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General plan 
•  Define a number of Markovian 

Inheritance Models (MIM) 
•  Discuss how to estimate and 

reconstruct from data.  
•  Lecture 1: Definition of Models 
•  Lecture 2: Reconstruction via 

metric estimates. 
•  Lecture 3: Decay of information 

and impossibility results.  
•  Lecture 4: Reconstruction. 
•  Lecture 5: Survey of more 

advanced topics.  
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General plan 
•  Disclaimers: 
•  Won’t prove anything hard. 
•  Many of easy facts are exercises. 
•  Questions!   
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Markovian Inheritance Models 
•  An inheritance graph is nothing but  
•  A directed acyclic graph (DAG) (V,E). 
•  u -> v := u is a parent of v,  

 direct ancestor;  
•  Par(v) := {parents of v}.  
•  If u -> v1 -> v2 -> … vk = v 
•  v is a descendant of u, etc.  
•  Anc(v) = {Ancestors of v}.  

CSS, NBII 
NHGIR, 
Darryl Lega  
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Markovian Inheritance Models 

•  For each v 2 V, genetic content is given by σ(v).  
•  Def: An MIM is given by 1) a DAG (V,E)   
•  2) A probability distribution P on ΣV  

 satisfying the Markov property:  
•  P(σ(v) = * | σ(Anc(v))) =  

 P(σ(v) = * |  σ(Par(v))) 
•  Ex 1: Phylogeny > speciation.  
•  Ex 2: Pedigrees > H. genetics. 
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Phylogenetic product models 

•  Def: A Phylogenetic tree is an MIM where (V,E) is a 
tree. 

•  Many models are given by products of simpler models.  
•  Lemma: Let (P,V,E) be an MIM taking values in ΣV.  

 Then (P k , V, E) is an MIM taking values in (Σk)V.  
•  Pf: Exercise.  
•  In biological terms:  
•  Genetic data is given in sequences of letters.  
•  Each letter evolves independently according to the 

same law (law includes the DAG (V,E)).  
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The “random cluster” model 
•  Infinite set A of colors.  

–  “real life” – large |A|; e.g. gene order. 
•  Defined on an un-rooted tree T=(V,E). 
•  Edge e has (non-mutation) probability θ(e). 
•  Character: Perform percolation – edge e open with 

probability θ(e).  
•  All the vertices v in the same open-cluster have the 

same color σv. Different clusters get different colors. 
This is the “random cluster” model (both for (P,V, E) 
and (P k , V, E)  
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Markov models on trees 
•  Finite set Σ of information values.  
•  Tree T=(V,E) rooted at r. 
•  Vertex v 2 V, has information σv 2 Σ. 
•  Edge e=(v, u), where v is the parent of u, has a mutation 

matrix Me of size |Σ| £ |Σ|: 
•  Mi,j 

(v,u) = P[σu = j | σv = i] 
•  For each character σ, we are given σ∂T = (σv)v 2 ∂T, 

 where ∂T is the boundary of the tree. 
•  Most well knows is the Ising-CFN model.  
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Insertions and Deletions on Trees  
•  Not a product model (Thorne, Kishino, Felsenstein 91-2) 
•  Vertex v 2 V, has information σv 2 Σ¤  .Then:  
•  Apply Markov model (e.g. CFN) to each site 

independently.  
•  Delete each letter indep. With prob pd(e).  
•  There also exist variants with insertions.  
 

ACGACCGCTGACCGACCCGACGTTGTAAACCGT 

ACGACCGTTGACCGACCCGACATTGTAAACTGT 

ACGACCGTTGACCGACCCGACATTGTAAACTGT 

ACGCCGTTGACCGCCCGACTTGTAACTGT 

Mutations 

Deletions 

Mutated Sequence 

Original Sequence 
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A simple model of recombination on pedigrees  
 
•  Vertex v 2 V, has information σv 2 Σk  . 
•  Let π  be a probability distribution over subsets of [k]. 
•  Let u,w be the father and mother of v.  
•  Let S be drawn from π and let: 
•  σv(S) = σu(S),  σv(Sc) = σw(Sc). 
•  Example: i.i.d. “Hot spot” process on [k]: {X1,…Xr} 

 Let S = [1,X1] [ [X2,X3] [ … 
ACGACCGCTGACCGACCCGAC CGATGGCATGCACGATCTGAT 

ACGAGGCATGCCCGACCTGAT 
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The reconstruction problem 

 

