Markovian Models of Genetic Inheritance

Elchanan Mossel,
U.C. Berkeley

mossel@stat.berkeley.edu,
http://www.cs.berkeley.edu/~mossel/
General plan

• Define a number of Markovian Inheritance Models (MIM)
• Discuss how to estimate and reconstruct from data.
• Lecture 1: Definition of Models
• Lecture 2: Reconstruction via metric estimates.
• Lecture 3: Decay of information and impossibility results.
• Lecture 4: Reconstruction.
• Lecture 5: Survey of more advanced topics.
General plan

• Disclaimers:
• Won’t prove anything hard.
• Many of easy facts are exercises.
• Questions!
Markovian Inheritance Models

- An inheritance graph is nothing but
- A directed acyclic graph (DAG) \((V,E)\).
- \(u \rightarrow v := u\) is a parent of \(v\),
 direct ancestor;
- \(\text{Par}(v) := \{\text{parents of } v\}\).
- If \(u \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots v_k = v\)
- \(v\) is a descendant of \(u\), etc.
- \(\text{Anc}(v) = \{\text{Ancestors of } v\}\).
Markovian Inheritance Models

• For each $v \in V$, genetic content is given by $\sigma(v)$.
• Def: An MIM is given by 1) a DAG (V,E)
 2) A probability distribution P on Σ^V
satisfying the Markov property:
 • $P(\sigma(v) = * \mid \sigma(\text{Anc}(v))) =$
 $P(\sigma(v) = * \mid \sigma(\text{Par}(v)))$
• Ex 1: Phylogeny \leftrightarrow speciation.
• Ex 2: Pedigrees \leftrightarrow H. genetics.
Phylogenetic product models

- **Def:** A Phylogenetic tree is an MIM where \((V,E)\) is a tree.
- Many models are given by products of simpler models.
- **Lemma:** Let \((P,V,E)\) be an MIM taking values in \(\Sigma^V\). Then \((P^\otimes k, V, E)\) is an MIM taking values in \((\Sigma^k)^V\).
- **Pf:** Exercise.
- In biological terms:
 - Genetic data is given in sequences of letters.
 - Each letter evolves independently according to the same law (law includes the DAG \((V,E)\)).
The "random cluster" model

- Infinite set A of colors.
 - "real life" - large $|A|$; e.g. gene order.
- Defined on an un-rooted tree $T=(V,E)$.
- Edge e has (non-mutation) probability $\theta(e)$.
- Character: Perform percolation - edge e open with probability $\theta(e)$.
- All the vertices v in the same open-cluster have the same color σ_v. Different clusters get different colors. This is the "random cluster" model (both for (P,V,E) and $(P^\otimes k, V, E)$.
Markov models on trees

- Finite set Σ of information values.
- Tree $T=(V,E)$ rooted at r.
- Vertex $v \in V$, has information $\sigma_v \in \Sigma$.
- Edge $e=(v,u)$, where v is the parent of u, has a mutation matrix M^e of size $|\Sigma| \times |\Sigma|$:

 $M_{i,j}^{(v,u)} = P[\sigma_u = j \mid \sigma_v = i]$

- For each character σ, we are given $\sigma_{\partial T} = (\sigma_v)_{v \in \partial T}$, where ∂T is the boundary of the tree.
- Most well known is the Ising-CFN model.

$$M^e = \begin{pmatrix}
\frac{1+\theta(e)}{2} & \frac{1-\theta(e)}{2} \\
\frac{1-\theta(e)}{2} & \frac{1+\theta(e)}{2}
\end{pmatrix}.$$
Insertions and Deletions on Trees

- Not a product model (Thorne, Kishino, Felsenstein 91-2)
- Vertex $v \in V$, has information $\sigma_v \in \Sigma^*$. Then:
 - Apply Markov model (e.g. CFN) to each site independently.
 - Delete each letter indep. With prob $p_d(\epsilon)$.
 - There also exist variants with insertions.

