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/ General plan

Define a number of Markovian
Inheritance Models (MIM)

Discuss how to estimate and
reconstruct from data.

_ecture 1. Definition of Models

_ecture 2: Reconstruction via
metric estimates.

Lecture 3: Decay of information
and impossibility results.

Lecture 4: Reconstruction.
_ecture 5: Survey of more

advanced topics.
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/ General plan \

Disclaimers:

Won't prove anything hard.

Many of easy facts are exercises.
+ Questions!
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/ Markovian Inheritance Models

- An inheritance graph is nothing but

+ A directed acyclic graph (DAG) (V,E).
u->v:z=uisaparent of v,
direct ancestor;

* Par(v) := {parents of v}.
Ifu->v;->v, > ..V =V

v is a descendant of u, etc.

Anc(v) = {Ancestors of v}.
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/ Markovian Inheritance Models \

For each v € V, genetic content is given by o(v).
Def: An MIM is given by 1) a DAG (V,E)

2) A probability distribution P on =V

satisfying the Markov property:
P(o(v) = * | o(Anc(v))) =

Plo(v) =* | o(Par(v)))

Ex 1: Phylogeny <> speciation.
Ex 2: Pedlgr'ees <> H. genefics.
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/ Phylogenetic product models \

« Def: A Phylogenetic tree is an MIM where (V,E) is a
tree.

* Many models are given by products of simpler models.

« Lemma: Let (P,V,E) be an MIM taking values in =V,
Then (P2k, V, E) is an MIM taking values in (Z*)V,

« Pf: Exercise.

« In biological terms:

« Genetic data is given in sequences of letters.

« Each letter evolves independently according to the
same law (law includes the DAG (V,E)).

e /




The "random cluster” model
- Infinite set A of colors.

- “real life” - large |A|; e.g. gene order.

+ Defined on an un-rooted tree T=(V,E).

+ Edge e has (non-mutation) probability 6(e).

* Character: Perform percolation - edge e open with
probability 6(e).

» All the vertices v in the same open-cluster have the

same color o,. Different clusters get different colors.
This is the “random cluster” model (both for (P,V, E)

and (P&, V, E)
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Markov models on trees \

» Finite set X of information values.
* Tree T=(V,E) rooted at r.
Vertex v € V, has information g, € =.
+ Edge e=(v, u), where v is the parent of u, has a mutation
matrix Me of size |Z| x |Z]:
o Mi,j (vu) = P[gu = J | o, = 1]
For each character o, we are given o, .(0,), - ;7.
where 9T is the boundary of the tree.
* Most well knows is the Ising-CFN model.

14+6(e) 1-6(e) )

\\ M® = ( 1_8(e)  149(e)
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Insertions and Deletions on Trees
Not a product model (Thorne, Kishino, Felsenstein 91-2)
Vertex v € V, has information g, € * .Then:

Apply Markov model (e.g. CFN) to each site
independently.

Delete each letter indep. With prob p4(e).
There also exist variants with insertions.

ACGACCGCTGACCGACCCGACGTTGTAAACCGT Original Sequence

ACGACCGTTGACCGACCCGACATTGTAAACTGET Mutations
ACGACCGTTGACCGACCCGACATTGTAAACTGET Deletions
ACGCCGTTGACCGCCCGACTTGTAACTET Mutated Sequence
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ﬂsimple model of recombination on pedigr%

Let S be drawn from =t and let:
© 0,(8)= 0,(S),  0,(S°) = 0,(S°).

Let S=[1X;JU[X,,X3]U ...

ACGACCGCTGACCGACCCGAC ‘g

Vertex v € V, has information ¢, € =¥ .
_et © be a probability distribution over subsets of [K].
et uw be the father and mother of v.

+ Example: i.i.d. “Hot spot” process on [k]: {X,,..X.}

CGATGGCATGCACGATCTGAT

\u\ ACGAGGCATGCCCGACCTGAT //
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/ The reconstruction problem \
- We discuss two related problems.

In both, want to reconstruct/estimate unknown
parameters from observations.

The first is the “reconstruction problem”.
Here we are given the tree/DAG and

the values of the random variables at a subset of the
vertices.