•  We discuss two related problems. 
•  In both, want to reconstruct/estimate unknown 

parameters from observations. 
•  The first is the “reconstruction problem”. 
•  Here we are given the tree/DAG and 
•  the values of the random variables at a subset of the 

vertices. 
•  Want to reconstruct the value of the random variable at 

a specific vertex (“root”). 
•  For trees this is algorithmically easy using 

 Dynamic programs / recursion.  
  ?? 
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Phylogenetic Reconstruction 

 

•  Here the tree/DAG etc. is unknown. 
•  Given a sequence of collections of random variables at 

the leaves (“species”). 
•  Want to reconstruct the tree (un-rooted). 
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Phylogenetic Reconstruction 

•  Algorithmically “hard”. Many heuristics based on 
Maximum-Likelihood, Bayesian Statistics used in 
practice. 



6/18/12 14 

Trees 

 
•  In biology, all internal degrees ¸ 3. 

•  Given a set of species (labeled vertices) X, 
an X-tree is a tree which has X as the set 
of leaves. 

•  Two X-trees T1 and T2 are identical if 
there’s a graph isomorphism between T1 
and T2 that is the identity map on X. 
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Highlights for next lectures 
•  Develop methods to reconstruct 

Phylogenies with the following guarantees.  
•  Consider large trees (# of leaves n -> 1) 
•  Show that for all trees with high 

probability (over randomness of 
inheritance) recover the true tree.  

•  Upper and lower bounds on amount of 
information needed.  

•  Surprising connections with phase 
transitions in statistical physics.  

•  Briefly discuss why non-tree models are 
much harder.  
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Lecture plan 

•  Lecture 2: Reconstruction via metric estimates. 
•  Metrics from stochastic models. 
•  Tree Metrics determine trees.  
•  Approximate Tree Metrics determine trees.  
•  Some tree reconstruction algorithms.  
•  Metric and geometric ideas for tree mixtures.  
•  Metrics and pedigrees.    
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The “random cluster” model 
•  Infinite set A of colors.  

–  “real life” – large |A|; e.g. gene order. 
•  Defined on an un-rooted tree T=(V,E). 
•  Edge e has (non-mutation) probability θ(e). 
•  Character: Perform percolation – edge e open with 

probability θ(e).  
•  All the vertices v in the same open-cluster have the 

same color σv. Different clusters get different colors. 
This is the “random cluster” model (both for (P,V, E) 
and (P k , V, E)  
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An additive metric for the RC model 

•  Claim: For all u,v:  P(σu = σv) = ∏ e2 path(u,v)θ(e),  where the product 
is over all e in the path connecting u to v.  

•  Def: Let d(e) = –log  θ(e), and d(u,v)= ∑e2 path(u,v)d(e) = -log P(σu = σv) 

•  Claim: d(u,v) is a metric 
–  Pf: Exercise 
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Markov models on trees 
•  Finite set Σ of information values.  
•  Tree T=(V,E) rooted at r. 
•  Vertex v 2 V, has information σv 2 Σ. 
•  Edge e=(v, u), where v is the parent of u, has a mutation 

matrix Me of size |Σ| £ |Σ|: 
•  Mi,j 

(v,u) = P[σu = j | σv = i] 
•  For each character σ, we are given σ∂T = (σv)v 2 ∂T, 

 where ∂T is the boundary of the tree. 
•  Most well knows is the Ising-CFN model.  
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Markov models on trees 
•  Most well knows is the Ising-CFN model on {-1,1}: 
 
 

•  Claim: For all u,v:  E[σu σv]= ∏ e2 path(u,v)θ(e).  
•  Pf: Exercise. 
•  Claim:  d(u,v) = -log E[σu σv

] is a metric and  
 d(u,v)= ∑e2 path(u,v)d(e)  

•  This a special case of the log-det distance for General 
Markov models on trees (Steel 94)  
 d(u,v) ~ -log |det ∏e 2 path(u,v) M

e| 
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Insertions and Deletions on Trees  
•  Not a product model (Thorne, Kishino, Felsenstein 91-2) 
•  Vertex v 2 V, has information σv 2 Σ¤  .Then:  
•  Delete each letter indep. With prob pd(e).  
 
 

ACGACCGTTGACCGACCCGACATTGTAAACTGT 

ACGACCGTTGACCGACCCGACATTGTAAACTGT 

ACGCCGTTGACCGCCCGACTTGTAACTGT 

Deletions 

Mutated Sequence 

Original Sequence 

•  Define d(u,v) = -log E[Avg(σu) Avg(σv)] 
•  This is a metric (Ex ; Daskalakis-Roch 10). 
•  Same also works if also insertions and mutations allowed.  
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From metrics to trees  
 
•  Def: Given a tree T=(V,E) a tree metric is defined by a 

collection of positive numbers { d(e) : e 2 E} by: 
 letting: d(u,v) = ∑e2 path(u,v)d(e) all u,v 2 V. 