Original Sequence

```
ACGACCGCTGACCGACCCGACGTTGTAAACCGT
```

Mutations

```
ACGACCGTTGACCGACCCGACACATTGTAAACTGT
```

Deletions

```
ACGACCGTTGACCGACCCGACATTTGTAACCTGT
```

Mutated Sequence

```
ACGCCGTTGACCGCCCGACCTTGTAACTGT
```
A simple model of recombination on pedigrees

• Vertex $v \in V$, has information $\sigma_v \in \Sigma^k$.
• Let π be a probability distribution over subsets of $[k]$.
• Let u,w be the father and mother of v.
• Let S be drawn from π and let:
 • $\sigma_v(S) = \sigma_u(S)$, $\sigma_v(S^c) = \sigma_w(S^c)$.
• Example: i.i.d. “Hot spot” process on $[k]$: $\{X_1, \ldots X_r\}$

Let $S = [1,X_1] \cup [X_2,X_3] \cup \ldots$

ACGACCGCTGACCACCCGAC → CGATGGCATGCAACGATCTGAT

ACGAGGCATGCCCCGACCTGAT
The reconstruction problem

- We discuss two related problems.
- In both, want to reconstruct/estimate unknown parameters from observations.
- The first is the “reconstruction problem”.
- Here we are given the tree/DAG and
- the values of the random variables at a subset of the vertices.
- Want to reconstruct the value of the random variable at a specific vertex (“root”).
- For trees this is algorithmically easy using
 Dynamic programs / recursion.
Phylogenetic Reconstruction

- Here the tree/DAG etc. is unknown.
- Given a sequence of collections of random variables at the leaves (“species”).
- Want to reconstruct the tree (un-rooted).
Phylogenetic Reconstruction

Trees

- In biology, all internal degrees ≥ 3.

- Given a set of species (labeled vertices) X, an X-tree is a tree which has X as the set of leaves.

- Two X-trees T_1 and T_2 are identical if there's a graph isomorphism between T_1 and T_2 that is the identity map on X.
Highlights for next lectures

• Develop methods to reconstruct Phylogenies with the following guarantees.
• Consider large trees (# of leaves $n \to \infty$)
• Show that for all trees with high probability (over randomness of inheritance) recover the true tree.
• Upper and lower bounds on amount of information needed.
• Surprising connections with phase transitions in statistical physics.
• Briefly discuss why non-tree models are much harder.
Lecture plan

• Lecture 2: Reconstruction via metric estimates.
• Metrics from stochastic models.
• Tree Metrics determine trees.
• Approximate Tree Metrics determine trees.
• Some tree reconstruction algorithms.
• Metric and geometric ideas for tree mixtures.
• Metrics and pedigrees.
The "random cluster" model

- Infinite set A of colors.
 - "real life" - large $|A|$; e.g. gene order.
- Defined on an un-rooted tree $T=(V,E)$.
- Edge e has (non-mutation) probability $\theta(e)$.
- Character: Perform percolation - edge e open with probability $\theta(e)$.
- All the vertices v in the same open-cluster have the same color σ_v. Different clusters get different colors. This is the "random cluster" model (both for (P,V, E) and $(P^k \otimes V, E)$.)
An additive metric for the RC model

- **Claim:** For all u,v: $P(\sigma_u = \sigma_v) = \prod_{e \in \text{path}(u,v)} \theta(e)$, where the product is over all e in the path connecting u to v.

- **Def:** Let $d(e) = -\log \theta(e)$, and $d(u,v) = \sum_{e \in \text{path}(u,v)} d(e) = -\log P(\sigma_u = \sigma_v)$

- **Claim:** $d(u,v)$ is a metric
 - Pf: Exercise
Markov models on trees

- Finite set Σ of information values.
- Tree $T=(V,E)$ rooted at r.
- Vertex $v \in V$, has information $\sigma_v \in \Sigma$.
- Edge $e=(v, u)$, where v is the parent of u, has a mutation matrix M^e of size $|\Sigma| \times |\Sigma|$:

 $$M^e_{i,j}(v,u) = P[\sigma_u = j | \sigma_v = i]$$

- For each character σ, we are given $\sigma_{\partial T} = (\sigma_v)_{v \in \partial T}$, where ∂T is the **boundary** of the tree.
- Most well known is the Ising-CFN model.