Want to reconstruct the value of the random variable at
a specific vertex (“root”).

For trees this is algorithmically easy using
Dynamic programs / recursion.

gD
. )




/ Phylogenetic Reconstruction \
- Here the tree/DAG etc. is unknown.

+ Given a sequence of collections of random variables at
the leaves (“species™).

Want to reconstruct the tree (un-rooted).




vlogenetic Reconstruction

» Algorithmically “hard”. Many heuristics based on
\LM\cv(imum-Likelihood, Bayesian Statistics used in
8/12
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/ Trees

» In biology, all internal degrees > 3.

» Given a set of species (labeled vertices) X,
an X-tree is a tree which has X as the set
of leaves.

- Two X-trees T, and T, are identical if
there’s a graph isomorphism between T,
and T, that is the identity map on X.
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Highlights for next lectures

Develop methods to reconstruct
Phylogenies with the following guarantees.

+ Consider large trees (# of leaves n -> )

» Show that for all trees with high
probability (over randomness of
inheritance) recover the true tree.

» Upper and lower bounds on amount of
information needed.

» Surprising connections with phase
transitions in statistical physics.

* Briefly discuss why non-tree models are
much harder.
8/12
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/ Lecture plan

Lecture 2: Reconstruction via metric estimates.
Meftrics from stochastic models.

Tree Metrics determine trees.

Approximate Tree Metrics determine trees.
Some tree reconstruction algorithms.

Metric and geometric ideas for tree mixtures.
Metrics and pedigrees.
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/ The “random cluster” model \
- Infinite set A of colors.

- “real life” - large |A|; e.g. gene order.

+ Defined on an un-rooted tree T=(V,E).

+ Edge e has (non-mutation) probability 6(e).

* Character: Perform percolation - edge e open with
probability 6(e).

* All the vertices v in the same open-cluster have the
same color o,. Different clusters get different colors.

This is the “random cluster” model (both for (P,V, E)
and (P©k , V, E)
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/An additive metric for the RC modeN

is over all e in the path

*  Claim: d(u,v) is a metric
- Pf: Exercise

8/12

cohnectingu fo v.

» Claim: For all uv: P(o, = 0,) = [] ec pathuv)0(€), where the product

+ Def: Let d(e) = -log 6(e), and d(u,v)= Y. panwyd(€) = -log P(o, = o)
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Markov models on trees \

» Finite set X of information values.
* Tree T=(V,E) rooted at r.
Vertex v € V, has information g, € =.
+ Edge e=(v, u), where v is the parent of u, has a mutation
matrix Me of size |Z| x |Z]:
o Mi,j (vu) = P[gu = J | o, = 1]
For each character o, we are given o, .(0,), - ;7.
where 9T is the boundary of the tree.
* Most well knows is the Ising-CFN model.

14+6(e) 1-6(e) )

\\ M® = ( 1_8(e)  149(e)
2 2
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Markov models on trees
* Most well knows is the Ising-CFN model on {-1,1}:

140(e) 1—6(e)
Me = ( ) |

1—5(6) 1—|—29(e)
2 2

Claim: For all uv: E[0, 0,17 [T cc pathuy0(e).
Pf: Exercise.

Claim: d(u,v) = -log E[o, ov] IS a metric and
d(U,V): Eee pa‘rh(u,v)d(e)

This a special case of the log-det distance for General

Markov models on trees (Steel 94)
d(U,V) ~ —log |de‘|' l_[e e path(u,v) Mel
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Insertions and Deletions on Trees
* Not a product model (Thorne, Kishino, Felsenstein 91-2)
Vertex v € V, has information g, € * .Then:
Delete each letter indep. With prob pg(e).

ACGACCGTTGACCGACCCGACATTGTAAACTGT  Original Sequence
ACGACCGTTGACCGACCCGACATTGTAAACTGET Deletions
ACGCCGTTGACCGCCCGACTTEGTAACTGT Mutated Sequence

« Define d(u,v) = -log E[Avg(o,) Avg(o,)]
« This is a metric (Ex . Daskalakis-Roch 10).