•  Claim: Let T=(V,E) a tree with all internal degrees at 
least 3, let d be a tree metric on T and let L be the set 
of leaves of T. Then { d(u,v) : u,v 2 L } determines the 
tree T uniquely.  
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Think small: trees on 2 and 3 leaves 

•  Q: What are the possible trees on 2 / 3 leaves a,b,c? 
•  A:  Only one tree if we assume all int. deg > 2. 

a 

a c 
b 

b 
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Think small: trees on 4 leaves 
•  Q: What are the possible trees on 4 leaves a,b,c,d? 
•  A: ab|cd, ac|bd, ad|bc or abcd 

•  Q: How to distinguish between them , given the leaves’ 
pairwise distances of the leaves? 

•  A: Look at partition xy, zw minimizing d(x,y) + d(z,w) 
–  Case 1-3 : The partition corresponding to the tree will give the 

optimum distance – d(e1)+d(e2)+d(e3)+d(e4), while all other 
partitions will give distance bigger by 2d(e) (go through the 
middle edge twice). 

–  Case 4 (star) : All partitions will give the same result. 
–  Note: Approximate distances (+/- d(e)/8) suffice!  

a 

b d 

c a 

c d 

b a 

d c 

b a 

d c 

b e1 

e2 e3 

e4 
e 

1 2 3 4 
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From Small Tree to Big Trees 

•  Claim: In order to recover tree topology suffice to know for each 
set of 4 leaves what is the induced tree.  

•  Pf:  By induction on size of tree using Cherries.  
•  Definition: A cherry is a pair of leaves at graph distance 2. 
•  Claim1 : vertices x,y make a cherry in the tree T iff they are a cherry 

in all trees created of 4 of the it’s leaves. 
•  Claim2 : Every tree with all internal degrees ¸ 3 has a cherry 
•  Proof : Pick a root, take u to be the leaf farthest away from the root. 

The sibling of u (must exist one as the degree ¸ 3 ) must be a leaf as 
well. 

 
 

25 
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From leaf pairwise distances to trees 

•  Algorithm to build tree from quartets :  
–  Find cherries (pairs of vertices which are coupled in 

all 4-leaves combinations). 
–  For each cherry <x,y> replace it by a single leaf x 

 (remove all quartets involving both x,y; each quartet 
including only y – replace the y by x) 

–  Repeat (until # leaves ·4) 

•  A statistical Q: How many samples k are needed?  
•  In other words: what is the seq length needed? 
•  A: We would like to have enough samples so we can 

estimate d(u,v) with accuracy mine{d(e)/8} 
•  Define f = mine d(e), g = maxe d(e),  

 D = max{u,v leaves} d(u,v).  
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From leaf pairwise distances to trees 
 

•  A statistical Q: How many samples are actually needed?  
•  A: We would like to have enough samples so we can 

estimate d(u,v) with accuracy mine{d(e)/8} 
•  Define f = mine d(e), g = maxe d(e),  

 D = max{u,v leaves} d(u,v).  
•  In RC-model: e-D vs. e-D-f/8 agreement. 
•  In CFN: e-D vs. e-D-f/8 correlation.  
•  Etc.  
•  Claim:  In both models need at least O(eD/g2) samples to 

estimate all distances within required accuracy.   
•  Claim: In both models O(log n eD/g2 ) suffice to estimate 

all distances with required accuracy with good 
probability.   

•  Exercises!   
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From leaf pairwise distances to trees 
 

•  Claim:  In both models need at least O(eD/g) samples to 
estimate all distances within required accuracy.   

•  Claim: In both models O(log n eD/g2 ) suffice to 
estimate all distances with required accuracy with good 
probability.   

•  Q: Is this bad? How large can D be? Let n = # leaves. 
•  D can be as small as O(log n) and as large as O(n).  
•  If D = f n need O(ef n /g2) samples!   
•  Can we do better?    
 

c d c 

b 



From leaf pairwise distances to trees 
 

•  Can we do better?    
•  Do we actually need *all* pairwise distances?  
•  Do we actually need *all* quartets?  

•  In fact: Need only “short quartets” so actual # of 
samples needed is O(e8 f log n  /g2)  (Erods-Steel-
Szekeley-Warnow-96).  

