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Abstract. We introduce a new phylogenetic reconstruction algorithm
which, unlike most previous rigorous inference techniques, does not rely
on assumptions regarding the branch lengths or the depth of the tree. The
algorithm returns a forest which is guaranteed to contain all edges that
are: 1) sufficiently long and 2) sufficiently close to the leaves. How much
of the true tree is recovered depends on the sequence length provided.
The algorithm is distance-based and runs in polynomial time.

1 Introduction

In Evolutionary Biology, the speciation history of a family of related organisms
is generally represented graphically by a phylogeny, that is, a tree where the
leaves are the observed (extant) species and the branchings indicate speciation
events. Traditional approaches for reconstructing phylogenies from homologous
molecular sequences extracted from the observed species [1,2] are typically com-
putationally intractable [3,4,5,6,7], statistically inconsistent [8], or they require
impractical sequence lengths [9,10,11,12]. Nevertheless, over the past decade,
much progress has been made in the design of efficient, fast-converging recon-
struction techniques, starting with the seminal work of Erdös et al. [13]. The
algorithm in [13], often dubbed the Short Quartet Method (SQM), is based on
well-known distance-matrix techniques, that is, it relies on estimates of the evo-
lutionary distance between each pair of species (roughly the time elapsed since
their most recent common ancestor). However, unlike other popular distance
methods such as Neighbor-Joining [14], the key behind SQM’s performance is
that it discards long evolutionary distances, whose estimates from sequence com-
parisons are known to be statistically unreliable. The algorithm works by first
building subtrees of small diameter and, in a second stage, glueing the pieces
back together.

The Short Quartet Method is in fact guaranteed to return the correct topology
from polynomial-length sequences in polynomial time with high probability. But
this appealing theoretical performance comes at a price. The results of [13] rely
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critically on biological assumptions which, although reasonable, are often not
met in practice (see Section 1.3 for a formal statement):

a) [Dense Sampling of Species] The observed species are “closely related.” In
particular, there are no exceptionally long branches in the phylogeny.

b) [Absence of Polytomies] The phylogeny is bifurcating. In fact, Erdös et al. as-
sume that speciation events are sufficiently far apart to be easily distin-
guished.

The point of a) is that it implies a natural bound on the depth of the tree
which in turn ensures that enough information about the deep parts of the tree
diffuses to the leaves. As for Assumption b), it guarantees that a clear signal
can be extracted from each branch of the phylogeny. It is obvious—at least
intuitively—that assumptions such as a) and b) are necessary to secure the type
of results Erdös et al. obtain: the guaranteed reconstruction of the full phylogeny.
Hence, to improve over SQM and obtain strong guarantees under more general
conditions, one has to relax this last requirement.

In this paper, we design an algorithm which provides strong reconstruction
guarantees without Assumptions a) and b). We show that our algorithm is guar-
anteed to recover a forest containing all edges that are “sufficiently long” and
“sufficiently close” to the leaves. In fact, we allow a trade-off between the reso-
lution of short branches and the depth of the reconstructed forest, a feature of
potential practical interest. Also, we guarantee that our reconstructed forest has
the desirable property of being disjoint (although the presence of short edges
leads us to allow deep intersections of very short branches between the subtrees).
Moreover, our algorithm does not require the knowledge of a priori bounds on
branch lengths or tree depth. Finally if Assumptions a) and b) are satisfied,
we recover the whole phylogeny and provide an alternative to the algorithm of
Erdös et al.

Precise statements are given in Section 1.2. For a full comparison to related
work see also Section 1.3. For a lack of space, the proofs of our results are not
included in this extended abstract. But they can be found in the full version of
the paper [15].

1.1 What Can We Hope to Reconstruct?

Well-known identifiability results [16] guarantee that phylogenies—or at least
their idealized stochastic models—can be fully reconstructed given enough data
at the leaves. However, molecular data gathered from current species are in
essence limited, which begs the question: How much of tree can we really hope
to reconstruct? We pointed out above two important sources of difficulties: short
branches produce a low signal that may be hard to detect; similarly, untangling
the deep parts of the tree presents challenges that are well documented (see,
e.g., [17,18]). Note that these issues are fundamentally “information-theoretic”
and that they affect all reconstruction methods.