Same also works if also insertions and mutations allowed.
8/12




/ From metrics to trees \

+ Def: Given a tree T=(V,E) a free metric is defined by a
collection of positive numbers { d(e) : e € E} by:

letting: d(u,v) = Yec patnwyd(e) all uyv e V.

* Claim: Let T=(V,E) a tree with all internal degrees at
least 3, let d be a tree metric on T and let L be the set
of leaves of T. Then { d(u,v) : uv € L } determines the
tree T uniquely.

6/18/12 /




/Think small: trees on 2 and 3 Ieaves\

* Q: What are the possible trees on 2 / 3 leaves a,b,c?
+ A: Only one tree if we assume all int. deg > 2.

o,
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/ Think small: trees on 4 leaves \
d?

* Q: What are the possible trees on 4 leaves a,b,c,
- A:ablcd, ac|bd, ad|bc or abcd

a el ed c ¢ b . b @ b
e

b e2 e3 d ¢ d d c d c
1 2 3 4

* Q: How to distinguish between them , given the leaves’
pairwise distances of the leaves?

- A: Look at partition xy, zw minimizing d(x,y) + d(z,w)

- Case 1-3 : The partition corresponding to the tree will give the
optimum distance - d(el)+d(e2)+d(e3)+d(e4), while all other
partitions will give distance bigger by 2d(e) (go through the
middle edge twice).

- Case 4 (star) : All partitions will give the same result.
S/ Note: Approximate distances (+/- d(e)/8) sufficel 4




From Small Tree to Big Trees

Claim: In order to recover tree topology suffice to know for each
set of 4 leaves what is the induced tfree.

Pf: By induction on size of tree using Cherries.
Definition: A cherry is a pair of leaves at graph distance 2.

Claim1 : vertices x,y make a cherry in the tree T iff they are a cherry
in all trees created of 4 of the it’ s leaves.

Claim2 : Every tree with all internal degrees > 3 has a cherry

Proof : Pick a root, take u to be the leaf farthest away from the root.
The sibling of u (must exist one as the degree > 3 ) must be a leaf as
well.

8/12




From leaf pairwise distances to ’rrees\

+ Algorithm to build tree from quartets :

- Find cherries (pairs of vertices which are coupled in
all 4-leaves combinations).

- For each cherry <x,y> replace it by a single leaf x
(remove all quartets involving both x,y; each quartet
including only y - replace the y by x)

- Repeat (until # leaves <4)

+ A statistical Q: How many samples k are needed?
* In other words: what is the seq length needed?

- A: We would like o have enough samples so we can
estimate d(u,v) with accuracy min_{d(e)/8}

+ Define f = min, d(e), g = max, d(e),

D = mc(x{u,v leaves} d(U,V).
8/12




/ From leaf pairwise distances to ’rrees\

+ A statistical Q: How many samples are actually needed?

+ A: We would like o have enough samples so we can
estimate d(u,v) with accuracy min_{d(e)/8}

+ Define f = min, d(e), g = max, d(e),
D = MAaxXg, v leaves} d(U,V).
+ In RC-model: e vs. e®-f/8 aqgreement.
- In CFN: e® vs. eD-t/8 correlation.
- Etc.

+ Claim: In both models need at least O(ePb/g?) samples to
estimate all distances within required accuracy.

- Claim: In both models O(log n eb/g?) suffice to estimate
all distances with required accuracy with good

probability.
- Exercises!
8/12




/ From leaf pairwise distances to ’rree\

Claim: In both models need at least O(eP/g) samples to
estimate all distances within required accuracy.

- Claim: In both models O(log n eb/g?) suffice to
estimate all distances with required accuracy with good
probability.

* Q: Is this bad? How large can D be? Let n = # leaves.
* D can be as small as O(log n) and as large as O(n).

+ If D = f n need O(ef" /g?) samples!

» Can we do better?

353200950 A{}z}/




/ From leaf pairwise distances to ’rreex

» Can we do better?
» Do we actually need *all* pairwise distances?
+ Do we actually need *all* quartets?

+ In fact: Need only “short quartets” so actual # of
samﬁles heeded is Oge8 flogh /g2) (Erods-Steel-
Szekeley-Warnow-96).

