
A New Look at Survey Propagation and its Generalizations

Elitza Maneva∗ Elchanan Mossel† Martin J. Wainwright‡

Abstract

We study the survey propagation algorithm [19, 5, 4],

which is an iterative technique that appears to be very

effective in solving random k-SAT problems even with

densities close to threshold. We first describe how any

SAT formula can be associated with a novel family of

Markov random fields (MRFs), parameterized by a real

number ρ. We then show that applying belief propagation—

a well-known “message-passing” technique—to this family

of MRFs recovers various algorithms, ranging from pure

survey propagation at one extreme (ρ = 1) to standard

belief propagation on the uniform distribution over SAT

assignments at the other extreme (ρ = 0). Configurations

in these MRFs have a natural interpretation as generalized

satisfiability assignments, on which a partial order can be

defined. We isolate cores as minimal elements in this partial

ordering, and prove that any core is a fixed point of survey

propagation. We investigate the associated lattice structure,

and prove a weight-preserving identity that shows how any

MRF with ρ > 0 can be viewed as a “smoothed” version of

the naive factor graph representation of the k-SAT problem

(ρ = 0). Our experimental results show that message-

passing on our family of MRFs is most effective for values

of ρ 6= 1 (i.e., distinct from survey propagation); moreover,

they suggest that random formulas may not typically possess

non-trivial cores. Finally, we isolate properties of Gibbs

sampling and message-passing algorithms that are typical for

an ensemble of k-SAT problems. We prove that the space

of cores for random formulas is highly disconnected, and

show that for values of ρ sufficiently close to one, either the

associated MRF is either highly concentrated around the all-

star assignment, or it has exponentially small conductance.

Similarly, we prove that for ρ sufficiently close to one, the

all-star assignment is attractive for message-passing when

analyzed in the density-evolution setting.
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1 Introduction

The survey-propagation algorithm [19, 5] is an itera-
tive “message-passing” technique designed to solve high-
density random k-SAT problems. Non-rigorous argu-
ments based on the replica method as well as experi-
mental results both suggest that it may be effective even
very close to the satisfiability threshold. Nonetheless,
the reasons underlying this remarkable performance are
not yet fully understood.

In this paper, we provide a new perspective on
survey propagation, as well as a broader class of related
algorithms. We begin by introducing a new family
of Markov random fields (MRFs), parameterized by a
pair (ωo, ω∗) of non-negative real numbers, that can
be associated with any k-SAT problem. Of especial
interest is the line given by ρ = ω∗ and ωo = 1 −
ρ. In particular, we demonstrate that a range of
algorithms—including survey propagation (SP) as a
special case—can all be recovered as the well-known
belief propagation algorithm [27] as applied to suitably
restricted MRFs with parameters along the line segment
ρ ∈ [0, 1]. This equivalence is significant, because belief
propagation is a widely used method for computing
approximations to marginal distributions in general
Markov random fields.

Based on this equivalence, we turn to examining the
combinatorial and analytical properties of our extended
Markov structures. Configurations in these MRFs
have a natural interpretation as generalized satisfiability
assignments, on which a partial ordering and hence
a lattice structure can be defined. We refer to the
minimal element in any such lattice as a core, and we
prove that any core is a fixed point of the pure form of
survey propagation (ρ = 1). However, our experimental
results suggest that non-trivial cores typically do not
exist for random formulae. This observation motivates
considering the broader family of Markov random fields
for the range 0 < ρ < 1, as well as the associated
belief propagation algorithms, which we denote by
SP(ρ). By exploiting the lattice structure of generalized
assignments, we establish a new combinatorial identity
involving generating functions on lattices. This identify
reveals how the distribution for ρ ∈ (0, 1) can be viewed
as a “smoothed” version of the MRF with ρ = 0.
The latter MRF is simply the uniform distribution over



(ordinary) satisfying assignments, which is conjectured
to be disconnected for high formula densities [18, 19, 5]

Our experimental results on the SP(ρ) algorithms
indicate that they are most effective for values of ρ close
to but different from one. One intriguing possibility is
that the effectiveness of pure survey propagation (i.e.,
SP(1)) may be a by-product of the fact that SP(ρ)
is most effective for values of ρ less than but close
to 1. In addition, we consider alternative sampling-
based methods (e.g., Gibbs sampling) for computing
marginals for the extended MRFs. Success of such
alternative methods provides independent confirmation
of the significance of the extended MRF representation
in the success of survey propagation. Finally, we
study properties of both message-passing and Gibbs
sampling that are typical over a random ensemble
of k-SAT problems. We establish results that link
the typical behavior of Gibbs sampling and message-
passing algorithms under suitable initialization, and
when applied to the extended family of MRFs with ρ
sufficiently close to one.

The fact that the pure form of survey propagation
(i.e., SP(1) in our notation) is a form of belief propaga-
tion was first conjectured by Braunstein et al. [5], and
established independently of our work by Braunstein
and Zecchina [6], and Aurell et al. [2]. However, both
of the latter papers treat only the special case ρ = 1,
and do not provide a natural combinatorial interpreta-
tion. Our result is a generalization, in that it applies to
the full range of ρ ∈ [0, 1]. Moreover, the combinatorial
structures intrinsic to our Markov random fields—viz.
generalized assignments, cores and lattices—highlight
the importance of values ρ 6= 1.

