(0.3λ)l‖Ξ(0)‖. (3.15)

Finally, if l � L1, then d(0.3λ)l‖Ξ(0)‖ = o(λlν). Thus, the assertion follows from (3.11),

(3.12) and (3.15).

While in the initial vector Δ(0) = Ξ(0) the messages are completely uncorrelated with the

colouring (V1, V2, V3), Corollary 3.4 entails that the dominant contribution to Ξ(L1) comes

from the eigenvectors ζai , which represent that colouring. This implies that all vertices v in

each class Va send essentially the same messages to all other vertices w ∈ Vb about each

of the colours 1, 2, 3, and these messages are solely determined by the initial projections

xai of Δ(0) onto ζai . Hence, after L1 iterations the messages are essentially coherent

and strongly correlated to the planted colouring. Thus, as a next step we analyse the

distribution of the projections xai . To simplify the expression resulting from Corollary 3.4,

let

ya1 = xa2 + xa3, ya2 = −xa2 and ya3 = −xa3. (3.16)

Then (3.6) and Corollary 3.4 entail that for all v ∈ Vi, all w ∈ N(v), and l � L1 we have

Ξa
v→w(l) = (yai + o(1)) · νλl .

Of course, the numbers yai only depend on the initial vector Δ(0). Therefore, we say that

Δ(0) is feasible if:

F1 Δ(0) ⊥ ea for a = 1, 2, 3, and
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F2 for any pair a, b ∈ {1, 2, 3}, a �= b we have

|yaa − 1| < exp(−1/ε) and |yba + 0.5| < exp(−1/ε). (3.17)

Proposition 3.5. With probability Ω(n−1) over the random bits used in step 1 of BPCol, Δ(0)

is feasible.

The elementary (though tedious) proof of Proposition 3.5 can be found in Section 3.4.

Combining Corollary 3.4 and Proposition 3.5, we conclude that with probability Ω(n−1)

(namely, if Δ(0) is feasible) we have

0.49νλl � ‖Ξ(l)‖∞ � 1.1νλl (l � L1). (3.18)

Having obtained a sufficient understanding of the sequence Ξ(l), we will now show that

these vectors provide a good approximation to the vectors Δ(l), which we are actually

interested in. The proof of the following proposition can be found in Section 3.5.

Proposition 3.6. Suppose that Δ(0) is feasible. Let L2 > 0 be the maximum integer such

that ‖Ξ(L2)‖∞ � ε. Then ‖Ξ(L2) − Δ(L2)‖∞ � − log(ε) · ‖Ξ(L2)‖2
∞.

Combining the information on the sequence Ξ(l) provided by Corollary 3.4 and

Proposition 3.5 with the bound on ‖Ξ(L2) − Δ(L2)‖∞ from Proposition 3.6, we can show

that the messages obtained in the next one or two steps of the algorithm already represent

the colouring rather well. To be precise, let us call the vector η(l) proper if

∀a ∈ {1, 2, 3}, b ∈ {1, 2, 3} \ {a}, v ∈ Va, w ∈ N(v) : ηav→w(l) � 0.99 ∧ ηbv→w(l) � 0.01.

Proposition 3.7. If Δ(0) is feasible, then for either L3 = L2 + 1 or L3 = L2 + 2 the vector

η(L3) is proper.

The proof of Proposition 3.7 is the content of Section 3.6.

Proposition 3.7 shows that the ‘rounding procedure’ in step 3 of BPCol applied to the

messages η(L3) would yield the colouring (V1, V2, V3). However, BPCol actually applies

that rounding procedure to η(l∗), where l∗ > L3. Therefore, in order to show that BPCol

outputs a proper 3-colouring, we need to show that these messages η(l∗) are proper, too.

Lemma 3.8. If η(l) is proper, then so is η(l + 1).

Proof. Let v ∈ Va for some 1 � a � 3, w ∈ N(v), and {b, c} = {1, 2, 3} \ {a}. Since η(l) is

proper, we have ∏
u∈Vc∩N(v)\w

1 − ηau→v(l)

1 − ηbu→v(l)
�

∏
u∈Vc∩N(v)\w

1 − ηau→v(l) � 0.992d, (3.19)

∏
u∈Vb∩N(v)\w

1 − ηau→v(l)

1 − ηbu→v(l)
�
(

0.99

0.01

)2d−1

= 992d−1. (3.20)
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Consequently, the definition (2.2) of the sequence η(l) shows that

ηav→w(l + 1)

ηbv→w(l + 1)
=

∏
u∈Vc∩N(v)\w

1 − ηau→v(l)

1 − ηbu→v(l)
·

∏
u∈Vb∩N(v)\w

1 − ηau→v(l)

1 − ηbu→v(l)

� 0.01 ·
(

(0.99)2

0.01

)2d

� 0.01 · 902d � 1000. (3.21)

As the construction (2.2) of η(l + 1) ensures that η1
v→w(l + 1) + η2

v→w(l + 1) + η3
v→w(l + 1) =

1, (3.21) entails that ηav→w(l + 1) � 0.99 and ηbv→w(l + 1) � 0.01, whence η(l + 1) is proper.

Proof of Theorem 1.1. Proposition 3.5 states that Δ(0) is feasible with probability Ω(n−1).

Therefore, to establish Theorem 1.1, we show that BPCol outputs the colouring (V1, V2, V3)

if Δ(0) is feasible.

Thus, assume that Δ(0) is feasible and let L2 be the maximum integer such that

‖Ξ(L2)‖∞ � ε. Then Corollary 3.4 implies that L2 = Θ(log3 n), because ‖Ξ(0)‖∞ = δ =

exp(− log3 n), and the ∞-norm of Ξ(l) grows by a factor of λ in each iteration. Therefore,

Proposition 3.7 entails that η(L3) is proper for some L3 = Θ(log3 n). Thus, by Lemma 3.8

the final η(∗) generated in step 2 is proper, whence step 3 of BPCol outputs the colouring

V1, V2, V3.

3.3. Proof of Proposition 3.3

The operation (3.3) of L is symmetric with respect to the three colours a = 1, 2, 3.

Therefore, we shall represent L as a tensor product of a 3 × 3 matrix and an operator that

represents the graph G. To this end, we define operators M : R
A → R

A and K : R
A → R

A

by

(MΞ)v→w =
∑

u∈N(v)

Ξu→v, (KΞ)v→w = Ξw→v (Ξ ∈ R
A). (3.22)

Thus,

−1

2
((M − K)Ξ)v→w = −1

2

∑
u∈N(v)\w

Ξu→v,

i.e., − 1
2
(M − K) represents the operation of L with respect to a single colour a ∈ {1, 2, 3}.