To avoid these difficulties, most rigorous methods impose restrictions on the
length of the branches and/or the depth of the tree, which may be unsatisfac-
tory from a practical perspective. On the other hand, commonly used methods
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in practice, such as likelihood and bayesian methods, typically produce several
candidate trees as well as confidence estimates. But theoretical guarantees on
the quality of such outputs are hard to obtain.

Here, we seek to give strong reconstruction guarantees without any assump-
tion on the true phylogeny. Our goal is to recover, for any given amount of data,
as much of the tree as can rigorously be reconstructed with high confidence. Since
the full phylogeny may not always be recoverable, we are led to a more flexible
solution concept: we output a contracted subforest of the true phylogeny. That
is, we output a forest containing all branches that are “sufficiently long” and
“sufficiently recent”; note that “sufficiently” here is determined (information-
theoretically) by the size of the data (usually in terms of sequence length). In
the remainder of this section we formalize this notion.

The input. Formally, a phylogeny is a weighted, multifurcating tree on a set of
leavesL, which we identify with the labels [n] = {1, . . . , n}. We denote a phylogeny
by T = (V,E;L, λ). Here V and E are respectively the vertex and edge set of the
tree, and λ : E → (0,+∞) assigns a weight to each edge (the branch length). We
assume that all internal vertices V − L have degree at least 3.

A phylogeny is naturally equipped with a so-called additive metric on the
leaves d : L× L→ (0,+∞) defined as follows

∀u, v ∈ L, d(u, v) =
∑

e∈PT (u,v)

λe,

where PT (u, v) is the set of edges on the path between u and v in T . Often d(u, v)
is referred to as the “evolutionary distance” between species u and v. Since under
the assumptions above there is a one-to-one correspondence between d and λ,
we write either T = (V,E;L, d) or T = (V,E;L, λ). We also sometimes use the
natural extension of d to the internal vertices of T . We denote by T the set of
all phylogenies on any number of leaves.

It is well-known that given an additive metric d one can reconstruct the cor-
responding phylogeny T . However, in practice, one can only derive an estimate
d̂ of d, the accuracy of which depends on the sequence length. (This estimate is
known in the literature as the “distance matrix”.) Our goal in this paper is to
reconstruct a phylogeny—or as much of it as possible—from this “distorted” ver-
sion of its additive metric. A well-known property of d̂ is that estimates of long
distances are unreliable. The following definition formalizes this phenomenon.
See Figure 1 for an illustration.

Definition 1 (Distorted Metric [19,20]). Let T = (V,E;L, d) be a phylogeny
and let τ,M > 0. We say that d̂ : L× L→ (0,+∞] is a (τ,M)-distorted metric
for T or a (τ,M)-distortion of d if:

1. [Symmetry] For all u, v ∈ L, d̂ is symmetric, that is,

d̂(u, v) = d̂(v, u);
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Fig. 1. The effect of distance distortion from the perspective of a leaf. On the left
hand side is the true phylogeny. On the right hand side, only distances within a certain
radius represent accurately the metric underlying the phylogeny.

2. [Distortion] d̂ is accurate on “short” distances, that is, for all u, v ∈ L, if
either d(u, v) < M + τ or d̂(u, v) < M + τ then

∣∣∣d(u, v) − d̂(u, v)
∣∣∣ < τ.

In phylogenetic reconstruction, a distorted metric is naturally derived from sam-
ples of a Markov model on a tree—a common model of DNA sequence evolution
used in Biology. (See [15] for details.) In the remainder of this paper, we assume
that we are given a (τ,M)-distortion d̂ of an additive metric d and we seek to
recover the underlying phylogeny T .
Contraction and pruning. Given only a (τ,M)-distorted metric, it is clear that
the best we can hope for in general is to reconstruct a forest containing those
edges of T that are “sufficiently close” to the leaves. Indeed, note that two
phylogenies that are identical up to depth M from the leaves, but are otherwise
different, can give rise to the same distorted metric. Moreover, since we do not
assume that edges are longer than the accuracy τ , some edges may be too short
to be reconstructed and, as we mentioned before, we allow ourselves to instead
contract them. Hence, we are led to consider subforests of the true phylogeny
where deep edges are pruned and short edges are contracted.