The remainder of this paper is organized as follows.
In §2, we introduce the background and notation neces-
sary to set up the problem. Statements and discussion
of our main results can be found in §3. Due to space
constraints, most proofs are omitted from this extended
abstract, but can be found in the technical report [16].

2 Background

2.1 The k-SAT problem and graphical repre-

sentation: We begin with notation and terminology
necessary to describe the k-SAT problem. Let C and
V represent index sets for the clauses and variables, re-
spectively, where |V | = n variables and |C| = m. We
denote elements of V using the letters i, j, k etc., and
members of C with the letters a, b, c etc. We use xS to
denote the subset of variables {xi : i ∈ S}.

In the k-SAT problem, the clause indexed by a ∈ C
is specified by the pair (V (a), Ja), where V (a) ⊂ V
consists of k elements, and Ja := (Ja,i : i ∈ V (a)) is a
k-tuple of {0, 1}-valued weights. The clause indexed

by a is satisfied by the assignment x if and only if
xV (a) 6= Ja . Equivalently, letting δ(y, z) denote an
indicator function for the event {y = z}, if we define
the function ψJa

(x) := 1 −
∏

i∈V (a) δ(Ja,i, xi), then the

clause a is satisfied by x if and only if ψJa
(x) = 1.

The overall formula consists of the AND of all the
individual clauses, and is satisfied by x if and only if
∏

a∈C ψJa
(x) = 1. For later use, we define the sets

C(i) := {a ∈ C : i ∈ V (a)},

C+(i) := {a ∈ C(i) : Ja,i = 0},

with C−(i) := C(i)\C+(i). Note that C(i) = C+(i) ∪
C−(i) is the set of clauses including the variable xi. For
each pair (a, i) ∈ E, the set C(i)\{a} of clauses that
include neighbor i (where we exclude a) can be divided
into two (disjoint) subsets, depending on whether their
preferred assignment of xi agrees (in which case b ∈
Cs

a(i)) or disagrees (in which case b ∈ Cu
a (i)) with the

assignment of xi preferred by clause a. More formally,
we define

Cs
a(i) := {b ∈ C(i)\{a} : Ja,i = Jb,i },

Cu
a (i) := {b ∈ C(i)\{a} : Ja,i 6= Jb,i }.
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Figure 1. Factor graph representation of a 3-SAT
problem on n = 5 variables with m = 4 clauses,
in which circular and square nodes correspond to
variables and clauses respectively. Solid and dotted
edges (a, i), respectively, correspond to the weight-
ings Ja,i = 0 and Ja,i = 1 respectively. The clause a

is defined by the neighborhood set V (a) = {1, 2, 3}
and weights Ja = (0, 1, 1). In traditional notation,
this corresponds to the formula (x1 ∨ x̄2 ∨ x̄3)∧ (x̄1 ∨
x2 ∨ x4) ∧ (x̄2 ∨ x3 ∨ x5) ∧ (x̄2 ∨ x4 ∨ x5).

As illustrated in Figure 1, any instance of the k-SAT
problem can be associated with a particular bipartite
graph on the variables (denoted by circular nodes) and
clause (denoted by square nodes), where the edge (a, i)
between the clause a ∈ C and variable i ∈ V is included
in E if and only if i ∈ V (a). Following Braunstein et
al. [5], it is convenient to introduce two labellings of
any given edge—namely, solid or dotted, corresponding



to whether Ja,i is equal to 0 or 1 respectively. We denote
by

(2.1) p(x) ∝
∏

a∈C

ψJa
(x)

the uniform distribution on satisfying assignments of a
formula. This distribution is well defined only if the
formula is satisfiable.

2.2 Random instances and thresholds: The k-
SAT problem for k ≥ 3 is a classical NP complete prob-
lem [8]. This fact does not rule out the existence of effi-
cient algorithms for deciding if random formulae are sat-
isfiable, or for finding satisfying assignments for random
formulae when they are satisfiable. Accordingly, of in-
terest to us are random instances of the k-SAT problem,
where given a density parameter α, we choose m = αn
clauses uniformly and without replacement from the set
of all k-clauses on n variables. In terms of the factor
graph representation, this procedure samples a random
(n,m)-bipartite graph, in which each clause a ∈ C has
degree k.

Clearly, a random formula becomes increasingly
difficult to satisfy as the clause density α increases.
Friedgut [12] showed that the probability that a formula
is satisfiable exhibits a sharp threshold at a value
αc(n). It is widely believed that αc(n) is independent
of n. Rigorous bounds on αc can be found in various
papers [13, 7, 9, 10, 14, 1], whereas Monasson and
Zecchina [20] derive approximations based on“replica
method” calculations that yield αc ≈ 4.267. For even
values of k, these replica calculations have been shown
rigorously [11, 21] to yield bounds on the threshold.