Therefore, we can rephrase the definition (3.3) of L on the space R = R
3 ⊗ R

A as

L = −1

2

⎛
⎝1 0 0

0 1 0

0 0 1

⎞
⎠⊗ (M − K). (3.23)

Hence, in order to understand L, we basically need to analyse M − K.

For i, j ∈ {1, 2, 3} we define vectors eij ∈ R
A by letting

(eij)v→w =

{
1 if v ∈ Vi, w ∈ Vj , and w ∈ N(v),

0 otherwise.
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The following lemma shows that it makes sense to split the analysis of M − K into two

parts: first we shall analyse how M − K operates on the space E0 spanned by the vectors

eij (1 � i, j � 3, i �= j); then, we will study the operation of M − K on E⊥
0 .

Lemma 3.9. If ξ ∈ E0, then Mξ,MT ξ,Kξ,KT ξ ∈ E0.

Proof. Let i, j, k ∈ {1, 2, 3} be pairwise distinct. Since Keij = eji, we have KE0 ⊂ E0.

Moreover, KT = K. Furthermore, by Lemma 3.1,

(Meij)v→w =
∑

u∈N(v)

(eij)u→v =

{
d if v ∈ Vj ,

0 otherwise.
(3.24)

Hence, Meij = d(ejk + eji), and thus ME0 ⊂ E0. In addition, the transpose of M is given

by

(MTΞ)v→w =
∑

u∈N(w)

Ξw→u.

Therefore,

(MT eij)v→w =
∑

u∈N(w)

(eij)w→u =

{
d if v ∈ Vi,

0 otherwise.

Consequently, MT eij = d(eij + eik), whence MTE0 ⊂ E0.

To study the operation of M − K on E0, note that (3.24) implies that (M − K)eij =

dejk + (d − 1)eji, if i, j, k ∈ {1, 2, 3} are pairwise distinct. Therefore, with respect to the

basis e12, e23, e21, e23, e31, e32 of E0, we can represent the operation of M − K on E0 by the

6 × 6 matrix

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 d − 1 0 d 0

0 0 d 0 d − 1 0

d − 1 0 0 0 0 d

d 0 0 0 0 d − 1

0 d − 1 0 d 0 0

0 d 0 d − 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Observe that M is not symmetric. However, the columns of M can be permuted to obtain

a symmetric matrix. The following lemma follows from a tedious direct computation.

Lemma 3.10. The 6 × 6 matrix M is diagonalizable and has the non-zero eigenvalues 1,

2d − 1,

Λ = −d

2
−

√
d2 − 8d + 4

2
, Λ′ = −d

2
+

√
d2 − 8d + 4

2
. (3.25)
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The eigenspace with eigenvalue 2d − 1 is spanned by �1. Moreover, there are two mutually

perpendicular eigenvectors ζ ′
2, ζ

′
3 with eigenvalue Λ, which satisfy

‖ζ ′
2 − (1, 1,−1,−1, 0, 0)T ‖∞ � 10

d
, ‖ζ ′

3 − (1, 1, 0, 0,−1,−1)T ‖∞ � 10

d

and ‖ζ ′
2‖ = ‖ζ ′

3‖.

Since M describes the operation of M − K on the subspace E0, Lemma 3.10 implies

the following.

Corollary 3.11. Restricted to the subspace E0, the operator M − K is diagonalizable with

non-zero eigenvalues 1, 2d − 1, and Λ, Λ′ as in (3.25). The vector e∗ =
∑

i�=j eij spans the

eigenspace of 2d − 1. Furthermore, there are two mutually perpendicular eigenvectors ζ2, ζ3

with eigenvalue Λ, which satisfy

‖ζ2 − (e12 + e13 − e21 − e23)‖∞ � 10

d
, ‖ζ3 − (e12 + e13 − e31 − e32)‖∞ � 10

d
.

Corollary 3.11 describes the operation of M − K on E0 completely. Therefore, as a next

step we shall analyse how M − K operates on E⊥
0 . More precisely, our goal is to show

that, restricted to E⊥
0 , the norm of M − K is significantly smaller than Λ. To this end, we

observe that the operator K merely permutes the coordinates. Consequently,

‖K‖ � 1. (3.26)

To bound the norm of M on E⊥
0 , we consider three subspaces of E⊥

0 . The first subspace

S consists of all vectors ξ ∈ E⊥
0 such that the value ξv→w only depends on the ‘start vertex’

v; in symbols,

S = {ξ ∈ E⊥
0 : ∀v → w, v → u ∈ A : ξv→w = ξv→u}.

If ξ ∈ S and v ∈ V , then we let ξv→ = ξv→w for any w ∈ N(v), i.e., ξv→ is the ‘outgoing

value’ of v.

The second subspace T consists of all ξ ∈ E⊥
0 such that ξu→v depends only on the

‘target vertex’ v, i.e.,

T = {ξ ∈ E⊥
0 : ∀u → v, w → v ∈ A : ξu→v = ξw→v}.

For ξ ∈ T and v ∈ V we let ξ→v = ξu→v for any u ∈ N(v), i.e., ξ→v signifies the ‘incoming

value’ of v.

Furthermore, the third subspace U consists of all ξ such that, for any vertex, the sum

of the ‘incoming’ values equals 0:

U =

{
ξ ∈ E⊥

0 : ∀v ∈ V :
∑

u∈N(v)

ξu→v = 0

}
.

Lemma 3.12.

(1) We have U = Kern(M) ∩ E⊥
0 .
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(2) Moreover, if ξ ∈ T , then (Mξ)v→w = 2dξ→v for all v → w ∈ A. In particular, Mξ ∈ S .

(3) Furthermore, T ⊥ U, and E⊥
0 = T ⊕ U.

Proof. The first assertion follows immediately from the definition (3.22) of M. Moreover,

if ξ ∈ T , then (Mξ)v→w =
∑

u∈N(v) ξu→v = |N(v)|ξ→v = 2dξ→v due to Lemma 3.1, whence

(2) follows. Consequently, if ξ ∈ T and η ∈ U, then

〈ξ, η〉 =
∑

u→v∈A
ξu→vηu→v = 2d

∑
v∈V

ξ→v

∑
u∈N(v)

ηu→v = 0,

whence T ⊥ U. Furthermore, for any γ ∈ E⊥
0 the vector η with entries

ηv→w =
1

2d

∑
u∈N(w)

ξu→w

lies in T , because the sum on the right-hand side is independent of v. In addition,

ξ = γ − η satisfies

∑
u∈N(v)

ξu→v =

[ ∑
u∈N(v)

γu→v

]
− 2dη→v = 0, for any v ∈ V ,

so that ξ ∈ U. Hence, any γ ∈ E⊥
0 can be written as γ = η + ξ with η ∈ T and ξ ∈ U, i.e.,

E⊥
0 = T ⊕ U.

