The Threshold Value for the Planted Partition Model

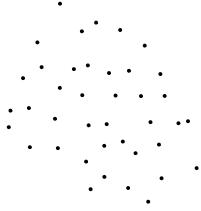
Elchanan Mossel

University of California, Berkeley

May 31, 2012

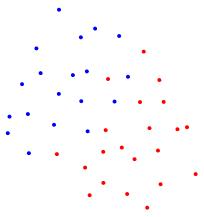
Based on a joint work with:

- Joe Neeman (U.C. Berkeley)
- 2 Allan Sly (U.C. Berkeley)

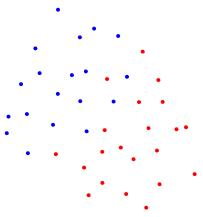


This is a model for a random graph on *n* nodes. It takes two parameters, $a, b \ge 0$.

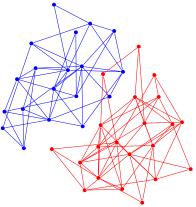
 Label the vertices + or -, uniformly at random.



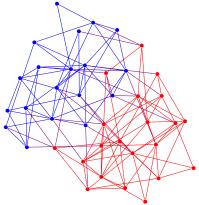
- Label the vertices + or -, uniformly at random.
- Independently for each edge (u, v):



- Label the vertices + or -, uniformly at random.
- Independently for each edge (u, v):
 - if u and v have the same label, include the edge with probability a/n;



- Label the vertices + or -, uniformly at random.
- Independently for each edge (u, v):
 - if u and v have the same label, include the edge with probability a/n;
 - if u and v have different labels, include the edge with probability b/n.



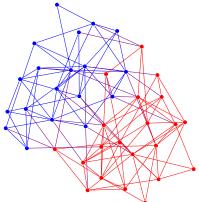
This is a model for a random graph on *n* nodes. It takes two parameters, $a, b \ge 0$.

- Label the vertices + or -, uniformly at random.
- Independently for each edge (u, v):

. . .

- if u and v have the same label, include the edge with probability a/n;
- if u and v have different labels, include the edge with probability b/n.

Variations: more than two classes, un-balanced classes, d-regular,



The graph-bisection problem is NP-hard. Could it be easy on average?

글 🕨 🖌 글

The graph-bisection problem is NP-hard. Could it be easy on average? Yes:

Bui et al '84	min-cut	$a\sim c$, $b=O(n^{-2/(a+b+1)})$
Dyer-Frieze '89	vertex degree	$a-b=\Omega(n)$
Boppana '87	spectral	$\frac{a-b}{\sqrt{a+b}} = \Omega(\log n)$
Juels '96	hill-climbing	$a-b=\Omega(n)$
Carson-Impagliazzo '01	hill-climbing	$\frac{a-b}{\sqrt{a+b}} = \Omega(\log n)$
Jerrum-Sorkin '98	Metropolis	$a-b=\Omega(n^{5/6+\epsilon})$
Condon-Karp '01	greedy	$a-b=\Omega(n^{1/2+\epsilon})$
McSherry '01	correlation	$\frac{a-b}{\sqrt{a+b}} = \Omega(\log n)$
Coja-Oghlan '10	spectral	$\frac{a-b}{\sqrt{a+b}} = \Omega(1)$

A B M A B M

The graph-bisection problem is NP-hard. Could it be easy on average? Yes:

Bui et al '84	min-cut	$ $ a \sim c, b $= O(n^{-2/(a+b+1)})$
Dyer-Frieze '89	vertex degree	$a-b=\Omega(n)$
Boppana '87	spectral	$\frac{a-b}{\sqrt{a+b}} = \Omega(\log n)$
Juels '96	hill-climbing	$a-b=\Omega(n)$
Carson-Impagliazzo '01	hill-climbing	$rac{a-b}{\sqrt{a+b}} = \Omega(\log n)$
Jerrum-Sorkin '98	Metropolis	$a-b=\Omega(n^{5/6+\epsilon})$
Condon-Karp '01	greedy	$a-b=\Omega(n^{1/2+\epsilon})$
McSherry '01	correlation	$\frac{a-b}{\sqrt{a+b}} = \Omega(\log n)$
Coja-Oghlan '10	spectral	$\frac{a-b}{\sqrt{a+b}} = \Omega(1)$

A B M A B M

Clustering network data. This model was introduced in statistics by Holland-Laskey-Leinhardt '83. Both parameter estimation and label recovery are studied.

A basic model of communities (see Lancichinetti and Fortunato)

Clustering network data. This model was introduced in statistics by Holland-Laskey-Leinhardt '83. Both parameter estimation and label recovery are studied.

