The Geometry of Manipulation - a Quantitative Proof of the Gibbard Satterthwaite Theorem

Marcus Isaksson, Spotify Guy Kindler, Hebrew University Elchanan Mossel, Berkeley+Weizmann

Truthfulness in Voting

Question: Which voting methods have the property that:

voting truthfully is a dominant strategy?

Truthfulness in Binary Voting

<u>Question</u>: Which voting methods have the property that:

voting truthfully is a dominant strategy?

 voters always vote according to true preference?

Example: FOCS 2050?

 Assume Plurality vote with the following preferences:

Beijing

Zurich

Geneva

Choice Functions and Manipulation

<u>Definition</u>: A social choice function **F** associates to each collection of **n** rankings a winner:

 $F: S(A,B,...,K)^n \rightarrow \{A,B,C,D,...,K\}$

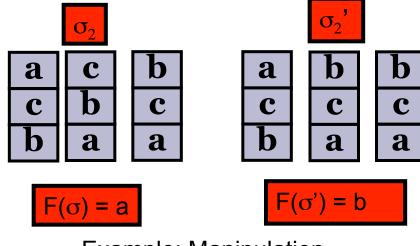
Choice Functions and Manipulation

<u>Definition</u>: A social choice function **F** associates to each collection of **n** rankings a winner:

 $F: S(A,B,...,K)^n \rightarrow \{A,B,C,D,...,K\}$

<u>Definition</u>: **F** is manipulable by voter **i** if there exists two ranking vectors $\sigma = (\sigma_{i,}, \sigma_{-i}), \sigma' = (\sigma'_{i,}, \sigma_{-i}), s.t.$

voter i with preference σ_i prefer outcome $F(\sigma')$ over $F(\sigma)$: $\sigma_i(F(\sigma')) > \sigma_i(F(\sigma))$



Example: Manipulation by voter 2

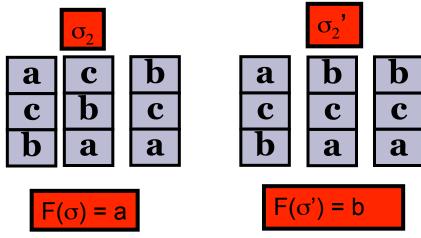
Choice Functions and Manipulation

<u>Definition</u>: A social choice function **F** associates to each collection of **n** rankings a winner:

 $F: S(A,B,...,K)^n \rightarrow \{A,B,C,D,...,K\}$

<u>Definition</u>: **F** is manipulable by voter **i** if there exists two ranking vectors $\sigma = (\sigma_{i,}, \sigma_{i}), \sigma' = (\sigma'_{i,}, \sigma_{i}), s.t.$ voter **i** with preference σ_i prefer outcome **F**(σ') over **F**(σ): $\sigma_i(\mathbf{F}(\sigma')) > \sigma_i(\mathbf{F}(\sigma))$

• **F** is strategy proof if there is no voter that can manipulate it.



Example: Manipulation by voter 2

Gibbard–Satterthwaite Thm

- Thm (Gibbard-Satterthwaite 73,75):
 If F ranks k ≥ 3 alternatives,
- is onto / neutral
- strategy proof
- Then **F** is a dictator
- Neutral := "all alternatives are treated equaly"

The GS Theorem – Computational and Quantitative Aspects

• <u>Q1:</u> Perhaps manipulating is computationally hard?

The GS Theorem – Computational and Quantitative Aspects

- <u>Q1:</u> Perhaps manipulating is computationally hard?
- <u>Q2:</u> Perhaps for most voting profiles it is impossible to manipulate for a certain social choice function (assuming uniform measure).

The GS Theorem – Computational and Quantitative Aspects

- <u>Q1</u>: Perhaps manipulating is computationally hard?
- <u>Q2:</u> Perhaps for most voting profiles it is impossible to manipulate (assuming uniform measure).
- <u>Def:</u> $M(F) = P[\sigma: some voter can manip F at \sigma].$
- <u>Notation</u>: Write $D(F,G) = P(F(\sigma) \neq G(\sigma))$. $D(F,D_k(n)) = \min \{ D(F,G) : G \text{ a dictator} \}$

Comp & Qaunt. Aspects

- <u>Bartholdi, Orlin (91), Bartholdi, Tovey Trick (93):</u>
 Manipulation for a voter for some voting schemes is NP hard (for large # of alternatives k).
- <u>Sandholm, Conitzer (93, 95) etc.</u> : Hard on average?
- <u>Conj (Friedgut-Kalai-Nisan 08)</u>: Random manipulation gives $M(F) \ge poly(n^{-1}, k^{-1}, D(F, D_k(n)))$.
- <u>Thm (FKN 08)</u>: For k=3 alternatives, and <u>neutral</u> F, it holds that M(F) ≥ c n⁻¹ D(F,D_k(n))² (uniform measure, no computational consequences)
- <u>Xia & Conitzer 09 (many conditions, no k depenendcy)</u>, Dobzinski and Procaccia: (2 voters)