$$M^e = \begin{pmatrix}
\frac{1+\theta(e)}{2} & \frac{1-\theta(e)}{2} \\
\frac{1-\theta(e)}{2} & \frac{1+\theta(e)}{2}
\end{pmatrix}.$$
Markov models on trees

• Most well known is the Ising-CFN model on \{-1,1\}:

\[M^e = \begin{pmatrix}
\frac{1+\theta(e)}{2} & \frac{1-\theta(e)}{2} \\
\frac{1-\theta(e)}{2} & \frac{1+\theta(e)}{2}
\end{pmatrix}. \]

• **Claim**: For all \(u, v \):

\[E[\sigma_u \sigma_v] = \prod_{e \in \text{path}(u,v)} \theta(e). \]

• **Pf**: Exercise.

• **Claim**: \(d(u,v) = -\log E[\sigma_u \sigma_v] \) is a metric and

\[d(u,v) = \sum_{e \in \text{path}(u,v)} d(e) \]

• This a special case of the log-det distance for General Markov models on trees (Steel 94)

\[d(u,v) \sim -\log |\det \prod_{e \in \text{path}(u,v)} M^e| \]
Insertions and Deletions on Trees

- Not a product model (Thorne, Kishino, Felsenstein 91-2)
- Vertex $v \in V$, has information $\sigma_v \in \Sigma^*$. Then:
 - Delete each letter indep. With prob $p_d(e)$.

\begin{align*}
\text{Original Sequence} & : \quad ACGACC\text{GT}T\text{GACCGACCCC}G\text{AAC}TT\text{GT}A\text{AA}CT\text{GT} \\
\text{Deletions} & : \quad ACGACCG\text{T}T\text{GACCGACCCC}G\text{AAC}TT\text{GT}A\text{AA}C\text{T}G \\
\text{Mutated Sequence} & : \quad ACGCCG\text{T}T\text{GACCGACCCCG}ACT\text{TTGT}A\text{AACTGT}
\end{align*}

- Define $d(u,v) = -\log E[\text{Avg}(\sigma_u) \text{ Avg}(\sigma_v)]$
- This is a metric (Ex ; Daskalakis-Roch 10).
- Same also works if also insertions and mutations allowed.
From metrics to trees

- **Def:** Given a tree \(T=(V,E) \) a **tree metric** is defined by a collection of positive numbers \(\{ d(e) : e \in E \} \) by:

 letting: \(d(u,v) = \sum_{e \in \text{path}(u,v)} d(e) \) all \(u,v \in V \).

- **Claim:** Let \(T=(V,E) \) a tree with all internal degrees at least 3, let \(d \) be a tree metric on \(T \) and let \(L \) be the set of leaves of \(T \). Then \(\{ d(u,v) : u,v \in L \} \) determines the tree \(T \) uniquely.
Think small: trees on 2 and 3 leaves

- **Q:** What are the possible trees on 2 / 3 leaves a,b,c?
- **A:** Only one tree if we assume all int. deg > 2.

![Tree diagrams](image)
Think small: trees on 4 leaves

- **Q:** What are the possible trees on 4 leaves a, b, c, d?
 - **A:** ab|cd, ac|bd, ad|bc or abcd

- **Q:** How to distinguish between them, given the leaves’ pairwise distances of the leaves?
 - **A:** Look at partition xy, zw minimizing $d(x,y) + d(z,w)$
 - Case 1-3: The partition corresponding to the tree will give the optimum distance - $d(e1)+d(e2)+d(e3)+d(e4)$, while all other partitions will give distance bigger by $2d(e)$ (go through the middle edge twice).
 - Case 4 (star): All partitions will give the same result.
 - Note: Approximate distances (+/- $d(e)/8$) suffice!
From Small Tree to Big Trees