By now we have all the prerequisites to analyse the operation of M on E⊥
0 .

Lemma 3.13. If ξ ∈ E⊥
0 , then ‖M2ξ‖ � 0.01d2‖ξ‖.

Proof. Let ξ ∈ E⊥
0 . By the third part of Lemma 3.12 there is a decomposition ξ = ξT + ξU

such that ξT ∈ T and ξU ∈ U. Furthermore, the first part of Lemma 3.12 entails that

Mξ = MξT . Therefore, we may assume without loss of generality that ξ = ξT ∈ T .

Hence, the second part of of Lemma 3.12 implies that

‖ξ′‖ = 2d‖ξ‖ (3.27)

and ξ′ = Mξ ∈ S . Consequently, letting ξ′′ = Mξ′ = M2ξ, we obtain

ξ′′
v→w =

∑
u∈N(v)

ξ′
u→v =

∑
u∈N(v)

ξ′
u→. (3.28)

Since the right-hand side of (3.28) is independent of w, we conclude ξ′′ ∈ S .

In order to bound ‖ξ′′‖ = ‖M2ξ‖, we shall express the sum on the right-hand side

of (3.28) in terms of the adjacency matrix A(G). To this end, consider the two vectors

η′ = (η′
v)v∈V ∈ R

V with η′
v = ξ′

v→,

η′′ = (η′′
v )v∈V ∈ R

V with η′′
v = ξ′′

v→,
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for all v ∈ V . Then

‖ξ′‖2 =
∑

v→w∈A
ξ′
v→w

2
= 2d

∑
v∈V

ξ′
v→

2
= 2d‖η′‖2, and analogously (3.29)

‖ξ′′‖2 = 2d‖η′′‖2. (3.30)

Furthermore, (3.28) implies that η′′
v =

∑
u∈N(v) η

′
u for all v ∈ V , i.e.,

η′′ = A(G)η′. (3.31)

Combining (3.27), (3.29), (3.30), and (3.31), we obtain

‖M2ξ‖ = ‖ξ′′‖ =
2d‖A(G)η′‖

‖η′‖ · ‖ξ‖. (3.32)

Hence, we finally need to bound ‖A(G)η′‖. To this end, we employ our assumption that

G is (d, 0.01)-regular; namely, condition R2 from the definition of (d, 0.01)-regularity entails

that ‖A(G)ζ‖ � 0.01d‖ζ‖ for all ζ ⊥�1V1
,�1V2

,�1V3
. Thus, we need to show that η′ ⊥�1Vi

for

i = 1, 2, 3. Assuming w.l.o.g. that i = 1, we have

〈η′,�1V1
〉 =

∑
v∈V1

ξ′
v→ = (2d)−1

∑
v→w∈A:v∈V1

ξ′
v→w = (2d)−1〈ξ′, e12 + e13〉

= (2d)−1〈Mξ, e12 + e13〉 = (2d)−1〈ξ,MT (e12 + e13)〉. (3.33)

Further, as MT (e12 + e13) ∈ E0 by Lemma 3.9, while ξ ∈ E⊥
0 by our assumption, (3.33)

implies that 〈η′,�1V1
〉 = 0. Consequently, we obtain that ‖A(G)η′‖ � 0.01d‖η′‖, whence

(3.32) yields the assertion.

Proof of Proposition 3.3. Combining Corollary 3.11 with the tensor product representa-

tion (3.23) of L, we conclude that the six vectors

ζ1
j =

⎛
⎝1

0

0

⎞
⎠⊗ ζj , ζ2

j =

⎛
⎝0

1

0

⎞
⎠⊗ ζj , ζ3

j =

⎛
⎝0

0

1

⎞
⎠⊗ ζj (j = 2, 3) (3.34)

are eigenvectors of L with eigenvalue λ = − 1
2
Λ. In addition, the tensor representa-

tion (3.34) of the vectors ζaj immediately implies the symmetry statement (3.7), while (3.8)

follows from Corollary 3.11. Moreover, once more by Corollary 3.11 the three vectors

e1 =

⎛
⎝1

0

0

⎞
⎠⊗ e∗, e2 =

⎛
⎝0

1

0

⎞
⎠⊗ e∗, e3 =

⎛
⎝0

0

1

⎞
⎠⊗ e∗

are eigenvalues with eigenvector − 1
2
(2d − 1) = 1

2
− d, and all other eigenvalues of L

restricted to E are � 1
2

in absolute value. In addition, Lemma 3.9 shows in combination

with (3.23) that LE ,LTE ⊂ E . Finally, Lemma 3.13 implies in combination with (3.23)

that ‖L2ξ‖ � 0.01d2‖ξ‖ for all ξ ⊥ E .

3.4. Proof of Proposition 3.5

Before we get to the proof, let us briefly discuss why the assertion (i.e., Proposition 3.5)

is plausible. In fact, let us point out that the vector Δ(0) is easily seen to satisfy F2 with
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probability Ω(1). For each of the inner products 〈Δ(0), ζai 〉 is a sum of n independent

random variables, whence the central limit theorem implies that
√
n‖Δ(0)‖−1‖ζai ‖−1〈Δ(0), ζai 〉

is asymptotically normal (the factor
√
n‖Δ(0)‖−1‖ζai ‖−1, which is independent of the

random vector Δ(0), is needed to ensure that mean and variance are of order Θ(1)). In

fact, since the vectors (ζai )a=1,2,3; i=2,3 are mutually perpendicular, the joint distribution of

the random variables (√
n‖Δ(0)‖−1‖ζai ‖−1〈Δ(0), ζai 〉

)
i=2,3;a=1,2,3

is asymptotically a (multivariate) Gaussian. Therefore, the probability that Δ(0) satisfies

F2 is Ω(1).

However, once we condition on Δ(0) satisfying F1, the entries of Δ(0) are no longer

independent, whence the above argument does not yield a bound on the probability that

Δ(0) satisfies both F1 and F2. Nonetheless, the dependence of the entries of Δ(0) is weak

enough to allow for an elementary direct analysis. We begin with bounding the probability

that Δ(0) satisfies F1. To this end, we define a partition (W1,W2,W3) of V by letting

Wi = {v ∈ V : Δi
v→w = δ, for all w ∈ N(v)}.