To formalize this idea we need a few definitions. Let us first describe what
we mean by a subforest of a phylogeny T = (V,E;L, d). Given a set of vertices
V ′ ⊆ V , the subtree of T restricted to V ′ is the tree obtained 1) by keeping only
nodes and edges on paths between vertices in V ′ and then 2) by contracting all
paths composed of vertices of degree 2, except the nodes in V ′. See Figure 2 for
an example. We denote this tree by T |V ′ . We typically take V ′ ⊆ L. A subforest
of T is defined to be a collection of restricted subtrees of T .

We also need a notion of depth. Given an edge e ∈ E, the chord depth of e is
the length of the shortest path between two leaves on which e lies. That is,

Δc(e) = min {d(u, v) : u, v ∈ L, e ∈ PT (u, v)} .
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Fig. 2. Restricting the top tree to its white nodes

We define the chord depth of a tree T to be the maximum chord depth in T

Δc(T ) = max {Δc(e) : e ∈ E} .

Definition 2 (Contracted Subforest). Let T = (V,E;L, d) be a phylogeny.
Fix M > 0. Let {L1, . . . , Lq} be the natural partition of the leaf set L ob-
tained by removing all edges e ∈ E such that Δc(e) ≥ M . We define the M -
pruned subforest of T to be the forest FM (T ) = (VM , EM ) consisting of the trees
{T |L1, . . . , T |Lq}. The metric d is extended as follows for all u, v ∈ L,

dM (u, v) =
{
d(u, v), if u, v are in the same subtree of FM (T ),
+∞, o.w.

Similarly, we define an extension λM of λ.
Now, given also τ > 0, the τ-contracted M -pruned subforest of T is the forest

Fτ,M (T ) = (Vτ,M , Eτ,M ) obtained from FM (T ) by contracting edges e ∈ EM of
weight λM (e) < τ .

Path-disjointness. We require that the trees of our reconstructed forest are “not
intersecting”. This is a natural condition to impose in order to obtain a meaning-
ful reconstruction: we want to avoid as much as possible that the same branches
appear in many subtrees. In fact, we can only guarantee approximate path-
disjointness as defined below.

We first need a notion of depth for vertices. For a phylogeny T = (V,E;L, d)
and a vertex x ∈ V , the vertex depth of x is the length of the shortest path
between x and the set of leaves. That is,

Δv(x) = min {d(u, x) : u ∈ L} .

Given two leaves u, v of T , we denote by P̃T (u, v) the set of vertices on the path
between u and v in T .
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We say that two trees are (τ,M)-path disjoint if they are “almost disjoint”
in the sense that they only share edges (if any) that are “deep” (endpoints have
vertex depth at least M/2) and “short” (length at most τ). More formally:

Definition 3 (Approximate Path-Disjointness). Let T = (V,E;L, d) be a
phylogeny. Two subtrees T1, T2 of T restricted respectively to L1, L2 ⊆ L are
(τ,M)-path-disjoint if L1 ∩ L2 = ∅ and for all pairs of leaves u1, v1 ∈ L1 and
u2, v2 ∈ L2 such that

P̃T (u1, v1) ∩ P̃T (u2, v2) 
= ∅,
we have:

min{Δv(x) : x ∈ P̃T (u1, v1) ∩ P̃T (u2, v2)} ≥ 1
2
M,

and, if further PT (u1, v1) ∩ PT (u2, v2) 
= ∅,

max{λe : e ∈ PT (u1, v1) ∩ PT (u2, v2)} ≤ τ.

More generally, a collection of restricted subtrees T1, . . . , Tq of T are (τ,M)-
path-disjoint if they are pairwise (τ,M)-path-disjoint. In the case τ = 0, we
simply say that the subtrees are path-disjoint.

1.2 Main Result and Corollaries

Main result. Our main result is an algorithm which, given a (τ,M)-distorted
metric, reconstructs a contracted subforest (of the true phylogeny) whose trees
are approximately path-disjoint. Typically, M is much larger than τ . In that
case, we reconstruct a subforest of T with chord depth ≈ 1

2M which includes all
edges of length at least 4τ . The reconstructed subtrees may “overlap” on edges
of length at most 2τ at vertex depth ≈ 1

4M . In an upcoming journal version of
the paper, we show that these parameters are essentially optimal. The algorithm
runs in polynomial time. An implementation of the algorithm with low running
time will be given in the journal version.