- **Claim**: In order to recover tree topology suffice to know for each set of 4 leaves what is the induced tree.
- **Pf**: By induction on size of tree using *Cherries*.
- **Definition**: A *cherry* is a pair of leaves at graph distance 2.
- **Claim1**: vertices x, y make a cherry in the tree T iff they are a cherry in all trees created of 4 of the it’s leaves.
- **Claim2**: Every tree with all internal degrees \(\geq 3 \) has a cherry
- **Proof**: Pick a root, take u to be the leaf farthest away from the root. The sibling of u (must exist one as the degree \(\geq 3 \)) must be a leaf as well.
From leaf pairwise distances to trees

- Algorithm to build tree from quartets:
 - Find cherries (pairs of vertices which are coupled in all 4-leaves combinations).
 - For each cherry <x,y> replace it by a single leaf x (remove all quartets involving both x,y; each quartet including only y - replace the y by x).
 - Repeat (until # leaves ≤ 4)

- A statistical Q: How many samples k are needed?
- In other words: what is the seq length needed?
- A: We would like to have enough samples so we can estimate \(d(u,v) \) with accuracy \(\min_e \{ d(e) / 8 \} \)
- Define \(f = \min_e d(e), g = \max_e d(e), D = \max_{\{u,v \text{ leaves}\}} d(u,v) \).
From leaf pairwise distances to trees

- **A statistical Q:** How many samples are actually needed?
- **A:** We would like to have enough samples so we can estimate $d(u,v)$ with accuracy $\min_e \{d(e)/8\}$
- Define $f = \min_e d(e)$, $g = \max_e d(e)$, $D = \max_{\{u,v \text{ leaves}\}} d(u,v)$.
- **In RC-model:** e^{-D} vs. $e^{-D-f/8}$ agreement.
- **In CFN:** e^{-D} vs. $e^{-D-f/8}$ correlation.
- Etc.
- **Claim:** In both models need at least $O(e^{D}/g^2)$ samples to estimate all distances within required accuracy.
- **Claim:** In both models $O(\log n \ e^{D}/g^2)$ suffice to estimate all distances with required accuracy with good probability.
- Exercises!
From leaf pairwise distances to trees

- **Claim:** In both models need at least $O(e^D/g)$ samples to estimate all distances within required accuracy.
- **Claim:** In both models $O(\log n \ e^D/g^2)$ suffice to estimate all distances with required accuracy with good probability.
- **Q:** Is this bad? How large can D be? Let $n = \#$ leaves.
- D can be as small as $O(\log n)$ and as large as $O(n)$.
- If $D = f \ n$ need $O(e^{f \ n} / g^2)$ samples!
- Can we do better?
From leaf pairwise distances to trees

- Can we do better?
- Do we actually need *all* pairwise distances?
- Do we actually need *all* quartets?

- **In fact:** Need only "short quartets" so actual # of samples needed is $O(e^8 f \log n / g^2)$ (Erods-Steel-Szekeley-Warnow-96).

- An alternative approach is in Mossel-09:
Distorted metrics idea sketch

- Construction: given a radius D:
 - For each leaf u look at $C(u,D) = \text{all leaves } v \text{ whose estimated distance to } u \text{ is at most } D$.
 - Construct the tree $T(u,D)$ on $C(u,D)$.
- Algorithm to stitch $T(u,D)$’s (main combinatorial argument)
 - Sequence length needed is $O(e^{2D}/g^2)$
- Lemma: if $D > 2g \log n$, will cover the tree.
- Even for smaller D, get forest that refines the true tree.
Short and long edges

• Gronau, Moran, Snir 2008: dealing with short edges (sometimes need to contract)
• Daskalakis, Mossel, Roch 09: dealing with both short and long edges: “contracting the short, pruning the deep”.
Can we do better?

- Consider e.g. the CFN model with sequence length k.
- Results so far \Rightarrow model can be reconstruct when $k = O(n^\alpha)$ where $\alpha = \alpha(f,g)$.
- Can we do better?
- Can we prove lower bounds?
Can we do better?

- Can we prove lower bounds?

 - Trivial lower bound:
 - Claim 1: T_n = set of leaf labeled trees on n leaves (and all degrees at least 3). Then $|T_n| = \exp(\Theta(n \log n))$.
 - Pf: Exercise.