A basic model of communities (see Lancichinetti and Fortunato)

Snijders-Nowicki '97	ML, EM, etc.	$a-b=\Omega(n)$
Bickel-Chen '09	G-N modularity	$\frac{a-b}{\sqrt{a+b}} = \Omega(\log n)$
Chatterjee-Rohe-Yu '10	spectral	$a-b=\Omega(n)$
Choi-Wolfe-Airoldi '10	ML	$a+b=\Omega(\log^3 n),$
		$\frac{a-b}{\sqrt{a+b}} = \Omega(1)$

Many, many more algorithms without performance guarantees (survey in Lancichinetti-Fortunato '09).

• **Q**: Given the +/- status of the vertices what is the distribution of edges?

御 と く ヨ と く ヨ と

3

- **Q**: Given the +/- status of the vertices what is the distribution of edges?
- A: (+,+) with probability a/n and (+,-) with probability b/n.

高 とう きょう く ほ とう ほう

- **Q**: Given the +/- status of the vertices what is the distribution of edges?
- A: (+,+) with probability a/n and (+,-) with probability b/n.
- **Q**: Given the graph *G* what is the distribution of the +, on the vertices?

伺 ト く ヨ ト く ヨ ト

3

- **Q**: Given the +/- status of the vertices what is the distribution of edges?
- A: (+, +) with probability a/n and (+, -) with probability b/n.
- **Q**: Given the graph *G* what is the distribution of the +, on the vertices?
- A: It's P

$$P(\sigma) = Z^{-1} a^{|\{(u,v) \in G: \sigma(u) = \sigma(v)\}|} b^{|\{(u,v) \in G: \sigma(u) \neq \sigma(v)\}|}$$

ゆ く き と く ゆ と

3

- **Q**: Given the +/- status of the vertices what is the distribution of edges?
- A: (+,+) with probability a/n and (+,-) with probability b/n.
- **Q**: Given the graph *G* what is the distribution of the +, on the vertices?
- A: It's P

$$P(\sigma) = Z^{-1}a^{|\{(u,v)\in G:\sigma(u)=\sigma(v)\}|}b^{|\{(u,v)\in G:\sigma(u)\neq\sigma(v)\}|}$$

• Also known as the Ising model on G!

.

- **Q**: Given the +/- status of the vertices what is the distribution of edges?
- A: (+,+) with probability a/n and (+,-) with probability b/n.
- **Q**: Given the graph *G* what is the distribution of the +, on the vertices?
- A: It's P

$$P(\sigma) = Z^{-1} a^{|\{(u,v) \in G: \sigma(u) = \sigma(v)\}|} b^{|\{(u,v) \in G: \sigma(u) \neq \sigma(v)\}|}$$

- Also known as the Ising model on G!
- Is this correct?

- Q: Given the +/- status of the vertices what is the distribution of edges?
- A: (+,+) with probability a/n and (+,-) with probability b/n.
- **Q**: Given the graph *G* what is the distribution of the +, on the vertices?
- A: It's P

$$P(\sigma) = Z^{-1} a^{|\{(u,v) \in G: \sigma(u) = \sigma(v)\}|} b^{|\{(u,v) \in G: \sigma(u) \neq \sigma(v)\}|}$$

- Also known as the Ising model on G!
- Is this correct?
- Almost it's actually Q where $Q(\sigma) = P(\sigma | \sum_{v} \sigma_{v} = 0)$.

ゆ ト イヨ ト イヨト

- **Q**: Given the +/- status of the vertices what is the distribution of edges?
- A: (+,+) with probability a/n and (+,-) with probability b/n.
- **Q**: Given the graph *G* what is the distribution of the +, on the vertices?
- A: It's P

$$P(\sigma) = Z^{-1} a^{|\{(u,v) \in G: \sigma(u) = \sigma(v)\}|} b^{|\{(u,v) \in G: \sigma(u) \neq \sigma(v)\}|}$$

- Also known as the Ising model on G!
- Is this correct?
- Almost it's actually Q where $Q(\sigma) = P(\sigma | \sum_{\nu} \sigma_{\nu} = 0)$.
- Well done!

The sparse case: a phase transition

<u>Decelle-Krzakala-Moore-Zdeborová '11</u>: "recovery" means getting a partition that is positively correlated with the truth.

Conjecture

lf

$$\frac{(a-b)^2}{2(a+b)} > 1$$

then recovery is possible. If

$$\frac{(\mathsf{a}-\mathsf{b})^2}{2(\mathsf{a}+\mathsf{b})} < 1$$

then recovery is impossible.