•  An alternative approach is in Mossel-09: 

 

u1 

u2 

v1 

v2 
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v1 * 

v2 * 

u1 * 

u2 * 
u v 



Distorted metrics idea sketch 
 

•  Construction: given a radius D: 
•  For each leaf u look at C(u,D) = all leaves v whose 

estimated distance to u is at most D.  
•  Construct the tree T(u,D) on C(u,D). 
•  Algorithm to stitch T(u,D)’s (main combinatorial 

argument)  
•  Sequence length needed is O(e2D/g2) 
•  Lemma: if D > 2 g log n, will cover the tree.  
•  Even for smaller D, get forest that refines the true 

tree.   
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Short and long edges 
 

•  Gronau, Moran, Snir 2008: dealing with short edges 
(sometimes need to contract) 

•  Daskalakis, Mossel, Roch 09: dealing with both short 
and long edges: “contracting the short, pruning the 
deep”.  
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Can we do better?  
 

•  Consider e.g. the CFN model with sequence length k. 
•  Results so far ) model can be reconstruct when  
    k = O(n®) where ® = ®(f,g). 
•  Can we do better?  
•  Can we prove lower bounds?  

 



Can we do better?  
 

•  Can we prove lower bounds?  

•  Trivial lower bound: 
•  Claim 1: Tn = set of leaf labeled trees on n leaves (and 

all degrees at least 3). Then |Tn|= exp(£( n log n)).  
•  Pf: Exercise. 

•  Claim 2: # of possible sequences at the leaves is 2k n.  

•  Conclusion: To have good prob. of reconstruction need  
•  2n k > exp(£( n log n)).  ) k ¸ Ω(log n) 
 



Can we do better?  
 

•   More formally:  

•  Claim: Consider a uniform prior over trees µ.  
•  Then for all possible estimators Est  
•  Eµ P[Est is correct] · 2n k / |Tn|. 
•  Pf sketch: 
•  The optimal estimator is deterministic: 
•  Est : {0,1}n k -> Tn. 
•  Eµ P[Est is correct] · |Image(Est)| / |Tn| · 2n k / |Tn| 

•  Conclusion: Impossible to reconstruct if k · 0.5 log n 
and possible if k ¸ n®. What is the truth?  

•  Next lecture …  



Metric ideas for tree mixtures  
 

•  Def: Let T1=(V1,E1,P1) and T2 = (V2, E2, P2) be two 
phylogenetic models on the same leaf set L.  

•   The (®,1-®) mixture of the two models is the 
probability distribution ® P1 + (1-®) P2 

•  Construction (Matsen Steel 2009): 
•  There exist 3 phylogenies T1, T2, T3 for the CFN model 

with (V1,E1) = (V2,E2) ≠ (V3, E3) and T3= 0.5(T1 + T2) 
•   ) Mixtures are not identifiable!  

a 

b 
d 

c a 

d c 
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e2 e3 

e4 
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e4 
e 



Metric ideas for tree mixtures  
 

•  Construction (Matsen Steel 2009): 
•  There exist 3 phylogenies T1, T2, T3 for the CFN model 

with (V1,E1) = (V2,E2) ≠ (V3, E3) and T3= 0.5(T1 + T2) 
•   ) Mixtures are not identifiable!  

•  On the other hand, using metric idea in a recent work 
with Roch we show that when n is large and the trees T1 
and T2 are generic it is possible to find both of them 
with high probability.  



Metric ideas for tree mixtures  
 

•  Proof sketch: Fix a radius D ¸ 10g.  
•  Let S1 = { u, v 2 Leaves: d1(u,v) · D}  
•  Easy to show that |S2|, |S1| ¸ Ω(n)  
•  For “generic trees” we have |S2 Å S1| = o(n)  
•  By looking for high correlation between leaves we can 

approximately recover S1 [ S2. 
•  Note: Pairs in S1 will tend to be correlated in samples 

from T1 and pairs in S2 will be correlated in samples 
from T2.  

•  By checking co-occurrence of correlation can 
approximately recover both S1 and S2.  

•  Using S1 and S2 can determine for each sample if it 
comes from T1 or from T2  

•  Same ideas can be used for different rates …  



heterogeneous data 

•  phylogenetic mixtures – definition by picture: 

•  special case – “rates-across-sites” 
–  trees are the same up to random scaling 
–  in this talk, will focus on two-scaling case 
–  can think of scaling as “hidden variable” 

•  biological motivation  
-  heterogeneous mutation rates 
-  inconsistent lineage histories 
-  hybrid speciation, gene transfer 
-  corrupted data 

T1 
+α2 α1 +α3 +... 