 - Claim 2: # of possible sequences at the leaves is 2^{kn}.

 - Conclusion: To have good prob. of reconstruction need
 - $2^{kn} \geq \exp(\Theta(n \log n)) \Rightarrow k \geq \Omega(\log n)$
Can we do better?

- More formally:
 - Claim: Consider a uniform prior over trees μ.
 - Then for all possible estimators Est
 - $E_{\mu} P[\text{Est is correct}] \leq 2^{nk} / |T_n|$.
 - Pf sketch:
 - The optimal estimator is deterministic:
 - $\text{Est} : \{0,1\}^{nk} \rightarrow T_n$.
 - $E_{\mu} P[\text{Est is correct}] \leq |\text{Image(Est)}| / |T_n| \leq 2^{nk} / |T_n|$
 - Conclusion: Impossible to reconstruct if $k \leq 0.5 \log n$ and possible if $k \geq n^\alpha$. What is the truth?
 - Next lecture …
Metric ideas for tree mixtures

- **Def:** Let $T_1 = (V_1, E_1, P_1)$ and $T_2 = (V_2, E_2, P_2)$ be two phylogenetic models on the same leaf set L.
- The $(\alpha, 1-\alpha)$ mixture of the two models is the probability distribution $\alpha P_1 + (1-\alpha) P_2$

- **Construction (Matsen Steel 2009):**
 - There exist 3 phylogenies T_1, T_2, T_3 for the CFN model with $(V_1, E_1) = (V_2, E_2) \neq (V_3, E_3)$ and $T_3 = 0.5(T_1 + T_2)$
 - \Rightarrow Mixtures are not identifiable!
Metric ideas for tree mixtures

- **Construction (Matsen Steel 2009):**
 - There exist 3 phylogenies T_1, T_2, T_3 for the CFN model with $(V_1,E_1) = (V_2,E_2) \neq (V_3,E_3)$ and $T_3 = 0.5(T_1 + T_2)$
 - \Rightarrow Mixtures are not identifiable!

- On the other hand, using metric idea in a recent work with Roch we show that when n is large and the trees T_1 and T_2 are *generic* it is possible to find both of them with high probability.
Metric ideas for tree mixtures

- **Proof sketch:** Fix a radius $D \geq 10g$.
- Let $S_1 = \{ u, v \in \text{Leaves: } d_1(u,v) \leq D\}$
- Easy to show that $|S_2|, |S_1| \geq \Omega(n)$
- For “generic trees” we have $|S_2 \cap S_1| = o(n)$
- By looking for high correlation between leaves we can approximately recover $S_1 \cup S_2$.
- Note: Pairs in S_1 will tend to be correlated in samples from T_1 and pairs in S_2 will be correlated in samples from T_2.
- By checking co-occurrence of correlation can approximately recover both S_1 and S_2.
- Using S_1 and S_2 can determine for each sample if it comes from T_1 or from T_2.
- Same ideas can be used for different rates …
heterogeneous data

• **phylogenetic mixtures** - definition by picture:

\[
\alpha_1 T_1 + \alpha_2 T_2 + \alpha_3 T_3 + ...
\]

• **special case** - “rates-across-sites”
 - trees are the same up to random scaling
 - in this talk, will focus on two-scaling case
 - can think of scaling as “hidden variable”

• **biological motivation**
 - heterogeneous mutation rates
 - inconsistent lineage histories
 - hybrid speciation, gene transfer
 - corrupted data
but, on a mixture...
why are mixtures problematic?