The sparse case: a phase transition

<u>Decelle-Krzakala-Moore-Zdeborová '11</u>: "recovery" means getting a partition that is positively correlated with the truth.

Conjecture

lf

$$\frac{(a-b)^2}{2(a+b)} > 1$$

then recovery is possible. If

$$\frac{(a-b)^2}{2(a+b)} < 1$$

then recovery is impossible.

"Physics" proof using belief propagation.

Theorem

If a + b > 2 and $(a - b)^2 \le 2(a + b)$ then, for any fixed vertices u and v,

$$\mathbb{P}_n(\sigma_u = + | G, \sigma_v = +) \to \frac{1}{2}$$

 \implies impossible to recover a partition that is correlated with the true partition.

Theorem

Let \mathbb{P}'_n be the law of $G(n, \frac{a+b}{2n})$. If $(a-b)^2 < 2(a+b)$ then \mathbb{P}_n and \mathbb{P}'_n are mutually contiguous i.e., for a sequence of events A_n , $\mathbb{P}_n(A_n) \to 0$ if, and only if, $\mathbb{P}'_n(A_n) \to 0$.

Theorem

Assume $(a - b)^2 > 2(a + b)$.

- The parameters a, b are identifiable.
- Let P'_n be the law of G(n, ^{a+b}/_{2n}). Then P_n and P'_n are asymptotically orthogonal. In other words, there exist events A_n such that P_n(A_n) → 1 and P'_n(A_n) → 0.

• Tree neighborhood looks like a broadcast process on a tree.

э

- Tree neighborhood looks like a broadcast process on a tree.
- The reconstruction problem on the tree is not-solvable if $(a-b)^2 < 2(a+b)$ (EKPS 2000).

- Tree neighborhood looks like a broadcast process on a tree.
- The reconstruction problem on the tree is not-solvable if $(a-b)^2 < 2(a+b)$ (EKPS 2000).
- Given fixed u, v, condition on $\partial B(v, r)$ for some large r. If $u \notin B(v, r)$ then

- Tree neighborhood looks like a broadcast process on a tree.
- The reconstruction problem on the tree is not-solvable if $(a-b)^2 < 2(a+b)$ (EKPS 2000).
- Given fixed u, v, condition on $\partial B(v, r)$ for some large r. If $u \notin B(v, r)$ then
- $\sigma_u \perp \sigma_{B(v,r)}$ by non-reconstruction and

- Tree neighborhood looks like a broadcast process on a tree.
- The reconstruction problem on the tree is not-solvable if $(a-b)^2 < 2(a+b)$ (EKPS 2000).
- Given fixed u, v, condition on ∂B(v, r) for some large r. If u ∉ B(v, r) then
- $\sigma_u \perp \sigma_{B(v,r)}$ by non-reconstruction and
- $\sigma_u \perp \sigma_v | \sigma_{B(v,r)}$ (Markovian property) so

- Tree neighborhood looks like a broadcast process on a tree.
- The reconstruction problem on the tree is not-solvable if $(a-b)^2 < 2(a+b)$ (EKPS 2000).
- Given fixed u, v, condition on ∂B(v, r) for some large r. If u ∉ B(v, r) then
- $\sigma_u \perp \sigma_{B(v,r)}$ by non-reconstruction and
- $\sigma_u \perp \sigma_v | \sigma_{B(v,r)}$ (Markovian property) so
- $\sigma_u \perp \sigma_v$.

- Tree neighborhood looks like a broadcast process on a tree.
- The reconstruction problem on the tree is not-solvable if $(a-b)^2 < 2(a+b)$ (EKPS 2000).
- Given fixed u, v, condition on ∂B(v, r) for some large r. If u ∉ B(v, r) then
- $\sigma_u \perp \sigma_{B(v,r)}$ by non-reconstruction and
- $\sigma_u \perp \sigma_v | \sigma_{B(v,r)}$ (Markovian property) so
- $\sigma_u \perp \sigma_v$.
- This argument is not correct since we have global information on the number of +s.

- Tree neighborhood looks like a broadcast process on a tree.
- The reconstruction problem on the tree is not-solvable if $(a-b)^2 < 2(a+b)$ (EKPS 2000).
- Given fixed u, v, condition on ∂B(v, r) for some large r. If u ∉ B(v, r) then
- $\sigma_u \perp \sigma_{B(v,r)}$ by non-reconstruction and
- $\sigma_u \perp \sigma_v | \sigma_{B(v,r)}$ (Markovian property) so
- $\sigma_u \perp \sigma_v$.
- This argument is not correct since we have global information on the number of +s.
- Still approximately correct for small enough neighborhoods.