T2 T3 

+ 

SLOW FAST 



but, on a mixture… 

+ = 



why are mixtures problematic?  

•  identifiability – does the distribution at the leaves determine the α’s 
and T’s? 
-  negative results: e.g. [Steel et al.’94], [Stefankovic-Vigoda’07], [Matsen-

Steel’07], etc. 
-  positive results: e.g. [Allman, Rhodes’06,’08], [Allman, Ane, Rhodes’08], 

[Chai-Housworth’10], etc. 

•  algorithmic – assuming identifiability, can we reconstruct the 
topologies efficiently? 
–  can mislead standard methods;  
–  ML under the full model is consistent in identifiable cases; BUT ML is 

already NP-hard for pure case [Chor,Tuller’06, R.’06] 

T1 
+α2 α1 +α3 +... 

T2 T3 



a new site clustering approach 

•  new results [M-Roch, 2011] – we give a simple way to determine 
which sites come from which component 
–  based on concentration of measure in large-tree limit 



site clustering 

•  ideally, guess which sites were produced by each component  
 
–  scaling is “hidden” but we can try to infer it 
–  to be useful, a test should work with high confidence 
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leaf agreement 

•  a natural place to start - impact of scaling on leaf agreement  
 
–  one pair of leaves is not very informative 
–  we can look at many pairs 

•  we would like C to be concentrated: 

–  large number of pairs 
–  each pair has a small contribution 
–  independent (or almost independent) pairs 
–  nice separation between SLOW and FAST 

! 

C = " sa = sb{ }
(a,b )#R$L2
%

a b c d 



64 leaves 



128 leaves 



256 leaves 



512 leaves 



but the tree is not complete… 

•  lemma 1 – on a general binary tree, the set of all pairs of leaves at 
distance at most 10 is linear in n 

–  proof: count the number of leaves with no other leaves at distance 5 

•  lemma 2 – in fact, can find a linear set of leaf pairs that are non-
intersecting 

–  proof: sparsify above 

•  this is enough to build a concentrated statistic 

! 

ˆ C = " sa = sb{ }
(a,b )# ˆ R $L2

%



but we don’t know the tree… 

•  a simple algorithm – cannot compute exact distances but can tell 
which pairs are more or less correlated 
 
–  find “close” pairs 
–  starting with one pair, remove all pairs that are too close 
–  pick one of the remaining pairs and repeat 

•  claim – this gives a nicely concentrated  
variable (for large enough trees) 

–  large number of pairs 
–  independent (or almost independent) pairs 
–  nice separation between SLOW and FAST 

! 

ˆ C = " sa = sb{ }
(a,b )# ˆ R $L2

%



site clustering + reconstruction 



summary 



Metric ideas for pedigrees  
 

•  Correlation measure = inheritance by decent  
•  Doesn’t really measure distance but something more 

complicated … 
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The reconstruction problem 

 

•  We discuss two related problems. 
•  In both, want to reconstruct/estimate unknown 

parameters from observations. 
•  The first is the “reconstruction problem”. 
•  Here we are given the tree/DAG and 
•  the values of the random variables at a subset of the 

vertices. 
•  Want to reconstruct the value of the random variable at 

a specific vertex (“root”). 
•  For trees this is algorithmically easy using 

 Dynamic programs / recursion.  
  ?? 
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Phylogenetic Reconstruction 

 

•  Here the tree/DAG etc. is unknown. 
•  Given a sequence of collections of random variables at 

the leaves (“species”). 
•  Want to reconstruct the tree (un-rooted). 
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Phylogenetic Reconstruction 

•  Algorithmically “hard”. Many heuristics based on 
Maximum-Likelihood, Bayesian Statistics used in 
practice. 
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Trees 

 
•  In biology, all internal degrees ¸ 3. 

•  Given a set of species (labeled vertices) X, 
an X-tree is a tree which has X as the set 
of leaves. 

•  Two X-trees T1 and T2 are identical if 
there’s a graph isomorphism between T1 
and T2 that is the identity map on X. 
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Highlights for next lectures 
•  Develop methods to reconstruct 

Phylogenies with the following guarantees.  
•  Consider large trees (# of leaves n -> 1) 
•  Show that for all trees with high 

probability (over randomness of 
inheritance) recover the true tree.  

•  Upper and lower bounds on amount of 
information needed.  

•  Surprising connections with phase 
transitions in statistical physics.  

•  Briefly discuss why non-tree models are 
much harder.  