In other words, Wi consists of all vertices for which the random number a chosen in

step 1 of BPCol was equal to i.

Lemma 3.14. The probability that Δ(0) satisfies F1 is Ω(n−1).

Proof. A sufficient condition for Δ(0) to satisfy F1 is that |W1| = |W2| = |W3| = n
3
.

Moreover, the total number of vectors that can be generated by step 1 of BPCol equals 3n,

out of which
(

n
n/3 n/3 n/3

)
yield W1 = W2 = W3 = n

3
. Therefore, the assertion follows from

Stirling’s formula.

In the remainder of this section we condition on the event that Δ(0) is such that |W1| =

|W2| = |W3|. Thus, (W1,W2,W3) is just a random partition of V into three classes of equal

size, and for all v ∈ Wi, all j ∈ {1, 2, 3} \ {i}, and all w ∈ N(v) we have

Δi
v→w = δ, Δj

v→w = −δ

2
.

Lemma 3.15. For any constant c1 > 0 there exists a constant c2 > 0 such that the following

holds. If (sai )i,a=1,2,3 are integers of absolute value |sai | � c1

√
n such that

∑3
a=1 s

a
j =

∑3
i=1 s

b
i =

0 for all 1 � b, j � 3, then

P

[
∀1 � a, i � 3 : |Va ∩ Wi| =

n

9
+ sai

]
� c2n

−2.

Proof. The sets W1,W2,W3 are randomly chosen mutually disjoint subsets of V of

cardinality n/3 each, whereas V1, V2, V3 are fixed subsets of V . Therefore, the total
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number of ways to choose W1,W2,W3 is given by the multinomial coefficient
(

n
n/3,n/3,n/3

)
;

by Stirling’s formula, (
n

n/3, n/3, n/3

)
� 10n−13n. (3.35)

Moreover, the number of ways to choose W1,W2,W3 such that |Va ∩ Wi| = sai equals

3∏
a=1

(
n/3

n/9 + sa1, n/9 + sa2, n/9 + sa3

)
(3.36)

(because the ath factor on the right-hand side equals the number of ways to partition

Va into three pieces Va ∩ W1, Va ∩ W2, Va ∩ W3 of the desired sizes). Combining (3.35)

and (3.36) with Stirling’s formula, we get

P

[
∀1 � a, i � 3 : |Va ∩ Wi| =

n

9
+ sai

]
� n(n/3)!3

10 · 3n
∏

1�i,a�3(n/9 + sai )!

� n5/2+n

10 · (9e)n
∏

1�i,a�3(n/9 + sai )!
. (3.37)

Furthermore, once again due to Stirling’s formula,

(n/9 + sai )! � exp(−n/9 − sai )(n/9 + sai )
n/9+sai

√
n

= exp(−n/9 − sai )(n/9)n/9+sai (1 + 9sai /n)n/9+sai
√
n

� exp(−n/9 + 9sai
2/n)(n/9)n/9+sai . (3.38)

Since we are assuming that sai � c1

√
n and

∑3
i=1 s

a
i = 0, (3.38) entails that

∏
1�i,a�3

(n/9 + sai )! � (n/9e)nn9/2 exp

(
9
∑
a,i

sai
2/n

)
� c′

2(n/9e)nn9/2 (3.39)

for a bounded number c′
2 that depends only on c1. Finally, plugging (3.39) into (3.37) and

cancelling, we obtain the assertion.

Corollary 3.16. For any two constants c3, β > 0 there exists a constant c4 > 0 such that the

following holds. If (tai )i,a=1,2,3 are numbers of absolute value |tai | � c3 such that
∑3

a=1 t
a
j =∑3

i=1 t
b
i = 0 for all 1 � b, j � 3, then

P

[
∀1 � a, i � 3 :

∣∣∣∣n− 1
2

(
|Va ∩ Wi| − n

9

)
− tai

∣∣∣∣ � β

]
� c4.

Proof. Let S be the set of all tuples (sai )a,i=1,2,3 of integers such that |n− 1
2 sbj − tbj | � β, and∑3

a=1 s
a
j =

∑3
i=1 s

b
i = 0 for all 1 � b, j � 3. Then |S | � β4n2/32. Moreover, all (sai )a,i=1,2,3 ∈

S satisfy |sbj | � (c3 + 1)
√
n (1 � b, j � 3). Therefore, Lemma 3.15 (applied with c1 = c3 + 1)
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shows that

P

[
∀a, i :

∣∣∣∣n− 1
2

(
|Va ∩ Wi| − n

9

)
− tai

∣∣∣∣ � β

]
�
∑

(sai )∈S
P

[
∀a, i : |Va ∩ Wi| =

n

9
+ sai

]

� c2|S |n−2 � β4c2/32,

as desired.

Since the vector Δ(0) just represents the partition W1,W2,W3, and the vectors
∑

j �=i e
a
ij

just represent the colouring V1, V2, V3, Corollary 3.16 easily implies a result on the joint

distribution of the inner products 〈Δ(0),
∑

j �=i e
a
ij〉.

Corollary 3.17. For any two constants c5, γ > 0 there exists a constant c6 > 0 such that the

following is true. Suppose that (zai )1�a,i�3 are numbers such that |zbj | � c5 and
∑3

i=1 z
b
i =∑3

a=1 z
a
j = 0 for all 1 � b, j � 3. Then

P

[
∀a, i : |zai −

〈Δ(0),
∑

j �=i e
a
ij〉

‖Δ(0)‖‖ζai ‖ ·
√
n| � γ

]
� c6.

Proof. The definition of η(0) in step 1 of BPCol shows that

Δa
v→w(0) = ηav→w(0) − 1

3
=

{
δ if v ∈ Wa,

−δ/2 otherwise,
for all v → w ∈ A. (3.40)

Therefore,

‖Δ(0)‖ =
√

3dn/2 · δ. (3.41)

Moreover, by Proposition 3.3 there is a number 0.99 � c7 � 1.01 such that

‖ζai ‖ = c7‖ea12 + ea13 − ea21 − ea23‖ = 2c7

√
dn. (3.42)

Furthermore, using (3.40), we can easily compute the scalar product 〈Δ(0),
∑

j �=i e
a
ij〉

(1 � a, i � 3):〈
Δ(0),

∑
j �=i

eaij

〉
=

∑
v→w∈A:v∈Vi

Δa
v→w(0) = |Vi ∩ Wa| · dδ − |Vi \ Wa| · dδ

2

=
3dδ

2
(|Vi ∩ Wa| − n/9) (because |Vi| = |Wa| = n/3). (3.43)

Combining (3.41), (3.42), and (3.43), we conclude that for a certain constant c8 > 0

〈Δ(0),
∑

j �=i e
a
ij〉

‖Δ(0)‖‖ζai ‖ ·
√
n =

c8√
n

· (|Vi ∩ Wa| − n/9).