In several papers in the statistical physics litera-
ture [18, 19, 5], it is argued that in addition to the
threshold αc, there is another threshold αd < αc (for
k = 3, αd ≈ 3.921), which marks the transition be-
tween a phase in which the satisfying assignments form
a single cluster, and a phase where they form an expo-
nential number of disconnected clusters. The clustering
is in terms of a neighborhood structure in which assign-
ments that are close in Hamming distance are consid-
ered neighbors. It is conjectured, moreover, that one
manifestation of this phase transition is in the complex-
ity of finding a solution. In particular, polynomial time
algorithms that use only local information are expected
to fail with high probability for random k-SAT instances
with α > αd. This conjecture is consistent with previous
results [24] on local algorithms applied to the uniform
distribution over SAT assignments (2.1), defined by the
usual factor graph representation of k-SAT given in Fig-
ure 1.

2.3 Survey propagation: We now provide an
explicit description of the SP(ρ) family of algorithms.
For any given ρ ∈ [0, 1], the algorithm involves up-
dating messages from clauses to variables, as well
as from variables to clauses. Each clause a ∈ C
passes a real number ηa→i ∈ [0, 1] to each of its
variable neighbors i ∈ V (a). In the other direction,
each variable i ∈ V passes a triplet of real numbers
Πi→a = (Πu

i→a,Π
s
i→a,Π

∗
i→a) to each of its clause

neighbors a ∈ C(i).

SP(ρ) updates:

Message from clause a to variable i:

ηa→i =
∏

j∈V (a)\{i}

[ Πu
j→a

Πu
j→a + Πs

j→a + Π∗
j→a

]

.

Message from variable i to clause a:

Πu
i→a =

[

1 − ρ
∏

b∈Cu
a
(i)

(1 − ηb→i)
]

∏

b∈Cs
a
(i)

(1 − ηb→i)

Πs
i→a =

[

1 −
∏

b∈Cs
a
(i)

(1 − ηb→i)
]

∏

b∈Cu
a
(i)

(1 − ηb→i)

Π∗
i→a =

∏

b∈Cs
a
(i)

(1 − ηb→i)
∏

b∈Cu
a
(i)

(1 − ηb→i).

Remarks:

1. Although we have omitted the time step index for
simplicity, the message passing equations should
be interpreted as defining a recursion on (η,Π).
The initial values for η are chosen randomly in the
interval (0, 1).

2. The idea of the ρ parameter is to provide a smooth
transition from the original naive belief propaga-
tion algorithm to the survey propagation algo-
rithm. As shown in [5], setting ρ = 0 yields the
belief propagation updates applied to the probabil-
ity distribution (2.1), whereas setting ρ = 1 yields
the pure version of survey propagation.

Supposing that the messages converge, the overall
conviction of a value at a given variable are computed
from the incoming set of equilibrium messages as
(2.3)

µi(1) ∝

[

1 − ρ
∏

b∈C+(j)

(1 − ηb→j)

]

∏

b∈C−(j)

(1 − ηb→j),

with similar formula for µi(0) and µi(∗). To be
consistent with their interpretation as (approximate)



marginals, the triplet {µi(0), µi(∗), µi(1)} at each node
i ∈ V is normalized to sum to one. The bias of variable
xi is defined as |µi(0) − µi(1)|. The decimation algo-
rithm based on survey propagation [5, 6] consists of the
following steps:

1. Run SP(1) on the SAT problem. Extract the
fraction β of variables with the largest biases, and
set them to their preferred values.

2. Simplify the SAT formula, and return to Step 1.

Once the maximum bias over all variables falls below
a pre-specified tolerance, the Walk-SAT algorithm is
applied to the formula to find the remainder of the
assignment (if possible).

3 Our contributions

This section contains a high-level overview of our main
contributions; detailed statements and proofs can be
found in the technical report [16]. We begin by defin-
ing the novel family of MRFs, and then establish that
survey propagation is equivalent to belief propagation
as applied to suitably restricted forms of these MRFs.
We then examine the combinatorial properties of these
MRFs, as well as the empirical performance of Gibbs
sampling compared to message-passing. Last, we pro-
vide some theoretical results on the behavior of Gibbs
sampling and message-passing algorithms on random
ensembles of formulae.

3.1 Distributions over generalized assignments:

The first step to forming our extended MRFs is to
allow the variables x = {x1, . . . , xn} to take values in
{0, 1, ∗}n, to which we refer as a generalized assignment.
It will be convenient, when discussing the assignment of
a variable xi with respect to a particular clause a, to
use the notation sa,i := 1 − Ja,i and ua,i := Ja,i to
indicate, respectively, the values that are satisfying and
unsatisfying for the clause a.

Definition 3.1. A generalized assignment x is invalid
for a clause a if either

(a) all variables are unsatisfying (i.e., xi = ua,i for all
i ∈ V (a)), or

(b) all variables are unsatisfying except for exactly one
index j ∈ V (a), for which xj = ∗.

Otherwise, the generalized assignment x is valid for
clause a, and we denote this event by VALa(xV (a)). We
say that a generalized assignment is valid for a formula
if it is valid for all of its clauses.