More precisely, we show:

Theorem 1 (Main Result). Let τ and M be monotone functions of n with
M > 3τ . Let m > 3τ be such that

m <
1
2
[M − 3τ ],

for all n. Then, there is an algorithm A such that, for all phylogenies T =
(V,E;L, d) in T and all (τ,M)-distortions d̂ of d, A applied to d̂ satisfies the
following:

1. [Approximate Path Disjointness] A returns a (2τ,m−3τ)-path-disjoint sub-
forest F̂ of T ;

2. [Depth Guarantee] The forest F̂ is a refinement of F4τ,m−τ (T );
3. [Polynomial Time] A runs in time polynomial in n, logM, log τ .

We give below a few important special cases of Theorem 1. The proof of Theo-
rem 1 can be found in the full version of the paper [15].
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Tree case. When the amount of data is sufficient to produce a distorted metric
with M = Ω(Δc(T )), we get a single component, that is, the full tree (up to
those edges that are contracted).

Corollary 1 (Tree Case). Let τ > 0 and M > 2Δc(T ) + 5τ . Then, choosing
m > Δc(T ) + τ guarantees that the reconstructed forest is composed of only a
tree.

In the case of “dense” phylogenies, M = Ω(logn) is sufficient to reconstruct the
full tree.

Definition 4 (Dense Phylogenies (see e.g. [13])). We say that a collection
of phylogenies T ′ is dense if there is a 0 < g < +∞ (independent of n) such
that for all T = (V,E;L, λ) ∈ T ′ we have

∀e ∈ E, λe ≤ g. (1)

We denote by Tg the set of phylogenies satisfying (1).

Corollary 2 (Dense Case). In the case of dense phylogenies, M = Ω(log n)
suffices to guarantee the reconstruction of the full tree, up to contracted edges.

Absolute variant. All rigorous algorithms prior to our work (see Section 1.3)
require knowledge of either the tree depth or bounds on the edge lengths to give
strong reconstruction guarantees. This is not satisfactory from a practical point
of view. Here given only the sequence length we provide explicit guarantees.
The following result assumes that the distorted metric is derived from a Markov
model on a tree. (See [15] for details.)

Corollary 3 (Absolute Variant). Given a number of samples k = Ω(log n)
from a Markov model on a tree and a chosen level of contraction ε > 0 (small),
one can choose τ,M,m so that A is guaranteed to return a (contracted) subforest
of T containing Fε,M ′ (T ) with probability 1 − o(1), where M ′ = Ωε(log k −
log logn).

Complete resolution. Finally we remark that, if we further assume that all branch
lengths are bounded from below by a constant, then by choosing τ accordingly
a non-contracted forest is returned. In particular, we also recover the results
of [13].

1.3 Related Work

Under a Markov model of evolution, the Short Quartet Method (SQM) of Erdös
et al. [13] is guaranteed to recover the full phylogeny as long as the number of
samples k satisfies

k > cf−2ec′gΔc(T ) logn,

for constants c, c′ > 0, where f and g are respectively lower and upper bounds on
the branch lengths possibly depending on n. For instance, if f and g are constants



532 C. Daskalakis, E. Mossel, and S. Roch

the sequence length needed for complete reconstruction depends polynomially
in the number of species.

Mossel [19] developed a framework that allows the reconstruction of a well-
behaved forest when sequences are too short to guarantee a complete reconstruc-
tion. More precisely, edges which are too deep (in the sense of appearing only
on paths between species whose distances are not accurately known) are pruned
from the final reconstruction. At a high level, Mossel’s Distorted Metric Method
(DMM) (implicit in [19]), works in a fashion similar to SQM—except for a pre-
processing phase that clusters together sufficiently related species. However, for
DMM to work, lower bounds on the branch lengths are required and, more-
over, these must be known by the algorithm. Following up on [19], Daskalakis et
al. [21] gave a variant of DMM that runs without knowledge of a priori bounds
on the branch lengths or the tree depth—making their variant somewhat more
practical. However, like DMM, the algorithm in [21] does not deal properly with
short edges: any part of the tree containing a short edge cannot be reconstructed
by the algorithm (even though there may be adjacent edges that are in fact re-
constructible). Therefore, in the presence of short edges no guarantee can be
given about the depth of the reconstructed forest.