* An alternative approach is in Mossel-09:

v1*
*
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/ Distorted metrics idea sketch \

Construction: given a radius D:

* For each leaf u look at C(u,D) = all leaves v whose
estimated distance to u is at most D.

+ Construct the tree T(u,D) on C(u,D).

. Algor'l‘rhm to stitch T(u,D) s (main combinatorial
argument)

+ Sequence length needed is O(e?P/g?)
+ Lemma: if D> 2 g log n, will cover the tree.
. Even for smaller D, get forest that refines, the true

--w‘t.i ~ ¢!
BN »




/ Short and long edges \

* Gronau, Moran, Snir 2008: dealing with short edges
(sometimes need to contract)

» Daskalakis, Mossel, Roch 09: dealing with both short

gnd long edges: “contracting the short, pruning the
eep”.

CAY N
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/ Can we do better? \

» Consider e.g. the CFN model with sequence length k.
* Results so far = model can be reconstruct when
k = O(n*) where « = off,g).
+ Can we do better?
- Can we prove lower bounds?

\_ %




/ Can we do better? \

» Can we prove lower bounds?

- Trivial lower bound:

+ Claim 1: T, = set of leaf labeled trees on n leaves (and
all degrees at least 3). Then |T,|= exp(©( n log n)).

- Pf: Exercise.

+ Claim 2: # of possible sequences at the leaves is 2k,

» Conclusion: To have good prob. of reconstruction need
« 2"k>exp(@(nlogn)). = k> Q(log n)

\_ %




/ Can we do better? \

More formally:

» Claim: Consider a uniform prior over trees p.

* Then for all possible estimators Est

+ E, P[Est is correct] < 2"k / |T,|.

+ Pf sketch:

* The optimal estimator is deterministic:

+ Est: {01}k->T,.

+ E, P[Est is correct] < |Image(Est)| / |T,| <27k / |T,|

» Conclusion: Impossible to reconstruct if k < 0.5 log n
and possible if k > n®. What is the truth?

- Next lecture ...




/ Metric ideas for tree mixtures \

« Def:lLet T,=(V,E;,P)and T, = (V,, E,, P,) be two
EWlogene’rlic( mlodlelsl)on ‘rhezsan(wezlea% sez'r) L.

+  The (a,1-a) mixture of the two models is the
probability distribution a P; + (1-a) P,

- Construction (Matsen Steel 2009):

* There exist 3 {)/hylo enies T;, T,, T for the CFN model
with (V{,E;) = ( Z,EZ?;é (Vs, é3) and T;= 0.5(T; + T,)

= Mixtures are not identifiable!

a a
el eaf )¢ el e4 ¢ b
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/ Metric ideas for tree mixtures \

- Construction (Matsen Steel 2009).

* There exist 3 ()/hylo enies T;, T,, T for the CFN model
W|Th (VIIEI) - ( Z,EZ??ﬁ (V3/ é3) and T3: O5(T1 + TZ)

= Mixtures are not identifiablel

* On the other hand, using metric idea in a recent work
with Roch we show that when n is large and the trees T,
and T, are generic it is possible to find both of them
with high probability.

\_ %




/ Metric ideas for tree mixtures \

- Proof sketch: Fix a radius D > 10g.

+ Let S; ={u, v e Leaves: d;(u,v) < D}

» Easy to show that |S,|, |S;| > Q(n)

+ For “generic trees" we have |S, N S;| = o(n)

By looking for high correlation between leaves we can
approximately recover S; U S,.

* Note: Pairs in S; will tend to be correlated in samples
from T, and pairs in S, will be correlated in samples
from T..

By checking co-occurrence of correlation can
approximately recover both S; and S..

+ Using S; and S, can determine for each sample if it
comes from T,or from T,

Qme ideas can be used for different rates ... /




heterogeneous data

- definition by picture:

1 2 3

- “rates-across-sites”
trees are the same up to random scaling
in this talk, will focus on two-scaling case
can think of scaling as “hidden variable”

heterogeneous mutation rates
inconsistent lineage histories
hybrid speciation, gene transfer

corrupted data - FAST



but, on a mixture...




why are mixtures problematic?