We say that a variable xi is the unique satisfying
variable for a clause if it is assigned sa,i whereas all

other variables in the clause (i.e., the variables {xj :
j ∈ V (a)\{i}}) are assigned ua,j . A variable xi is
constrained by clause a if it is the unique satisfying
variable. We let CONi,a(xV (a)) denote the indicator
function for the event that xi is the unique satisfying
variable in the generalized assignment xV (a) for clause a.
We say that a variable is constrained in an assignment
if it is constrained by at least one clause.

The motivation behind defining case (b) as invalid
is that the variable xj is effectively forced to sa,i, and so
cannot be assigned the ∗ symbol. We define n∗(x), nc(x)
and no(x) to be respectively the number of ∗-variables,
the number of unconstrained variables, and the number
of constrained variables in assignment x. (Note that by
definition, it holds that n∗(x) + nc(x) + no(x) = n.)

Let ωo and ω∗ be parameters in the interval [0, 1],
corresponding respectively to the “weights” of uncon-
strained variables and stars. We define weights of gen-
eralized assignments in the following way: invalid as-
signments x have weight W (x) = 0, and for any valid
assignment x, we set

W (x) := (ωo)
no(x) × (ω∗)

n∗(x).

Our primary interest is the probability distribution
given by pW (x) ∝ W (x). Note that if ωo = 1 and
ω∗ = 0 then the distribution pW (x) is the uniform
distribution (2.1) over satisfying assignments. Note
however that if ω∗ 6= 0, then—in contrast to the
earlier distribution (2.1)–this definition is valid for any
SAT problem whether or not it is satisfiable, since
the all-∗ vector is always a valid generalized assignment.

Definition of the MRF: Next we show how the
distribution pW can be represented by a Markov random
field for any choices of ωo, ω∗ ∈ [0, 1]. Doing so requires
the addition of another dimension to our state space,
which allows us to assess whether a given variable is
constrained or unconstrained. We define the parent set
of a given variable xi, denoted by Pi, to be the set of
clauses for which xi is the unique satisfying variable.
For each i ∈ V , let P(i) be the set of all possible parent
sets of clause i. Due to the restrictions imposed by
our definition, Pi must be contained in either C+(i) or
C−(i) but not both. Therefore, the cardinality1 of P(i)

is 2|C
−(i)| + 2|C

+(i)| − 1.
Our extended Markov random field is defined on

the Cartesian product space X1 × . . . × Xn, where
Xi := {0, 1, ∗} × P(i). The distribution factorizes as
a product of compatibility functions at the variable and
clause nodes of the factor graph, which are defined as

1Note that it is necessary to subtract one so as not to count

the empty set twice.



follows. Each variable node i ∈ V has an associated
compatibility function of the form:

Ψi(xi, Pi) :=







ωo : Pi = ∅, xi 6= ∗
ω∗ : Pi = ∅, xi = ∗
1 : for any other valid (Pi, xi)

The role of these functions is to assign weight to the
generalized assignments according to the number of
unconstrained and star variables, as in the weighted
distribution pW .

The compatibility functions at the clause nodes
serve to ensure that only valid assignments have
non-zero probability, and that the parent sets
PV (a) := {Pi : i ∈ V (a)} are consistent with the as-
signments

xV (a) := {xi ; i ∈ V (a)}

in the neighborhood of a. More precisely, we require
that the generalized assignment xV (a) is valid for a (i.e.,
VALa(xV (a)) = 1) and that for each i ∈ V (a), exactly
one of the two following conditions holds:

(a) a ∈ Pi and xi is constrained by a or

(b) a /∈ Pi and xi is not constrained by a.

The following compatibility function corresponds to an
indicator function for the intersection of these events:

Ψa

(

xV (a), PV (a)

)

:=

VALa(xV (a))×
∏

i∈V (a)

δ
(

Ind[a ∈ Pi], CONa,i(xV (a))
)

.

We now form a Markov random field over generalized
assignments and parent sets by taking the product of
variable and clause compatibility functions

(3.4) pgen(x, P) ∝
∏

i∈V

Ψi(xi, Pi)
∏

a∈C

Ψa

(

xVa
, PV (a)

)

.

With these definitions, it is straightforward to verify
that pgen = pW , so that we have our desired Markov
representation of pW .

3.2 A unified class of algorithms: Having defined
the MRF pgen, it is possible to write out the associated
belief propagation updates. Although (at least in prin-
ciple) this step is straightforward, the calculations in-
volved are non-trivial; complete details can be found in
the technical report [16]. At a high level, two key facts
are that the clause-to-variable messages can be param-
eterized by only three numbers {Mu

a→i,M
s
a→i,M

∗
a→i},

and that the variable-to-clause message requires only
six values.

With this set-up, we have the following:

Theorem 3.1. For all ω∗ ∈ [0, 1], the BP updates on
the extended (ω∗, ωo)-MRF are equivalent to the SP(ω∗)
family of algorithms under the following restrictions:

(a) the constraint ωo + ω∗ = 1 is imposed, and

(b) all messages are initialized such that Mu
a→i =

M∗
a→i for every edge (a, i).