Recently Gronau et al. [22] eliminated the need for a lower bound on the
branch length by contracting edges whose length is below a user-defined thresh-
old. Their solution uses a Directional Oracle (DO) which closes in on the lo-
cation of a leaf to be added and, in the process, contracts regions that do not
provide a reliable directional signal. Although the DO algorithm does not use
an explicit bound on the depth of the tree, their reconstruction guarantee re-
quires such a bound, similarly to [13]. In particular, Gronau et al. leave open
the question of giving a forest-building version of their algorithm. Moreover,
the sequence length in [22] depends exponentially on what the authors call the
ε-diameter of the tree—essentially, the maximum diameter of the contracted re-
gions. It is natural to conjecture that an optimal result should not depend on this
parameter.

For further related work on efficient phylogeny reconstruction, see also
[23,24,25,26,20,27,28].

1.4 Discussion of the Results

The following table summarizes the current status as discussed in the previous
sections.

As the table emphasizes, our overarching goal is to design an algorithm with
good reconstruction guarantees in the presence of both short and deep edges,
whose execution does not rely on a priori bounds on branch lengths. Unfortu-
nately, given the combinatorial complexity of Mossel’s forest-building algorithm,
it is not straightforward to provide the extra flexibility of edge contraction in
this framework. The novelty in our work is twofold:

– Solution Concept: A basic complication is that, in some sense, contraction
and pruning interfere with each other. Indeed, the presence of unresolved
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Execution Guarantees
No branch Short edges Deep edges

bound needed OK OK

[13]

[19] �
[21] � �
[22] � �

Our method � � �

branches at the boundary of partially reconstructed subtrees creates the
possibility of deep “undetectable” intersections. This pitfall seems to be
unavoidable. One of our main contributions is to introduce the notion of
approximate disjointness, which allows short and deep intersections between
subtrees of the reconstructed forest. This suitable solution concept leads to a
quite simple algorithm with reasonable guarantees. Moreover, the flexibility
in our definition allows us to recover all previously known results as special
cases.

– Algorithmic Technique: A natural approach to forest building used in [19,21]
proceeds along the following three steps:

1. first, leaves are grouped into clusters for which all pairwise distances are
accurately known (the small clusters);

2. by definition, the local topologies on the small clusters can be trivially
reconstructed [29];

3. finally, the local topologies that intersect in the true tree are “glued”
together to get a forest (the resulting forest partitions the leaves into
large clusters).

This last step involves non-trivial combinatorial considerations. We have
found that further allowing contracted edges makes this process somewhat
unmanageable. Instead we use a different approach relying on simple metric
arguments. In particular, we directly partition the leaves into large clusters,
whose underlying subtrees are approximately disjoint, and provide a new
straightforward method to reconstruct these subtrees.

In addition, we obtain as special cases the results discussed in Section 1.3. In
particular, if there are no short edges, we recover the results of [19] and [21],
where a path-disjoint forest is returned (by taking τ equal to half the lower
bound on the branch lengths in Theorem 1). If furthermore there is an upper
bound on the branch lengths, we recover the results of [13] (Corollary 2). Finally,
if we keep the upper bound on the edge lengths, but drop the lower bound, we
recover the results of [22] (Corollary 1). In fact, we eliminate the dependence on
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the ε-diameter. 1 Further, unlike [22], we allow an arbitrary number of states,
an extension—it should be noted—that follows easily from [23] and [19].

2 Algorithm

The outline of the algorithm follows. There are three main phases, which are
explained in detail after the outline. The input to the algorithm is a (τ,M)-
distorted metric d̂ on n leaves. In particular, we assume that the values τ and M
are known to the algorithm (but see also Corollary 3). Let m be as in Theorem 1.
We denote the true tree by T = (V,E;L, d). The details of the subroutines Mini
Contractor and Extender are detailed in Figures 4 and 6 (see also their
high level description below). For lack of space, the proof of correctness of the
algorithm can be found in [15].