- **identifiability** - does the distribution at the leaves determine the α’s and T’s?
 - negative results: e.g. [Steel et al.’94], [Stefankovic-Vigoda’07], [Matsen-Steel’07], etc.
 - positive results: e.g. [Allman, Rhodes’06,’08], [Allman, Ane, Rhodes’08], [Chai-Housworth’10], etc.

\[\alpha_1 T_1 + \alpha_2 T_2 + \alpha_3 T_3 + ... \]

- **algorithmic** - assuming identifiability, can we reconstruct the topologies efficiently?
 - can mislead standard methods;
 - ML under the full model is consistent in identifiable cases; BUT ML is already NP-hard for pure case [Chor,Tuller’06, R.’06]
a new site clustering approach

- **new results** [M-Roch, 2011] - we give a simple way to determine which sites come from which component
 - based on concentration of measure in large-tree limit
site clustering

- ideally, guess which sites were produced by each component
 - scaling is “hidden” but we can try to infer it
 - to be useful, a test should work with high confidence
leaf agreement

- **a natural place to start** - impact of scaling on leaf agreement
 - one pair of leaves is not very informative
 - we can look at many pairs

\[
C = \sum_{(a,b) \in R \subseteq L^2} I\{s_a = s_b\}
\]

- we would like C to be **concentrated**:
 - large number of pairs
 - each pair has a small contribution
 - independent (or almost independent) pairs
 - nice separation between SLOW and FAST
64 leaves
128 leaves
256 leaves
512 leaves
but the tree is not complete...

- **lemma 1** - on a general binary tree, the set of all pairs of leaves at distance at most 10 is linear in n
 - proof: count the number of leaves with no other leaves at distance 5

- **lemma 2** - in fact, can find a linear set of leaf pairs that are non-intersecting
 - proof: sparsify above

- this is enough to build a concentrated statistic

\[\hat{C} = \sum_{(a,b) \in \hat{R} \subseteq L^2} I\{S_a = S_b\} \]
but we don’t know the tree...

- **a simple algorithm** - cannot compute exact distances but can tell which pairs are more or less correlated
 - find “close” pairs
 - starting with one pair, remove all pairs that are too close
 - pick one of the remaining pairs and repeat

\[
\hat{C} = \sum_{(a,b) \in \tilde{R} \subseteq L^2} I\{S_a = S_b\}
\]

- **claim** - this gives a nicely concentrated variable (for large enough trees)
 - large number of pairs
 - independent (or almost independent) pairs
 - nice separation between SLOW and FAST
site clustering + reconstruction
Proposition 4 (Site Clustering: RAS-JC Model) Under the assumptions stated in Section 2 on the RAS-JC model, for any given tolerance on the mutation and mixture parameters, there exists a high-confidence site clustering algorithm.

Proposition 5 (Full Reconstruction: RAS-JC Model) Under the assumptions stated in Section 2 on the RAS-JC model, for any given tolerance on the mutation and mixture parameters, there exists a high-probability reconstruction algorithm using polynomial-length sequences and running in polynomial time.
Metric ideas for pedigrees

• Correlation measure = inheritance by decent
• Doesn’t really measure distance but something more complicated ...
The reconstruction problem

- We discuss two related problems.
- In both, want to reconstruct/estimate unknown parameters from observations.
- The first is the “reconstruction problem”.
- Here we are given the tree/DAG and
- the values of the random variables at a subset of the vertices.
- Want to reconstruct the value of the random variable at a specific vertex (“root”).
- For trees this is algorithmically easy using Dynamic programs / recursion.
Phylogenetic Reconstruction

- Here the tree/DAG etc. is unknown.
- Given a sequence of collections of random variables at the leaves ("species").
- Want to reconstruct the tree (un-rooted).
• Algorithmically “hard”. Many heuristics based on Maximum-Likelihood, Bayesian Statistics used in practice.
Trees

- In biology, all internal degrees ≥ 3.

- Given a set of species (labeled vertices) X, an X-tree is a tree which has X as the set of leaves.

- Two X-trees T_1 and T_2 are identical if there’s a graph isomorphism between T_1 and T_2 that is the identity map on X.

Highlights for next lectures

• Develop methods to reconstruct Phylogenies with the following guarantees.
• Consider large trees (\# of leaves \(n \to \infty \))
• Show that for all trees with high probability (over randomness of inheritance) recover the true tree.
• Upper and lower bounds on amount of information needed.
• Surprising connections with phase transitions in statistical physics.
• Briefly discuss why non-tree models are much harder.