Remarks: The essence of Theorem 3.1 is that the
pure survey propagation algorithm, as well as all the ρ-
variants thereof, are all equivalent to belief propagation
on our extended MRF with suitable parameter choices.
It thus generalizes independent work by other groups [6,
2] on the special case SP(1). This broader equivalence
is important for a number of reasons:

1. Belief propagation is a widely-used algorithm for
computing approximations to marginal distribu-
tions in general Markov random fields. It also has a
variational interpretation as an iterative method for
attempting solve a non-convex optimization prob-
lem based on the Bethe approximation [27, 26].
Among other consequences, this variational inter-
pretation leads to other algorithms that also solve
the Bethe problem, but unlike belief propagation,
are guaranteed to converge.

2. Given the link between SP and extended MRFs, it
is natural to study combinatorial and probabilistic
properties of the latter objects. In §3.3, we show
how so-called“cores” arise as fixed points of SP(1),
and we prove a weight-preserving identity that
shows how the extended MRF for general ρ is a
“smoothed” version of the naive MRF.

3. Finally, since BP (and hence SP) is computing
approximate marginals for the MRF, it is natural
to study other ways of computing marginals and
examine if these lead to an effective way for solving
random k-SAT problems. We begin this study in
§3.4.

3.3 Combinatorial properties: This section is
devoted to investigation of the combinatorial properties
associated with our extended Markov random field.
Consider a directed graph G, in which the vertex set
consists of all valid generalized assignments. For a
given pair of valid generalized assignments x and y,
the graph includes a directed edge from x to y if there
exists an index i ∈ V such that xj = yj for all j 6= i,
and xi 6= yi = ∗. We label this edge with i. Notice
that the out-degree of a valid assignment x is exactly
equal to its number of unconstrained variables no(x).
We separate the valid assignments into n + 1 levels, so
that assignment x is in level n∗(x). Thus, every edge



is from an assignment in level l to one in l + 1, where
l ∈ {0, 1, . . . , n − 1}. Since G is acyclic, we can use its
structure to define a partial ordering; in particular, we
write y < x if there is a directed path in G from x to y.
Notice that all directed paths from x to y are labeled
by indices in the set T = {i ∈ V : xi 6= yi = ∗}, and
only the order in which they appear is different.

Cores: As a particular case of Theorem 3.1, setting
ω∗ = 1 and ωo = 0 yields the extended MRF that
underlies the SP(1) algorithm. In this case, the only
valid assignments with positive weight are those without
any unconstrained variables. More formally, we define
a core assignment to be a valid generalized assignment
x ∈ {0, 1, ∗}n such that for any i ∈ V such that xi 6= ∗,
the variable xi is constrained by at least one clause of the
formula. Thus, the distribution pW for (ωo, ω∗) = (0, 1)
is simply uniform over the core assignments.

For a valid assignment x and a subset S ⊆ V ,
let γS(x) be the minimal y ≤ x, such that the path
from x to y is labeled only by indices in S. It is easy
to show that there exists a unique minimal y, that
can be found by sequentially converting unconstrained
variables from the set S into ∗-assignments. The
following result connects fixed points of SP(1) to these
minimal generalized assignments:

Proposition 3.1. For a valid assignment x, let SP(1)
be initialized by:

Πu
i→a = δ(xi, ua,i), Πs

i→a = δ(xi, sa,i), Π∗
i→a = 0.

Then within a finite number of steps, the algorithm
converges and the output fields are

µi(b) = δ(yi, b),

where y = γV (x) and b ∈ {0, 1, ∗}.

Thus, SP(1), when suitably initialized, simply strips the
valid assignment x down to its core γV (x). Moreover,
Proposition 3.1, in conjunction with Theorem 3.1, leads
to viewing the pure form of survey propagation SP(1)
as performing an approximate marginalization over
cores. This view raises the key question: do cores exist
for random formulae? While it is easy to construct
formulae with or without cores, to date we have been
unable to prove (or disprove) the existence of cores
for high-density random formula. We have, however,
performed experiments to address this question; these
results and the case k = 2 lead to a natural conjecture,
which is described below.

Experiments on cores: We have performed a large
number of the following experiments: starting with a
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Figure 2. Evolution of the number of unconstrained
variables in the following process: start with a sat-
isfying assignment, change a random unconstrained
variable to ∗ and repeat. Plotted is the result for
n = 1000, for random formulae with k = 3 and
α = {2, 2.5, 3, 3.5, 4, 4.1, 4.2}. In particular, core as-
signments fall on the x-axis, and satisfying assign-
ments fall on the y-axis.

satisfying assignment x, choose one its unconstrained
variables uniformly at random, change it to ∗, and
repeat until there are no unconstrained variables. This
procedure is equivalent to taking a random path from
x in G, by choosing at each step a random outgoing
edge. Any such path terminates at the core γV (x). We
refer to this procedure as “peeling”. It is interesting
to examine at each step of this process the number
of unconstrained variables (or outgoing edges). If it
becomes 0 at any point, the process stops at a core
assignment. Figure 2 shows the results of such an
experiment for n = 1000, using different values of α,
and k = 3. The plotted curves are the evolution of the
number of unconstrained variables as the number of ∗’s
increases. For small n, for example n = 100, and α close
to threshold, satisfying assignments often correspond to
core assignments; a similar observation was also made
by Braunstein and Zecchina [6]. In contrast, for larger
n, this correspondence is rarely the case, as for example
Figure 2 demonstrates. The generated curves suggest
that γV (x) is almost always the all-∗ assignment, and
moreover that for high density α, there is a critical level
in G where the out-degrees are very low. Increasing α
results in failure to find a satisfying assignment, rather
than in the formation of real core assignments.