Therefore, the assertion follows from Corollary 3.16 by setting sai = c−1
4

√
n · zai and β =

γ/c8.
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Proof of Proposition 3.5. Let α = exp(−1/ε) and

x̂ai =

{
−1 if a = i

1/2 otherwise
(i = 2, 3; a = 1, 2, 3). (3.44)

Then the definitions (3.9) and (3.16) of the variables xai and yai entail that

P
[
∀a, i ∈ {1, 2, 3}, i �= a : |yaa − 1| < α ∧ |yai − 1/2| < α

]
� P

[
∀a, i ∈ {1, 2, 3} : |xai − x̂ai | < α/2

]
. (3.45)

Therefore, we shall derive a lower bound on P
[
∀a, i : |xai − x̂ai | < α/2

]
.

To this end, let

eai =
∑

j∈{1,2,3}\{i}

eaij (1 � a, i � 3),

and let V ⊂ R
A be the space spanned by these nine vectors. In addition, let q : R

A → V
be the orthogonal projection onto V . Since the construction of the initial vector Δ(0) in

step 1 of BPCol ensures that Δ(0) ∈ V , we have

‖Δ(0)‖ · ‖ζai ‖√
n

· xai = 〈Δ(0), ζai 〉 = 〈qΔ(0), ζai 〉 = 〈Δ(0), qζai 〉.

Hence, instead of the vectors ζai we may work with their projections qζai onto V . Thus, let

qaij ∈ R be the coefficients such that

qζai =

3∑
j=1

qaije
a
j (i = 2, 3, a = 1, 2, 3).

Then by symmetry we have qaij = qbij for all 1 � a, b � 3; therefore, we will briefly write

qij instead of qaij . Furthermore, (3.6) implies the bounds

0.99 � q21 � 1.01, −1.01 � q22 � −0.99, −0.01 � q23 � 0.01, (3.46)

0.99 � q31 � 1.01, −0.01 � q32 � −0.01, −1.01 � q33 � −0.99. (3.47)

As a consequence, the matrix

Q =

⎛
⎜⎝

q21 q22 q23

q31 q32 q33

1 1 1

⎞
⎟⎠

is regular, and there is a constant c9 > 0 such that ‖Q−1‖ � c9.

Let ⎛
⎜⎝
za1

za2

za3

⎞
⎟⎠ = Q−1

⎛
⎜⎝

x̂a2

x̂a3

0

⎞
⎟⎠ (a = 1, 2, 3). (3.48)

Since ‖Q−1‖ � c9 and |xai | � 1 for all a, i, we have

|zai | � 5c9 (1 � a, i � 3). (3.49)
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In addition, (3.44) and (3.48) imply that

3∑
a=1

⎛
⎜⎝
za1

za2

za3

⎞
⎟⎠ = Q−1

⎡
⎢⎣ 3∑

a=1

⎛
⎜⎝
xa2

xa3

0

⎞
⎟⎠
⎤
⎥⎦ = 0, and (3.50)

3∑
i=1

zbi = 0 (1 � b � 3). (3.51)

Combining (3.49)–(3.51), we see that (zai )1�a,i�3 satisfies the assumptions of Corollary 3.17,

whence

P

[
∀a, i :

∣∣∣∣zai − 〈Δ(0), eai 〉
‖Δ(0)‖‖ζai ‖ ·

√
n

∣∣∣∣ � α2

]
� c6 (3.52)

for some constant c2 > 0. Furthermore, if Δ(0) ∈ R
A satisfies∣∣∣∣zai − 〈Δ(0), eai 〉

‖Δ(0)‖‖ζai ‖ ·
√
n

∣∣∣∣ � α2,

then (3.48) and the bounds (3.46)–(3.47) imply that

|x̂aj − xaj | =

∣∣∣∣x̂aj −
〈Δ(0), ζaj 〉

‖Δ(0)‖‖ζaj ‖ ·
√
n

∣∣∣∣ =

∣∣∣∣
3∑

i=1

qji

(
zai − 〈Δ(0), eai 〉

‖Δ(0)‖‖ζaj ‖ ·
√
n

)∣∣∣∣
� α2

3∑
i=1

|qji| � 3α2 < α/2 (j = 2, 3, a = 1, 2, 3).

Therefore, (3.52) yields

P
[
∀a, i : |xai − x̂ai | < α/2

]
� c6.

Thus, the assertion follows from (3.45) and Lemma 3.14.

3.5. Proof of Proposition 3.6

Our goal in this section is to bound the error ‖Δ(l) − Ξ(l)‖∞ resulting from replacing the

non-linear operator B by the linear operator L. Since Δ(l) = BlΔ(0) and Ξ(l) = LlΞ(0) =

LlΔ(0) by (3.4), the main difficulty of this analysis is to bound how errors that were made

early on in the sequence (i.e., for ‘small’ l) amplify in the subsequent iterations. To control

this phenomenon, we proceed by induction on l. We begin with a simple lemma that

bounds the error occurring in a single iteration. Recall that the constructions of Ξ(l) and

Δ(l) ensure that
∑3

a=1 Ξa
v→w(l) =

∑3
a=1 Δa

v→w(l) = 0 for all v → w ∈ A (cf. (2.3) and (3.5)).

Lemma 3.18. Suppose that Γ satisfies
∑3

a=1 Γa
v→w = 0 for all v → w ∈ A. If ‖Γ‖∞ <

0.001d−1, then ‖BΓ − LΓ‖∞ � 100d2‖Γ‖2
∞.

Proof. We employ the elementary inequalities

exp(−x − x2) � 1 − x � exp(−x) � 1 − x + x2 (|x| � 0.1). (3.53)



A spectral approach to BP 905

Let v → w ∈ A, a ∈ {1, 2, 3}, and set

Πb =
∏

u∈N(v)\w

1 − 3

2
Γb
u→v (b ∈ {1, 2, 3}).