• • = • • = •

Identifiability when $(a - b)^2 > 2(a + b)$

• a + b is identifiable by looking at the total number of edges.

· < E > < E >

3

Identifiability when $(a - b)^2 > 2(a + b)$

- *a* + *b* is identifiable by looking at the total number of edges.
- Claim: Let $X_{k,n}$ denote the number of k-cycles where $k = O(\log^{1/4}(n))$. Then

$$X_{k,n} \to \operatorname{Pois}\left(\frac{1}{k2^{k+1}}\left((a+b)^k + (a-b)^k\right)\right).$$
$$\lim \mathbb{E}\left[X_{k,n}\right] = \frac{1}{2k}\left(\left(\frac{a+b}{2}\right)^k + \left(\frac{a-b}{2}\right)^k\right).$$
$$\lim \operatorname{Var}\left[X_{k,n}\right] = \frac{1}{2k}(1+o_k(1))\left(\frac{a+b}{2}\right)^k.$$

• • = • • = •

- 3

Identifiability when $(a - b)^2 > 2(a + b)$

- a + b is identifiable by looking at the total number of edges.
- Claim: Let $X_{k,n}$ denote the number of k-cycles where $k = O(\log^{1/4}(n))$. Then

$$X_{k,n} \to \operatorname{Pois}\left(\frac{1}{k2^{k+1}}\left((a+b)^k + (a-b)^k\right)\right)$$
$$\lim \mathbb{E}\left[X_{k,n}\right] = \frac{1}{2k}\left(\left(\frac{a+b}{2}\right)^k + \left(\frac{a-b}{2}\right)^k\right)$$
$$\lim \operatorname{Var}[X_{k,n}] = \frac{1}{2k}(1+o_k(1))\left(\frac{a+b}{2}\right)^k.$$

• For large k if

$$\left(\frac{a-b}{2}\right)^2 > \frac{a+b}{2}$$

can detect the difference in mean.

伺 ト イ ヨ ト イ ヨ ト

Orthogonality to $G(n, \frac{a+b}{2}n)$ when $(a-b)^2 > 2(a+b)$

• Claim: Let $X_{k,n}$ denote the number of k-cycles where $k = O(\log^{1/4}(n))$. Then

$$X_{k,n}
ightarrow extsf{Pois}\left(rac{1}{k2^{k+1}}ig((a+b)^k+(a-b)^kig)
ight).$$

< ∃ >

-

Orthogonality to $G(n, \frac{a+b}{2}n)$ when $(a-b)^2 > 2(a+b)$

• Claim: Let $X_{k,n}$ denote the number of k-cycles where $k = O(\log^{1/4}(n))$. Then

$$X_{k,n}
ightarrow extsf{Pois}\left(rac{1}{k2^{k+1}}ig((a+b)^k+(a-b)^kig)
ight).$$

• If $Y_{n,k}$ is the corresponding variable for $G(n, \frac{a+b}{2n})$ then

$$\lim \mathbb{E} \left[X_{k,n} - Y_{k,n} \right] = \frac{1}{2k} \left(\frac{a-b}{2} \right)^k$$

$$\lim \operatorname{Var}[X_{k,n}], \lim \operatorname{Var}[Y_{k,n}] = \frac{1}{2k}(1+o_k(1))\left(\frac{a+b}{2}\right)^k.$$

Orthogonality to $G(n, \frac{a+b}{2}n)$ when $(a-b)^2 > 2(a+b)$

• Claim: Let $X_{k,n}$ denote the number of k-cycles where $k = O(\log^{1/4}(n))$. Then

$$X_{k,n}
ightarrow extsf{Pois}\left(rac{1}{k2^{k+1}}ig((a+b)^k+(a-b)^kig)
ight).$$

• If $Y_{n,k}$ is the corresponding variable for $G(n, \frac{a+b}{2n})$ then

$$\lim \mathbb{E} \left[X_{k,n} - Y_{k,n} \right] = \frac{1}{2k} \left(\frac{a-b}{2} \right)^k$$

lim Var[X_{k,n}], lim Var[Y_{k,n}] =
$$\frac{1}{2k}(1 + o_k(1))\left(\frac{a+b}{2}\right)^k$$

• For large k if

$$\left(\frac{a-b}{2}\right)^2 > \frac{a+b}{2}$$

then $X_{n,k}$ and $Y_{n,k}$ are almost orthogonal.

• Let P_n , Q_n be the distributions corresponding to $G(n, \frac{a}{n}, \frac{b}{n})$, $G(n, \frac{a+b}{2n})$.