Cores for k = 2: For k = 2, the event that there
is a path in G from a satisfying assignment to the
all-∗ assignment has a very natural interpretation in
terms of the event that the pure-literal rule succeeds



in finding an assignment. The pure-literal rule [23] is
an algorithm consisting of the following steps: assign
1 to a variable if it only appears positive, and 0 if it
only appears negative, reduce the formula, and repeat.
It is straightforward to check that the sequence of
variables given by the labels on any path from the
all-∗ assignment to a satisfying assignment can be
identified with a sequence of steps of the pure-literal
type. Furthermore, it is known [23] that there is a
phase transition for the event that the pure-literal rule
succeeds at α = 1.

It is natural to conjecture that an analogous prop-
erty holds for k ≥ 3: in particular, to postulate that
for all α < αc, then with high probability there exists
a satisfying assignment x and a sequence of variables,
such that there exists a path in G from x to the all-∗
assignment labeled by this sequence. Our experimental
results suggest that this may even be true for almost all
satisfying assignments.

If (as suggested by our results) non-trivial cores
typically do not exist and therefore cannot explain
the success of pure survey propagation, an alternative
explanation is required. Accordingly, we propose
studying the behavior of SP(ρ) for ρ ∈ (0, 1). Our
experimental results, consistent with similar reports
from Kirkpatrick [15], show that SP(ρ) tends to be
most effective in solving k-SAT for values of ρ < 1. If
so, the good behavior of SP(1) may well follow from the
similarity of SP(1) updates to SP(ρ) updates for ρ ≈ 1.
To further explore this issue, the effects of varying
the weight distribution (ωo, ω∗), and consequently the
parameter ρ, are discussed in the following section.

Weight distribution: One of the benefits of our anal-
ysis is that it suggests a large pool of algorithms to be
investigated. One option is to vary the values of ωo and
ω∗. A “good” setting of these parameters should place
significant weight on precisely those valid assignments
that can be extended to satisfying assignments. At the
same time, the parameter setting clearly affects the level
of connectivity in the space of valid assignments. Con-
nectivity most likely affects the performance of belief
propagation, as well as any other algorithm that we
may apply to compute marginals or sample from the
distribution.

Figure 3 shows the performance of belief propa-
gation on the extended MRF for different values of
(ωo, ω∗), and applied to particular random formula with
n = 10000, k = 3 and α = 4.2. For weights satisfying
ωo + ω∗ > 1, the behavior is very predictable: although
the algorithm converges, the choices that it makes in
the decimation steps lead to a contradiction. Note that
these results show a sharp transition in algorithm be-
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Figure 3. Performance of BP for different settings
of ωo, and ω∗ for a particular random formula with
n = 10000, k = 3, α = 4.2. We distinguish between
four cases: (i) BP converges and the decimation
steps yields a complete solution, (ii) BP converges
and the decimation steps yield a partial solution,
completed by using Walk-SAT, (iii) BP converges
but the decimation steps don’t lead to a solution,
and (iv) BP does not converge.

havior as the weights cross the line ωo + ω∗ = 1, which
is representative of the more general behavior.

The following result, which we prove in [16], pro-
vides some justification for the excellent performance in
the regime ωo + ω∗ ≤ 1.

Theorem 3.2. If ωo + ω∗ = 1, then
∑

y≤xW (y) =

(ω∗)
n∗(x) for any valid assignment x. If ωo + ω∗ < 1,

then
∑

y≤xW (y) ≥ (ω∗)
n∗(x) for any valid assignment

x.

In particular, if x is a satisfying assignment, then it
holds that n∗(x) = 0, so that (for ωo + ω∗ = 1) the
total weight of assignments below x in the partial or-
der is exactly 1. Thus, Theorem 3.2 has a very natural
interpretation in terms of a “smoothing” operation, in
which the uniform weight assigned to each satisfying as-
signment is spread over the lattice associated with it.2

Consequently, the (ωo, ω∗)-MRF may be regarded as a
smoothed version of the uniform distribution over satis-
fying assignments. Theorem 3.2 also provides intuition
for the necessity of decimation. Indeed, although the
measure pW is closely related to the measure p, it is
clearly not the case that marginals computed in one

2Note, however, that any generalized assignment that belongs

to two or more lattices is assigned a weight only once. Otherwise,

the transformation would be a convolution operation in a strict

sense.



measure should be equal to the marginals computed in
the other. Instead, the two marginals should agree on
which variables are strongly biased towards 0 or 1. It
is thus natural to set variables with large pW -marginal
probabilities for 0 or 1 to their preferred values.