Moreover, let Γ̂ = BΓ. Then we can rephrase the definition (3.1) of B as

Γ̂a
v→w = −1

3
+

Πa∑3
b=1 Πb

. (3.54)

In order to prove the lemma, we bound the error term |Πb − (1 − 3
2

∑
u∈N(v)\w Γb

u→v)|. To

this end, note that by (3.53) there exist numbers 0 � αbu→v � 9/4 such that 1 − 3
2
Γb
u→v =

exp(− 3
2
Γb
u→v − αbu→vΓ

b 2
u→v). Hence, once more by (3.53) there is a number −1 � βb � 1

such that

Πb = exp

[
−

∑
u∈N(v)\w

3

2
Γb
u→v + αbu→vΓ

b 2
u→v

]

= 1 −
∑

u∈N(v)

[
3

2
Γb
u→v + αbu→vΓ

b 2
u→v

]
+ βb

[ ∑
u∈N(v)

3

2
Γb
u→v + αbu→vΓ

b 2
u→v

]2

= Lb + Eb, where we let (3.55)

Lb = 1 −
∑

u∈N(v)

3

2
Γb
u→v, and

Eb =
∑

u∈N(v)\w

αbu→vΓ
b 2
u→v + βb

[ ∑
u∈N(v)

3

2
Γb
u→v + αbu→vΓ

b 2
u→v

]2

.

Further, since ‖Γ‖∞ � 0.001/d by assumption and |N(v)| = 2d by Lemma 3.1, we obtain

the bound

|Eb| � 10d2‖Γ‖2
∞ � 0.01. (3.56)

As
∑3

b=1 Lb = 3, due to our assumption that
∑3

b=1 Γb
u→v = 0 for all u → v ∈ A, plug-

ging (3.55) into (3.54) yields

Γ̂a
v→w +

1

3
=

La + Ea

3 + E1 + E2 + E3
=

La

3
+

3Ea + La(E1 + E2 + E3)

3(3 + E1 + E2 + E3)
. (3.57)

Since |La| � 1 + 3d‖Γ‖∞ � 2, (3.56) and (3.57) yield that∣∣∣∣13(1 − La) − Γ̂a
v→w

∣∣∣∣ � 100d2‖Γ‖2
∞. (3.58)

Finally, a glance at (3.3) reveals that (LΓ)av→w = 1
3
(1 − La), and thus the assertion follows

from (3.58).

Lemma 3.18 allows us to bound the error ‖Δ(l + 1) − Ξ(l + 1)‖∞ resulting from iteration

l + 1 in terms of the error ‖Δ(l) − Ξ(l)‖∞ from the previous iteration. Hereafter, we let

C > 0 denote a sufficiently large constant.
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Lemma 3.19. Suppose that ‖Δ(l) − Ξ(l)‖∞ � (Cd)−1. Then

‖Δ(l + 1) − Ξ(l + 1)‖∞ � 2Cd2‖Ξ(l)‖2
∞ + 4d‖Δ(l) − Ξ(l)‖∞.

Proof. By Lemma 3.18 and the definition (3.3) of L we have

‖Δ(l + 1) − Ξ(l + 1)‖∞ = ‖BΔ(l) − LΞ(l)‖∞

� ‖BΔ(l) − LΔ(l)‖∞ + ‖LΔ(l) − LΞ(l)‖∞

� Cd2‖Δ(l)‖2
∞ + 2d‖Δ(l) − Ξ(l)‖∞. (3.59)

Moreover, ‖Δ(l)‖∞ � ‖Ξ(l)‖∞ + ‖Ξ(l) − Δ(l)‖∞, whence (3.59) yields

‖Δ(l + 1) − Ξ(l + 1)‖∞ � 2Cd2
[
‖Ξ(l)‖2

∞ + ‖Ξ(l) − Δ(l)‖2
∞
]

+ 2d‖Δ(l) − Ξ(l)‖∞.

This implies the assertion, because we are assuming that ‖Δ(l) − Ξ(l)‖∞ � (Cd)−1.

Further, applying Lemma 3.19 L times recursively, we obtain the following bound.

Corollary 3.20. Suppose that ‖Δ(l) − Ξ(l)‖∞ � (Cd)−1 for all l < L. Then

‖Δ(L) − Ξ(L)‖∞ � 2Cd2
L−1∑
j=1

(4d)j−1‖Ξ(L − j)‖2
∞ + Cd2(4d)L−1‖Δ(0)‖2

∞.

To proceed, we need the following (rough) absolute bound on the error ‖Δ(L) − Ξ(L)‖∞.

Lemma 3.21. If L � log2 n, then ‖Δ(L) − Ξ(L)‖∞ < (Cd)−1.

Proof. The proof is by induction on L. For L = 0 the assertion is trivially true. Thus,

assume that ‖Δ(l) − Ξ(l)‖∞ < (Cd)−1 for all l < L � log2 n. Then Corollary 3.20 entails

that

‖Δ(L) − Ξ(L)‖∞ � 2Cd2
L−1∑
j=1

(4d)j−1‖Ξ(L − j)‖2
∞ + Cd2(4d)L−1‖Δ(0)‖2

∞.

Further, the definition (3.3) of L shows that

‖Ξ(l)‖∞ � (2d)l‖Δ(0)‖∞ = (2d)lδ.

Hence,

‖Δ(L) − Ξ(L)‖∞ � 4Cd2(2d)2L−2δ2 + Cd2(4d)L−1δ2.

As δ � exp(− log3 n) and d = O(1), the right-hand side is o(1) as n → ∞, and thus ‖Δ(L) −
Ξ(L)‖∞ < (Cd)−1, provided that n is sufficiently large.

Lemma 3.22. Let L∗ be the maximum integer such that ‖Ξ(L∗)‖∞ < ε. Then, for all log2 n�
L � L∗ we have ‖Ξ(L) − Δ(L)‖∞ � − log(ε) · ‖Ξ(L)‖2

∞.
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Proof. By the definition (3.3) of L there are constants c1, c2 > 0 such that

‖Ξ(l)‖∞ � (2d)lδ (∀ l � c2 log n), (3.60)

‖Ξ(l)‖∞ ∈
[
c−1

1 λlδ/
√
dn, c1λ

lδ/
√
dn
]

(∀ l � c2 log n). (3.61)

We proceed inductively for log2 n � L � L∗. Thus, assume that ‖Ξ(l) − Δ(l)‖∞ � c1‖Ξ(l)‖2
∞

for all log2 n � l < L. Since λ � 0.1d and ‖Ξ(L)‖∞ < ε, this implies that

‖Ξ(l) − Δ(l)‖∞ � (Cd)−1, for all log2 n � l < L.