• • = • • = •

3

- Let P_n , Q_n be the distributions corresponding to $G(n, \frac{a}{n}, \frac{b}{n})$, $G(n, \frac{a+b}{2n})$.
- We extend Q_n by letting $Q_n(\sigma|G) = \frac{P_n(G|\sigma)}{Z_n(G)}$.

- Let P_n , Q_n be the distributions corresponding to $G(n, \frac{a}{n}, \frac{b}{n})$, $G(n, \frac{a+b}{2n})$.
- We extend Q_n by letting $Q_n(\sigma|G) = \frac{P_n(G|\sigma)}{Z_n(G)}$.
- Let

$$Y_n := \frac{P_n(G,\sigma)}{Q_n(G,\sigma)} = \frac{P_n(\sigma)P_n(G|\sigma)Z_n(G)}{P_n(G|\sigma)} = 2^{-n}\frac{Z_n(G)}{Q_n(G)}.$$

- Let P_n , Q_n be the distributions corresponding to $G(n, \frac{a}{n}, \frac{b}{n})$, $G(n, \frac{a+b}{2n})$.
- We extend Q_n by letting $Q_n(\sigma|G) = \frac{P_n(G|\sigma)}{Z_n(G)}$.
- Let

$$Y_n := \frac{P_n(G,\sigma)}{Q_n(G,\sigma)} = \frac{P_n(\sigma)P_n(G|\sigma)Z_n(G)}{P_n(G|\sigma)} = 2^{-n}\frac{Z_n(G)}{Q_n(G)}.$$

• Working with the measure Q_n we see that $\mathbb{E}[Y_n] = 1$. Moreover, we show

$$\mathbb{E}\left[Y_n^2\right] = (1+o(1))rac{e^{-t/2-t^2/4}}{\sqrt{1-t}}, \quad t = rac{(a-b)^2}{2(a+b)}.$$

- Let P_n , Q_n be the distributions corresponding to $G(n, \frac{a}{n}, \frac{b}{n})$, $G(n, \frac{a+b}{2n})$.
- We extend Q_n by letting $Q_n(\sigma|G) = \frac{P_n(G|\sigma)}{Z_n(G)}$.
- Let

$$Y_n := \frac{P_n(G,\sigma)}{Q_n(G,\sigma)} = \frac{P_n(\sigma)P_n(G|\sigma)Z_n(G)}{P_n(G|\sigma)} = 2^{-n}\frac{Z_n(G)}{Q_n(G)}.$$

• Working with the measure Q_n we see that $\mathbb{E}[Y_n] = 1$. Moreover, we show

$$\mathbb{E}\left[Y_n^2\right] = (1+o(1))\frac{e^{-t/2-t^2/4}}{\sqrt{1-t}}, \quad t = \frac{(a-b)^2}{2(a+b)}.$$

• This already shows that $\lim_{\epsilon \to 0} \lim_{n \to \infty} \mathbb{P}(Y_n > \epsilon^{-1}) = 0$ goes to zero.

通 と イ ヨ と イ ヨ と

- Let P_n , Q_n be the distributions corresponding to $G(n, \frac{a}{n}, \frac{b}{n})$, $G(n, \frac{a+b}{2n})$.
- We extend Q_n by letting $Q_n(\sigma|G) = \frac{P_n(G|\sigma)}{Z_n(G)}$.
- Let

$$Y_n := \frac{P_n(G,\sigma)}{Q_n(G,\sigma)} = \frac{P_n(\sigma)P_n(G|\sigma)Z_n(G)}{P_n(G|\sigma)} = 2^{-n}\frac{Z_n(G)}{Q_n(G)}.$$

• Working with the measure Q_n we see that $\mathbb{E}[Y_n] = 1$. Moreover, we show

$$\mathbb{E}\left[Y_n^2\right] = (1+o(1))\frac{e^{-t/2-t^2/4}}{\sqrt{1-t}}, \quad t = \frac{(a-b)^2}{2(a+b)}.$$

- This already shows that $\lim_{\epsilon \to 0} \lim_{n \to \infty} \mathbb{P}(Y_n > \epsilon^{-1}) = 0$ goes to zero.
- Most of the work is devoted to apply the "small graph conditioning method" to show that lim_{ϵ→0} lim_{n→∞} P(Y_n < ϵ) = 0.

- Cluster information is detectible even in cases where it is impossible to identify with certainty the cluster identity of any individual node.
- Algorithms such as Belief Propagation are likely to be effective in detecting community structures.
- Challenge: efficient algorithm for community detection.
- Challenge: Extension to other models.