3.4 Gibbs sampling: Based on our experiments, the
algorithm SP(ρ) is very effective for appropriate choices
of the parameter ρ. The link provided by Theorem 3.2
suggests that the distribution pW , for which SP(ρ)—
as an instantiation of belief propagation on the ex-
tended MRF—is computing approximate marginals, is
likely to possess good “smoothness” properties. One
expected consequence of such “smoothness” is that al-
gorithms other than BP should also be effective in com-
puting approximate marginals. Interestingly, rigorous
conditions that imply (rapid) convergence of BP [25]—
namely, uniqueness of Gibbs measures on the compu-
tation tree—are quite similar to conditions implying
rapid convergence of Gibbs samplers, which are often
expressed in terms of “uniqueness”, “strong spatial mix-
ing”, and “extremality” (see, for example [17, 3]).

It is interesting to explore the application of sam-
pling methods to the extended MRF as a means of
computing unbiased stochastic approximations to the
marginal distributions, and hence biases at each vari-
able. Accordingly, we implemented a Gibbs sampler for
the family of extended MRFs developed in Section 3.1,
and used it to estimate marginal probabilities on the
variables. (As a caveat, we cannot guarantee a priori
that the dyanamics were run sufficiently long to reach
the stationary distribution.) We compare the approx-
imate marginals computed by the SP(β) family of al-
gorithms (to which we refer as pseudomarginals) to the
(stochastic) estimates computed by the Gibbs sampler.
Given the manner in which the SP pseudomarginals
are used in the decimation procedure, the most natural
comparison is between the biases µi(0)−µi(1) provided
by the SP (β) algorithm, and the biases τi(0) − τi(1)
associated with the Gibbs sampler (where τi are the
approximate marginals obtained from Gibbs sampling
on the extended MRF with parameter β). The re-
sults of such comparisons for the SP parameter ρ ∈
{0.95, 0.9, 0.7, 0.5} and the Gibbs sampling parameter
β ∈ {0.4, 0.5, 0.7, 0.9} are shown in Figure 4. Compar-
isons are made for each pair (ρ, β) in these sets, and over
a range of clause densities α ∈ {4.2, 4.1, 4.0.3.8, 3.6, 3.4}.
For fairly dense formulae (e.g., α ≥ 4.0), the general
trend is that the SP(ρ) biases with larger ρ agree most
closely with the Gibbs biases with β relatively smaller
(i.e., β < ρ). For lower clause densities (e.g., α = 3.4),
the agreement between the SP(ρ) and Gibbs biases on
MRF (β) when β = ρ is substantially closer. This pat-

SAT α Gibbs β

0.4 0.5 0.7 0.9

4.2 0.0493 0.1401 0.3143 0.4255

4.1 0.0297 0.1142 0.3015 0.4046

4.0 0.0874 0.0416 0.2765 0.3873

3.8 0.4230 0.4554 0.1767 0.0737

3.6 0.4032 0.4149 0.1993 0.0582

3.4 0.4090 0.4010 0.2234 0.0821

(a) Comparison to SP(0.95)

SAT α Gibbs β

0.4 0.5 0.7 0.9

4.2 0.0440 0.1462 0.3166 0.4304

4.1 0.0632 0.0373 0.2896 0.4119

4.0 0.0404 0.0666 0.2755 0.3984

3.8 0.1073 0.0651 0.2172 0.3576

3.6 0.1014 0.0922 0.1620 0.3087

3.4 0.3716 0.3629 0.1948 0.0220

(b) Comparison to SP(0.9)

SAT α Gibbs β

0.4 0.5 0.7 0.9

4.2 SP fails SP fails SP fails SP fails

4.1 0.0230 0.0985 0.3236 0.4341

4.0 0.0493 0.0079 0.3273 0.4309

3.8 0.0531 0.0194 0.2860 0.4104

3.6 0.0980 0.0445 0.2412 0.3887

3.4 0.0365 0.0356 0.1301 0.3869

(c) Comparison to SP(0.7)

SAT α Gibbs β

0.4 0.5 0.7 0.9

4.2 SP fails SP fails SP fails SP fails

4.1 0.1925 0.2873 0.3989 0.4665

4.0 0.0483 0.1092 0.2986 0.4179

3.8 0.0924 0.0372 0.3235 0.4323

3.6 0.0184 0.0304 0.2192 0.4009

3.4 0.0323 0.0255 0.0718 0.3613

(d) Comparison to SP(0.5)

Figure 4. Comparison of SP (ρ) pseudomarginals
for ρ ∈ {0.95, 0.9, 0.7, 0.5} to marginals estimated
by Gibbs sampling on weighted MRFs with β ∈
{0.4, 0.5, 0.7, 0.9} for the range of SAT problems α ∈
{4.2, 4.1, 4.0.3.8, 3.6, 3.4}. Each entry in each table
shows the average `1 error between the biases com-
puted from the SP (ρ) pseudomarginals compared to
the biases computed from Gibbs sampling applied to
MRF (β). Calculations were based on top 50 most
biased nodes on a problem of size n = 1000. The
bold entry within each row (corresponding to a fixed
α) indicates the MRF (β) that yields the smallest `1

error in comparison to the SP biases.



ter of results is consistent with the view that belief
propagation would overcount due to cycles in the factor
graph.

3.5 Expansion arguments for random formulae:

In this section, we describe the use of simple random
graph arguments in order to obtain typical properties
of cores, as well as the behavior of Gibbs sampling or
message-passing algorithms applied to the MRF associ-
ated with a randomly chosen formula. Throughout this
section, we use pφ

W to denote the MRF distribution for
a fixed formula φ.