High Probability Manipulation

• <u>Thm Isaksson-Kindler-M-10:</u>

• If F is neutral and $k \ge 3$ then • M(F) $\ge c n^{-3} k^{-30} D(F, D_k(n))^2$

 <u>Moral</u>: Proves FKN conj: Only functions that are close to strategy proof are the ones close to dictators,

High Probability Manipulation

• Thm Isaksson-Kindler-M-10:

• If F is neutral and $k \ge 3$ then • M(F) $\ge c n^{-3} k^{-30} D(F, D_k(n))^2$

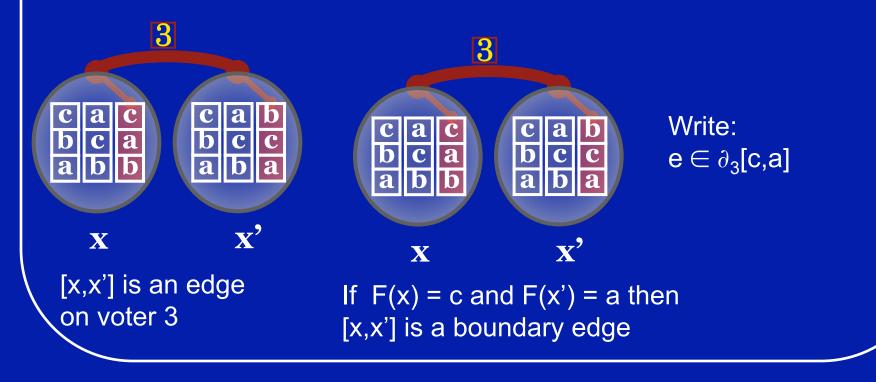
<u>Moreover</u>: a simple randomized algorithm manipulates with probability at least c n⁻³ k⁻³⁰ D(F,D_k (n))².

<u>Comments</u>

- <u>Thm Isaksson-Kindler-M-10:</u>
- If F is <u>neutral</u> then $M(F) \ge c n^{-3} k^{-10} D(F, D_k(n))^2$
- <u>Moreover</u>: An easy randomized algorithm manipulates with probability at least c $n^{-3} k^{-10} D(F,D_k(n))^2$.
- <u>Note</u>: For F = plurality on 3 alternatives and large # of voters n, manipulation exists only when two candidates are tied up. So $M(F) = O(n^{-1/2})$
- To the proof ...

The rankings graph

- We consider the graph with vertex set S(A,B,...K)ⁿ
- e=[x,x'] is an edge on voter i, if x(j) = x'(j) for j ≠ i and x(i) ≠ x'(i).
- For $F : S(A,...K)^n \rightarrow \{A,...,K\}$, we call e=[x,x'] a boundary edge if $F(x) \neq F(x')$.



<u>Boundaries</u>

- Assume 4 alternatives, unif. distribution.
- <u>An Isoperimetric Lemma:</u>
- If F is ϵ far from all dictators and Neutral
- Then there exists voters $i \neq j$ and alternatives A,B,C,Ds.t: $P[e \in \partial_i[A,B]] \ge \varepsilon (6n)^{-2}$, $P[e \in \partial_j[C,D]] \ge \varepsilon (6n)^{-2}$

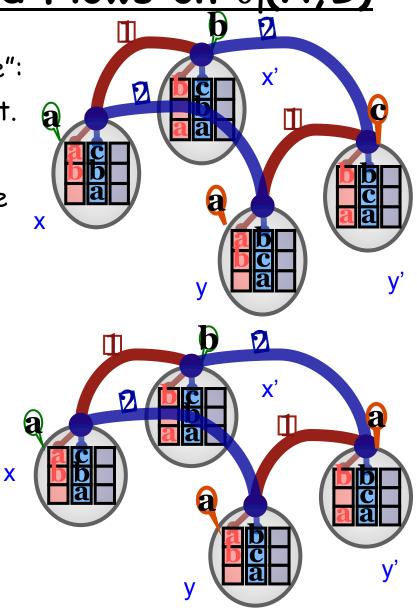
B

C

A

Main Idea: Paths and Flows on $\partial_i(A,B)$

- <u>Key Property</u>: The space $\partial_i[A,B]$ is "nice":
- One can define "flows" and "paths" on it.
- &: $\partial \partial_i [A,B]$ "=" Manipulation points.
- Moves := changing voters rankings while preserving A,B order.