– Pre-Processing: Leaf Clustering. Build the distorted clustering graph
Ĥm = (V̂m, Êm) where V̂m = [n] and (u, v) ∈ Êm ⇐⇒ d̂(u, v) < m;
compute the connected components {ĥ(i)

m = (v̂(i)
m , ê

(i)
m )}q

i=1 of Ĥm;
– Main Loop. For all components i = 1, . . . , q:

• For all pairs of leaves u, v ∈ v̂
(i)
m such that (u, v) ∈ Êm:

∗ Mini Reconstruction. Compute

{ψj(u, v)}r(u,v)
j=1 := Mini Contractor(ĥ(i)

m ;u, v);

∗ Bipartition Extension. Compute

{ψ̄j(u, v)}r(u,v)
j=1 := Extender(ĥ(i)

m , {ψj(u, v)}r(u,v)
j=1 ;u, v);

• Deduce the tree T̂ (i) from {ψ̄j(u, v)}r(u,v)
j=1 ;

– Output. Return the resulting forest F̂ .

Pre-processing: Leaf clustering. As mentioned before, given a (τ,M)-distortion
we cannot hope to reconstruct edges that are too deep inside the tree. This results
in the reconstruction of a forest. Therefore, the first phase of the algorithm is
to determine the “support” of this forest. We proceed as follows. Consider the
following graph on L.

Definition 5 (Clustering Graph). Let τ ≤ M ′ ≤ M − τ . The distorted
clustering graph with parameterM ′, denoted ĤM ′ = (V̂M ′ , ÊM ′ ), is the following

1 After the results of the current paper were posted on the arXiv, we were informed
by S. Moran that, in parallel to our work, the authors of [22] have improved on their
previous results: the dependence on the ε-diameter has been removed. A preprint
of this work is currently available on the authors’ website. Note however that this
new, independent work does not deal with deep edges and still makes assumptions
similar to [13] restricting the depth of the generating tree.
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Φ̂w

u v w

Φ̂x−1

≥ 2τ ?

B̂(u, v)

Fig. 3. Illustration of routine Mini Contractor. See Figure 4 for notation.

graph: the vertices V̂M ′ are the leaves L of T ; two leaves u, v ∈ L are connected
by an edge e ∈ ÊM ′ if

d̂(u, v) < M ′. (2)

Note that this is an undirected graph because d̂ is symmetric. Similarly, we define
the clustering graph with parameter M ′, HM ′ = (VM ′ , EM ′), where we use d
instead d̂ in (2).

The first phase of the algorithm consists in building the graph Ĥm from d̂. We
then compute the connected components of Ĥm which we denote {ĥ(i)

m }q
i=1. In

the next two phases, we build a tree on each of these components.

Building the components I: Mini-reconstruction problem. Fix a component ĥ(i)
m

of Ĥm. In this and the next phase, we seek to reconstruct a contracted tree on
ĥ

(i)
m . Denote by T (i) the true tree T restricted to the leaves in ĥ

(i)
m . First, we

find all edges of T (i) that are “sufficiently long” and lie on “sufficiently short”
paths. More precisely, we consider all pairs of leaves u, v connected by an edge in
ĥ

(i)
m , that is, leaves within distorted distance m. For each such pair, say u, v, the

mini reconstruction problem consists in finding all edges in PT (i)(u, v) that have
length longer than λe ≥ 4τ . To do this using the distortion d̂, we first consider
a ball B̂(u, v) of all nodes within distorted distance M of u and v, that is,

B̂(u, v) =
{
w ∈ ĥ(i)

m : d̂(u,w) ∨ d̂(v, w) < M
}
,

where a ∨ b is the maximum of a and b.— The point of using this ball is that
we can then guarantee that each edge in PT (i)(u, v) is “witnessed” by a quartet
(i.e., a 4-tuple of leaves) in B̂(u, v) in the following sense: let (x1, x2) be an edge
in PT (i)(u, v) and let (xj , yj), j = 1, 2, be an edge adjacent to xj that is not in
PT (i)(u, v); for j = 1, 2 let L(i)

xj→yj be the leaves reachable from yj using paths
not including xj ; then we will show that L(i)

xj→yj ∩ B̂(u, v) 
= ∅ for j = 1, 2. In
other words, there is enough information in B̂(u, v) to reconstruct all edges in
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Algorithm Mini Contractor
Input: Component ĥ

(i)
m ; Leaves u, v;

Output: Bipartitions {ψj(u, v)}r(u,v)
j=1 ;

– Ball. Let
B̂(u, v) :=

{
w ∈ ĥ(i)

m : d̂(u,w) ∨ d̂(v, w) < M
}

;