- does the distribution at the leaves determine the a’s
and T’s?
negative results: e.g. [Steel et al.’94], [Stefankovic-Vigoda’07], [Matsen-
Steel’07], etc.

positive results: e.g. [Allman, Rhodes’06,’08], [Allman, Ane, Rhodes’08],
[Chai-Housworth’10], etc.

1 2 3

- assuming identifiability, can we reconstruct the
topologies efficiently?
- can mislead standard methods;

- ML under the full model is consistent in identifiable cases; BUT ML is
already NP-hard for pure case [Chor,Tuller’06, R.’06]




a hew site clustering approach

[M-Roch, 2011] - we give a simple way to determine
which sites come from which component
based on concentration of measure in large-tree limit

=2
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site clustering

ideally, guess which sites were produced by each component

- scaling is “hidden” but we can try to infer it
- to be useful, a test should work with high confidence

=1 Q> -

aa>» -



leaf agreement

- impact of scaling on leaf agreement

- one pair of leaves is not very informative
- we can look at many pairs

C = El{sa =sb}

(a,hYERCL?

N,oN\N /N, N\,

we would like C to be concentrated:

- large number of pairs

- each pair has a small contribution

- independent (or almost independent) pairs
- nice separation between SLOW and FAST
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ustering Statistic
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lustering Statistic
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but the tree is not complete...

. - on a general binary tree, the set of all pairs of leaves at
distance at most 10 is linear in n

- proof: count the number of leaves with no other leaves at distance 5

. - in fact, can find a linear set of leaf pairs that are non-
intersecting

- proof: sparsify above

« this is enough to build a concentrated statistic

C = EI{Sd =Sb}

(a,b)ERCL?




but we don’t know the tree...

- cannot compute exact distances but can tell
which pairs are more or less correlated

- find “close” pairs
- starting with one pair, remove all pairs that are too close
- pick one of the remaining pairs and repeat

C = El{sa =sb}

(a,hYERCL?

- this gives a nicely concentrated
variable (for large enough trees)

- large number of pairs
- independent (or almost independent) pairs
- nice separation between SLOW and FAST




lustering Statistic
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summary

Proposition 4 (Site Clustering: RAS-JC Model) Under the assumptions stated
in Section 2 on the RAS-JC model, for any given tolerance on the mutation and
mixture parameters, there exists a high-confidence site clustering algorithm.

Proposition 5 (Full Reconstruction: RAS-JC Model) Under the assumptions stated
in Section 2 on the RAS-JC model, for any given tolerance on the mutation and

mixture parameters, there exisis a high-probability reconstruction algorithm us-
ing polynomial-length sequences and running in polynomial time.




/ Metric ideas for pedigrees \

» Correlation measure = inheritance by decent

complicated ...

\_

» Doesn't really measure distance but something more
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/ The reconstruction problem \
- We discuss two related problems.

In both, want to reconstruct/estimate unknown
parameters from observations.

The first is the “reconstruction problem”.
Here we are given the tree/DAG and

the values of the random variables at a subset of the
vertices.

Want to reconstruct the value of the random variable at
a specific vertex (“root”).

For trees this is algorithmically easy using
Dynamic programs / recursion.

gD
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/ Phylogenetic Reconstruction \
- Here the tree/DAG etc. is unknown.

+ Given a sequence of collections of random variables at
the leaves (“species™).

Want to reconstruct the tree (un-rooted).




vlogenetic Reconstruction

» Algorithmically “hard”. Many heuristics based on
\LM\cv(imum-Likelihood, Bayesian Statistics used in
8/12

practice.
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/ Trees

» In biology, all internal degrees > 3.

» Given a set of species (labeled vertices) X,
an X-tree is a tree which has X as the set
of leaves.

- Two X-trees T, and T, are identical if
there’s a graph isomorphism between T,
and T, that is the identity map on X.

8/12




Highlights for next lectures

Develop methods to reconstruct
Phylogenies with the following guarantees.

+ Consider large trees (# of leaves n -> )

» Show that for all trees with high
probability (over randomness of
inheritance) recover the true tree.

» Upper and lower bounds on amount of
information needed.

» Surprising connections with phase
transitions in statistical physics.

* Briefly discuss why non-tree models are
much harder.
8/12
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