We begin with a result that establishes that cores, if
they exist, are typically at least a certain linear fraction
c(α, k) of the total number n of variables.

Proposition 3.2. Let φ be a random k-sat formula
with m = αn clauses where k ≥ 3. Then for all positive
integers C the probability that φ has a core with C

clauses is bounded by
(

e2αCk−2

nk−2

)C

. Consequently, if

we define c(α, k) := (αe2)−1/(k−2), then with probability
tending to one as n → +∞, there are no cores of size
strictly less than c(α, k)n.

This result shows that the size of cores (when they
exist) is typically linear in n. Moreover, by definition,
the extended MRF for ρ = 1 assigns positive mass to
the all-∗ vector. It follows that the state space of the
MRF for ρ = 1 typically satisfies one of the following
properties:

(a) Either the state space is trivial, meaning that it
contains only the all ∗ state, or

(b) The state space is disconnected with respect to all
random walks based on updating a small linear
fraction of the coordinates in each step.

Our next goal is to establish that a similar phenomenon
persists when ρ is close to 1 (i.e., when 1 − ρ is small).

First, we need to introduce some notions from the
analysis of the mixing properties of Markov chains. Let
T be a reversible chain with respect to a measure p on
a state space Ω. For sets A,B ⊂ Ω, write

qT (A,B) =
∑

x∈A,y∈B

p(x)Tx→y =
∑

x∈A,y∈B

p(y)Ty→x.

The conductance of the chain T is defined as

c(T ) = inf
S⊂Ω

{
qT (S, Sc)

p(S)(1 − p(S))
}.

It is well-known that c(T )/2 is an upper bound on
the spectral gap of the chain T and that 2/c(T ) is a
lower bound on the mixing time of the chain. We note

moreover that the definition of T implies that for every
two sets A,B it holds that qT (A,B) ≤ min{p(A), p(B)}.

Definition 3.2. Consider a probability measure p on a
space Ω of strings of length n. Let T be a Markov chain
on Ω. The radius of T denoted by r(T ) is defined by

r(T ) := sup{dH(x, y) : Tx,y > 0},

where dH is the Hamming distance. We let the radius
r-conductance of p denote by c(r, p) be sup{c(T ) :
T is reversible w.r.t. p and r(T ) ≤ r}.

Now returning to the random k-SAT problem, we
write pρ for the measure pW = pφ

W with ω∗ = ρ and
ωo = 1 − ρ.

Proposition 3.3. Consider a randomly chosen k-SAT
formula with density α, and the following two events for
a fixed ρ:

(a) An is the event that pφ
ρ [n−n∗(x) ≤ 2

√

(1 − ρ)n] ≥
1 − exp(−Ω(n)).

(b) Bn is the event that the measure pφ
ρ satisfies

c(
√

(1 − ρ)n, pρ) ≤ exp(−Ω(n)).

Then there exists a ρ0 ∈ (0, 1) such that if ρ > ρ0 then
Prob[φ ∈ An ∪Bn] → 1 as n→ +∞.

Proposition 3.3 shows that for values of ρ suffi-
ciently close to 1, any random sampling technique based
on local moves (e.g., Gibbs sampling), if started at the
all ∗ assignment, will take exponentially long to get to
an assignment with more than a negligible fraction of
non-∗. We now establish an analogous claim for belief
propagation update on the extended Markov random
fields. More precisely, we prove that if ρ is sufficiently
close to 1, then running belief propagation with initial
messages that place most of their mass on the all-∗ as-
signment will produce messages that also place most of
their mass on the all-∗ assignment.

This result is proved in the “density-evolution”
setting [22], by which we mean that the number of
iterations is taken to be less than the girth of the graph,
so that cycles have no effect. More formally, we establish
the following:

Theorem 3.3. For every formula density α > 0, ar-
bitrary scalars ε′′ > 0 and δ > 0, there exists ρ′ < 1,
ε′ ∈ (0, ε′′) and γ > 0 such that for all ρ ∈ (ρ′, 1] and
ε ∈ (0, ε′), the algorithm SP (ρ) satisfies the following
condition.

Consider a random formula φ, a random clause b
and a random variable i that belongs to the clause b.
Then with probability at least 1−δ, if SP (ρ) is initialized
with all messages η0

a→j < ε, then the inequality ηt
b→i <

ε′ holds for all iterations t = 0, 1, . . . , γ log n.



4 Conclusion

We introduced a novel family of extended Markov
random fields, parameterized by ρ ∈ [0, 1], that can
be associated with any k-SAT problem. We showed
that applying belief propagation to these fields recovers
various algorithms, ranging from survey propagation
(ρ = 1) to belief propagation on the naive MRF
representation of k-SAT (ρ = 0). The combinatorial
properties of the extended MRFs provide insight into
the performance of survey propagation (as well as
broader class of related algorithms), including the role
of cores and lattices, the importance of considering ρ 6=
1, the significance of decimation, and the smoothness
properties of fields with ρ > 0 relative to the naive
representation (ρ = 0).
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