Furthermore, ‖Ξ(l) − Δ(l)‖∞ < (Cd)−1 for all l < log2 n by Lemma 3.21. Therefore, we can

apply Corollary 3.20 to obtain

‖Ξ(L) − Δ(L)‖∞ � 2Cd2
L−1∑
j=1

(4d)j−1‖Ξ(L − j)‖2
∞ + Cd2(4d)L−1‖Δ(0)‖2

∞. (3.62)

Since L � log2 n and λ � 0.1d, (3.60) and (3.61) imply that the sum on the right-hand side

of (3.62) is dominated by the term for j = L − 1. Hence,

‖Ξ(L) − Δ(L)‖∞ � 4Cd2‖Ξ(L − 1)‖2
∞ + Cd2(4d)L−1δ2

� c3d
2δ2

[
n−1λ2L−2 + (4d)L−1

]
� 2c3d

2δ2λ2L−2n−1 � c4δ
2λ2Ln−1. (3.63)

Combining (3.61) and (3.63), we conclude that ‖Ξ(L) − Δ(L)‖∞ < − log(ε) · ‖Ξ(L)‖2
∞

(provided that ε is chosen small enough).

Finally, Proposition 3.6 follows from Lemma 3.22 directly.

3.6. Proof of Proposition 3.7

Let μ = νλL2 . Then Corollary 3.4 and Proposition 3.5 entail that

(1 − ε3)μ � Δa
v→w(L2) � (1 + ε3)μ if v ∈ Va and w ∈ N(v), and (3.64)(

−1

2
− ε3

)
μ � Δa

v→w(L2) �
(

−1

2
+ ε3

)
μ if v �∈ Va and w ∈ N(v). (3.65)

To prove Proposition 3.7, we consider two cases. The first case is that ‖Δ(L2)‖∞ � (εd)−1

is ‘small’. Then it will take two more steps for the messages to properly represent the

colouring (V1, V2, V3), i.e., L3 = L2 + 2. In contrast, if ‖Δ(L2)‖∞ > (εd)−1 is ‘large’, we will

just need one more step (L3 = L2 + 1). In both cases the proof is based on a direct analysis

of the BP equations (2.2).

Lemma 3.23. If 0.01εd−1 � ‖Δ(L2)‖∞ � (εd)−1, then

ηiu→v(L2 + 1) =

{
1
3

+ (1 + γ(u, v, i))β if u ∈ Vi,
1
3

− (1 + γ(u, v, i))β′ otherwise,
(3.66)

where |γ(u, v, i)| � ε3 and β, β′ > ε2.
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Proof. We have

ηiv→w(L2 + 1) =

∏
u∈N(v)\w 1 − 3

2
Δi
u→v(L2)∑3

j=1

∏
u∈N(v)\w 1 − 3

2
Δj
u→v(L2)

=
exp

(
− 3

2

∑
u∈N(v)\w Δi

u→v(L2) + O(Δi
u→v(L2))

2)
∑3

j=1 exp
(
− 3

2

∑
u∈N(v)\w Δj

u→v(L2) + O(Δj
u→v(L2))

2)
=

[
3∑

j=1

exp

[
3

2

∑
u∈N(v)\w

Δi
u→v(L2) − Δj

u→v(L2) + O(εd)−2

]]−1

. (3.67)

Since for any v we have |N(v)| = 2d, we can essentially neglect the O(εd)−2-term in (3.67).

More precisely, for some −ε2 � γ2 = γ2(i, v, w) � ε2, we have

ηiv→w(L2 + 1) = (1 + γ2)

[
3∑

j=1

exp

[
3

2

∑
u∈N(v)\w

Δi
u→v(L2) − Δj

u→v(L2)

]]−1

. (3.68)

To analyse (3.68), assume without loss of generality that v ∈ V1. Then (3.64) and (3.65)

entail that there is a number −ε2 < γ3 < ε2 such that

∑
u∈N(v)\w

Δ1
u→v(L2) − Δ2

u→v(L2) = −
(

3

2
+ γ3

)
dμ.

Consequently, η1
v→w(L2 + 1) = (1 + γ2)

[
1 + 2 exp

(
−(3/2 + γ3)dμ

)]−1
. Finally, since μ �

2(εd)−1, we obtain

η1
v→w(L2 + 1) = (1 + γ4)

[
1 + 2 exp

(
−3

2
dμ

)]−1

(3.69)

for some −2ε2 � γ4 = γ4(1, v, w) � 2ε2.

Now, assume that v ∈ V2. Then (3.64) and (3.65) entail that there are numbers −ε2 <

γ5, γ6 < ε2 such that ∑
u∈N(v)\w

Δ1
u→v(L2) − Δ3

u→v(L2) = γ5dμ,

∑
u∈N(v)\w

Δ1
u→v(L2) − Δ2

u→v(L2) = (3/2 + γ6)dμ.

Therefore,

η2
v→w(L2 + 1) = (1 + γ4)

[
2 + exp

(
3

2
dμ

)]−1

(3.70)

for some −2ε2 � γ4 = γ4(2, v, w) � 2ε2. Combining (3.69) and (3.70), we obtain the asser-

tion.

Corollary 3.24. Suppose that 0.01εd−1 � ‖Δ(L2)‖∞ � (εd)−1. Then ηav→w(L2 + 2) � 0.99 if

v ∈ Va, and ηav→w(L2 + 2) � 0.01 if v �∈ Va.
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Proof. We assume without loss of generality that a = 1. Moreover, suppose that v ∈ V1.

We shall bound the quotient

η1
v→w(L2 + 2)

η2
v→w(L2 + 2)

= Q2 · Q3, where (3.71)

Qj =
∏

u∈Vj∩N(v)\w

1 − η1
u→v(L2 + 1)

1 − η2
u→v(L2 + 1)

, for j = 2, 3,

from below. Lemma 3.23 implies that, for u ∈ V3,

1 − η1
u→v(L2 + 1)

1 − η2
u→v(L2 + 1)

� 2/3 + (1 − ε3)β′

2/3 + (1 + ε3)β′ � 1 + 3ε3β′ � 1 − 6ε3.

Hence,

Q2 � (1 − 6ε3)d. (3.72)

Furthermore, for u ∈ V2, Lemma 3.23 entails that

1 − η1
u→v(L2 + 1)

1 − η2
u→v(L2 + 1)

� 2/3 + (1 − ε3)β′

2/3 − (1 + ε3)β
= 1 +

(1 − ε3)(β + β′)

2/3 − (1 − ε3)β
� 1 + 2ε2.

Consequently,

Q2 � (1 + 2ε2)d−1. (3.73)

Combining (3.72) and (3.73) and recalling that d � ε−2, we obtain the assertion.