Jusing Canonical paths

Define a canonical path Γ {e,e'} for

a

a

1

e

С

all $e \in \partial_i$ [A,B] and $e' \in \partial$ [C,D] such that:

- The path begins at e and ends at e' and
- Path stays in $\partial_i[A,B] \cup \partial_j[C,D]$

or encounters manipulation

2

2

• But: at the transition point m from

2

• ∂_i [A,B] to ∂_j [C,D], F takes at least 3 values so

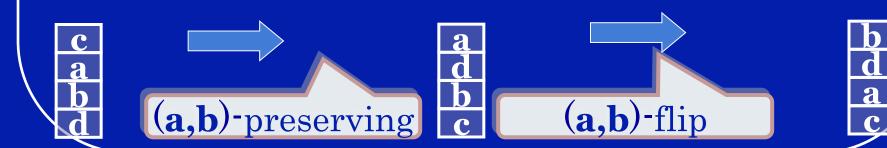
e'

С

GS theorem implies there exists manipulation.

of Manipulation Points

- $P[M(F)] \ge (4!)^n R^{-1} P[\partial_i[A,B]] \times P[\partial_j[C,D]]$, where
- $R := \max_m \#\{\{e,e'\}: m \text{ is manipulation for } \Gamma\{e,e'\}\}$
- Since: $|M(F)| \ge R^{-1} |\partial_i[A,B]| \times |\partial_j[C,D]|$
- Need to "decode" $\leq \operatorname{poly}(k,n)$ (4!)ⁿ (e,e') from m.
- Path to use:
- 1. For all 1 ≤ k ≤ n make k'th coordinate agree with e' except A,B order agrees with e.
- 2. For all $1 \le k \le n$ flip (A,B) if need to agree e'.



of Manipulation Points

- <u>Decoding:</u>
- If e=[x,x'] and e'=[y,y'] suffices to decode (x,y) from m ((k!)² "pay" to know x' and y').
- Given a hint of size 4n know step of the path.
- Suffices for each coordinate s: given m_s decode at most 4! Options for (x_s, y_s).
- Given m_s either know x_s, or y_s or 4!/2 options for x_s and 2 options for y_s.
- Decoding works!
- So $P[M(F))] \ge (4!)^n R^{-1} P[\partial_i(a,b)] \times P[\partial_j(c,d)]$, "gives"
- $P[M(f)] \ge \varepsilon^2 (6n)^{-5}$.
- QED.

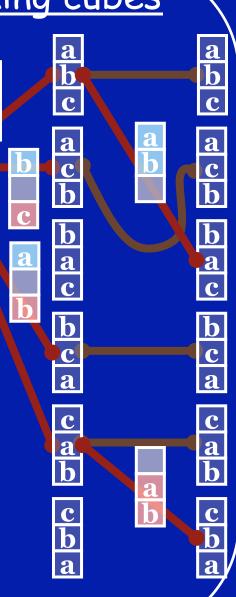
<u>However</u> ...

- In fact, cheating in various places ... most importantly:
- Manipulation point = x or y up to 3 coordinates, so:
- $R \le 2 n 4^n (k!)^3$
- $P[M(f)] \ge (k!)^{-3} \epsilon^2 (6n)^{-5}$
- Fine for constant # of alternatives k, but not for large k.

+ Idea : Geometries on the ranking cubes

a c b

- To get polynomial dependency on k, use refined geometry:
- (x,x') ∈ Edges if x,x' differ in a single voter and an adjacent transposition.
- For a single voter:
- refined geometry = adjacent transposition card-shuffling.
- Prove: geometry = refined geometry up to poly. factors in k (spectral, isoperimetric quantities behave the same; Aldous-Diaconis, Wilson).
- Prove: Combinatorics still works.
 Gives manipulation by adj.
 transposition.



Open Problems

- Are there other combinatorial problems where high order interfaces play an interesting role?
- Can other isoperimetric tools be extended to higher order interfaces?
- Tighter results for GS theorem? Remove Neutrality?
- Proof without neutrality.

Brief summary

- If you haven't noticed it is impossible to avoid manipulation.
- You probably haven't noticed but it's possible to prove isoperimetric inequalities involving meetings of 3 bodies (not just 2!).

Thank you for your attention!

3 Types of Boundary edges

3

a

С

x^{*}

b

a

Č

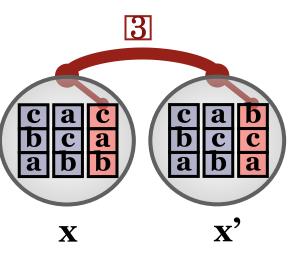
a

a

X

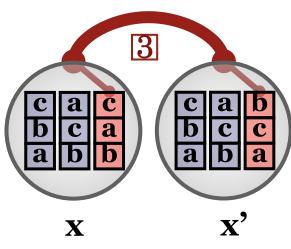
b

a



F(x) = a F(x') = b

This edge is monotone and non-manipulable x ranks a above b x' ranks b above a F(x) = a F(x') = c
This edge is
monotone-neutral
and manipulable:
same order of
a,c in x,x'



This edge is anti-monotone and manipulable: x ranks c above b x' ranks b above c

 $\mathbf{F}(\mathbf{x}) = \mathbf{b} \quad \mathbf{F}(\mathbf{x}') = \mathbf{c}$