– Intersection Points. For all w ∈ B̂(u, v), estimate the point of intersection
between u, v, w (distance from u), that is,

Φ̂w :=
1

2

(
d̂(u, v) + d̂(u,w) − d̂(v, w)

)
;

– Long Edges. Set S := B̂(u, v) − {u}, x−1 = u, j := 0;
• Until S = ∅:

∗ Let x0 = arg min{Φ̂w : w ∈ S} (break ties arbitrarily);

∗ If Φ̂x0 − Φ̂x−1 ≥ 2τ , create a new edge by setting ψj+1(u, v) :=

{B̂(u, v) − S, S} and let Cj+1 := {x0}, j := j + 1;
∗ Else, set Cj := Cj ∪ {x0};
∗ Set S := S − {x0}, x−1 := x0;

– Output. Return the bipartitions {ψj(u, v)}r(u,v)
j=1 (where r(u, v) is the number

of bipartitions generated in the previous step).

Fig. 4. Algorithm Mini Contractor. See Figure 3 for illustration.

PT (i)(u, v)—at least those that are “sufficiently long.” This phase is detailed in
Figure 4. An illustration is given in Figure 3.

Building the components II: Extending the bipartitions. The previous step recon-
structs “sufficiently long” edges on balls of the form B̂(u, v). By reconstructing
an edge on B̂(u, v), we mean finding the bipartition of B̂(u, v) to which the edge
corresponds. More precisely:

Definition 6 (Bipartitions). Let T = (V,E) be a multifurcating tree with
no vertex of degree 2. Each edge e in T induces a bipartition of the leaves L
of T as follows: if one removes the edge e from T , then one is left with two
connected components; take the partition of the leaves corresponding to those
components. Denote by bT (e) the bipartition of e on T . It is easy to see that given
the bipartitions {bT (e)}e∈E one can reconstruct the tree T efficiently [29,30,31].
(Proceed by sequentially “splitting” clusters.)

The goal of the second phase in the main loop of our reconstruction algorithm
is to extend the bipartitions previously built from B̂(u, v) to the full component
ĥ

(i)
m . To perform this task, we use the following observation: suppose we want

to deduce the bipartition corresponding to edge e; if we take the ball B̂(u, v) to
be much larger than m (yet small enough that it remains within our radius of
precision M), we can make sure that a path from a leaf in ĥ

(i)
m that is outside

B̂(u, v) to a leaf on the other side of the bipartition is “long.” Therefore, we can
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Fig. 5. Illustration of routine Extender. See also Figure 6.

Algorithm Extender
Input: Component ĥ

(i)
m ; Bipartitions {ψj(u, v)}r(u,v)

j=1 ; Leaves u, v;

Output: Bipartitions {ψ̄j(u, v)}r(u,v)
j=1 ;

– For j = 1, . . . , r(u, v) (unless r(u, v) = 0):

• Initialization. Denote by ψ
(u)
j (u, v) the vertex set containing u in the

bipartition ψj(u, v), and similarly for v; Initialize the extended partition

ψ̄
(u)
j (u, v) := ψ

(u)
j (u, v), ψ̄

(v)
j (u, v) := ψ

(v)
j (u, v);

• Modified Graph. Let K be ĥ
(i)
m where all edges between ψ

(u)
j (u, v) and

ψ
(v)
j (u, v) have been removed;

• Extension. For all w ∈ v̂
(i)
m − (ψ

(u)
j (u, v)∪ψ(v)

j (u, v)), add w to the side of
the partition it is connected to in K (by definition of K, each w as above
is connected to exactly one side);

– Return the bipartitions {ψ̄j(u, v)}r(u,v)
j=1 .

Fig. 6. Algorithm Extender. See Figure 5 for an illustration.

easily determine what side of the partition each leaf in ĥ
(i)
m lies on. For details,

see Figure 6. An illustration is given in Figure 5.

3 Concluding Remarks

An interesting question for future work is whether the approximate disjointness
in our results can be avoided. Since we guarantee that any shared edge lies deep
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inside the forest, it is tempting to simply remove all deep edges (say beyond
m/4) from the output forest. Unfortunately, many of these edges may in fact be
contracted and moreover they may be clustered in “supernodes” including both
deep and not-so-deep edges. It does not seem to be a trivial task to break these
deep supernodes apart and preserve strong reconstruction guarantees.
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