Lemma 3.25. Suppose that ‖Δ(L2)‖∞ > (εd)−1. Then ηav→w(L2 + 1) � 0.99 if v ∈ Va, and

ηav→w(L2 + 2) � 0.01 if v �∈ Va.

Proof. Since ‖Δ(L2)‖∞ > (εd)−1, (3.64) and (3.65) yield

μ � (2εd)−1. (3.74)

Without loss of generality we may consider a vertex v ∈ V1 and a neighbour w ∈ N(v).

We will prove that η1
v→w(L2 + 1)/η2

v→w(L2 + 1) > 1000. Since
∑3

j=1 η
j
v→w(L2 + 1) = 1, this

implies the assertion. To bound the quotient from below, we decompose

η1
v→w(L2 + 1)

η2
v→w(L2 + 1)

= Q2 · Q3, where (3.75)

Qj =
∏

u∈Vj∩N(v)\w

1 − η1
u→v(L2)

1 − η2
u→v(L2)

, for j = 2, 3,

With respect to Q3, (3.64) and (3.65) imply that, for u ∈ V3,

1 − η1
u→v(L2)

1 − η2
u→v(L2)

� 2/3 + (1/2 − ε3)μ)

2/3 + (1/2 + ε3)μ
= 1 − 2ε3μ

2/3 + (1/2 + ε3)μ
� 1 − 3ε3μ.

Hence,

Q3 � (1 − 3ε3μ)d. (3.76)
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Further, (3.64) and (3.65) yield that, for u ∈ V2,

1 − η1
u→v(L2)

1 − η2
u→v(L2)

� 2/3 + (1/2 − ε3)μ)

2/3 − (1 − ε3)μ
= 1 +

(3/2 − 2ε3)μ

2/3 + (1/2 − (1 − ε3))μ
� 1 + 2μ.

Therefore,

Q2 � (1 + 2μ)d−1. (3.77)

Thus, combining (3.74)–(3.77), we obtain

η1
v→w(L2 + 1)

η2
v→w(L2 + 1)

= Q2 · Q3 � (1 − 3ε3μ)d(1 + 2μ)d−1 � (1 + μ)d−1 � 1000,

which implies the assertion.

Finally, Proposition 3.7 is a direct consequence of Corollary 3.24 and Lemma 3.25.

4. Proof of Corollary 1.2

Throughout this section, we assume that d � d0 for a sufficiently large constant d0 > 0, and

that n > n0 = n0(d) for a large enough n0. Set p = d/n.

Let G = Gn,d,3 be a random graph with vertex set V = {1, . . . , 3n} and ‘planted’ 3-

colouring V1, V2, V3. In order to analyse the adjacency A(G), we shall employ the following

lemma, which follows immediately from the ‘converse expander mixing lemma’ from [3].

Lemma 4.1. Let B = (V ′∪· V ′′, EB) be a bipartite d-regular graph such that |V ′| = |V ′′|.
Assume that

∀S ⊂ V ′, T ⊂ V ′′ : |eB(S, T ) − |S ||T |p| � d0.51
√

|S ||T |, (4.78)

where eB(S, T ) is the number of S–T -edges in B. Then the adjacency matrix A(B) enjoys

the property:

For any two vectors ξ, η ∈ R
V ′∪V ′′

such that both ξ, η are perpendicular to �1V ′ and
�1V ′′ , the inequality 〈A(B)ξ, η〉 � d0.52‖ξ‖‖η‖ holds.

Moreover, the following lemma can be derived using standard techniques from the

theory of random regular graphs; see Chapter 9 of [10].

Lemma 4.2. With high probability, G has the following property. Let 1 � i < j � 3. Then

∀S ⊂ Vi, T ⊂ Vj : |eG(S, T ) − |S ||T |p| � d0.51
√

|S ||T |.

Corollary 4.3. With high probability, G is (d, 0.01)-regular.

Proof. Let A(G) = (av,w)v,w∈V denote the adjacency matrix of G. Moreover, let

aijvw =

{
avw if v, w ∈ Vi ∪ Vj

0 otherwise
(1 � i < j � 3).
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Then Aij = (aijvw)v,w∈V is the adjacency matrix of the bipartite subgraph of G induced

on Vi ∪ Vj . Let E be the subspace of R
V spanned by the three vectors �1Vk

(k = 1, 2, 3).

Combining Lemma 4.1 with Lemma 4.2, we conclude that w.h.p. 〈Aijξ, η〉 � d0.52‖ξ‖‖η‖
for all ξ, η ⊥ E and any 1 � i < j � 3. Since A(G) =

∑
1�i<j�3 A

ij , this implies that

∀ξ, η ⊥ E : 〈A(G)ξ, η〉 � 0.01d‖ξ‖‖η‖ (4.79)

(provided that d is sufficiently large). Furthermore, as the construction of G ensures that

each vertex v ∈ Vi has exactly d neighbours in each class Vj �= Vi, we can compute the

vector ζi = A(G)�1Vi
as follows. For any v ∈ V ,

ζiv =
∑
w∈Vi

avw =

{
0 if v ∈ Vi,

d if v �∈ Vi.

Hence, ζi = A(G)�1Vi
= d

∑
j �=i

�1Vj
. Therefore, for any 1 � i < j � 3 we have

A(G)(�1Vi
−�1Vj

) = −d(�1Vi
−�1Vj

). (4.80)

Combining (4.79) and (4.80), we see that G is (d, 0.01)-regular w.h.p.

Finally, Corollary 1.2 follows from Theorem 1.1 and Corollary 4.3.

5. Conclusion

We have shown that BPCol 3-colours (d, 0.01)-regular graphs in polynomial time. Three

potentially interesting extensions suggest themselves, which may be the subject of future

work.

(1) In (d, 0.01)-regular graphs every vertex has precisely d neighbours in each colour class

except for its own. By comparison, in the planted random graph model studied in [2], the

number of neighbours that a vertex has in another colour class is Poisson with mean d. It

would be interesting to see if/how the present analysis can be modified to deal with such

a more irregular degree distribution.

(2) Survey propagation (‘SP’) is a more involved version of belief propagation (although

SP can be rephrased as BP on a different model [15]) and performs very well empirically

on random graphs G(n, p). It would be interesting to extend our analysis to SP.

(3) In a (d, 0.01)-regular graph there is exactly one 3-colouring (up to permutations of the

colour classes). Nonetheless, we think that the techniques of our analysis can be extended

to more complicated ‘solution spaces’. For instance, it should be straightforward to deal

with graphs that have a bounded number of distinct 3-colourings.
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