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“Concluding thoughts”

RandNLA:

Major interdisciplinary area: b/w TCS, NLA, scientific computing, ML

Recent years: major developments in implementation (e.g., GPUs, hardware)

and application (ML vs scientific/engineering ML) motivations

Existing (strong) theoretical foundations: needs revisiting (updating)

Recent years: major developments in theory

Leads to improvements: in {inferential objectives, iterative algorithms, etc.} for {old,

new} ML problems

RandBLAS/RandLAPACK: implement theory “lower in the stack”

Main theme for today:

Identify core linear algebraic structures and build algorithmic / statistical methods

around them (rather than tacking them on later as a “band aid”)

A good way to build robust (theoretical and practical) ML pipelines and avoid lots of

problems later ...
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RandNLA: Randomized Numerical Linear Algebra

Matrices provide a natural structure with which to model data.

A ∈ Rm×n can encode information about m objects, each of which is described

by n features; etc.

A positive definite A ∈ Rn×n can encode the correlations/similarities between

all pairs of n objects; etc.

Motivated by data problems, recent years have witnessed many exciting

developments in the theory and practice of matrix algorithms.

Particularly remarkable is the use of randomization.

Typically, it is assumed to be a property of the input data due (e.g., to noise in

the data generation mechanisms).

Here, it is used as an algorithmic or computational resource.
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RandNLA: Randomized Numerical Linear Algebra

An interdisciplinary research area that exploits randomization as a

computational resource to develop improved algorithms for large-scale linear

algebra problems.

Foundational perspective: roots in theoretical computer science (TCS); deep

connections with convex analysis, probability theory, and metric embedding

theory, etc.; and strong connections with scientific computing, signal

processing, and numerical linear algebra (NLA).

Implementational perspective: well-engineered RandNLA algorithms beat

highly-optimized software libraries for problems such as very over-determined

least-squares and scale well to parallel/distributed environments.

Data analysis perspective: strong connections with machine learning and

statistics and many “non-methodological” applications of data analysis.

Growing interest in providing an algorithmic and statistical foundation for
modern large-scale data analysis.
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Randomized numerical linear algebra (RandNLA)

Lots of reviews of the past from multiple different perspectives.

Tutorials, light on prerequisites

“RandNLA: randomized numerical linear algebra,” by Drineas and Mahoney [DM16]

“Lectures on randomized numerical linear algebra,” by Drineas and Mahoney [DM18]

Broad and proof-heavy resources

“Sketching as a tool for numerical linear algebra,” by Woodruff [Woo14]

“An introduction to matrix concentration inequalities,” by Tropp [Tro15]

“Lecture notes on randomized linear algebra,” by Mahoney [Mah16]

Perspectives on theory, light on proofs

“Randomized algorithms for matrices and data,” by Mahoney [Mah11]

“Determinantal point processes in randomized numerical linear algebra,” by

Dereziński and Mahoney [DM21]

Deep investigations of specific topics

“Finding structure with randomness: probabilistic algorithms for constructing

approximate matrix decompositions,” by Halko, Martinsson, and Tropp [HMT11]

“Randomized algorithms in numerical linear algebra,” by Kannan and

Vempala [KV17]

“Randomized methods for matrix computations,” by Martinsson [Mar18]

“Randomized numerical linear algebra: Foundations and Algorithms,” by Martinsson

and Tropp [MT20]

We will be describing and highlighting upcoming and future trends.
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RandNLA: Randomized Numerical Linear Algebra

“Classical” RandNLA:

Sample/project and then solve subproblem or construct preconditioner

Theory from TCS/NLA, typically based on JL / subspace embeddings

Lots of data/ML and scientific computing applications

Initial proof-of-principle implementations (low-rank approximation,

least-squares, optimization, etc.)

Relatively large theory-practice gap (esp. when used in ML pipelines)

“Modern” RandNLA:

More sophisticated theory going beyond worst-case JL / subspace

embeddings, with stronger connections to RMT

Improved statistical analysis and improved optimization algorithms

Implementations in RandBLAS/RandLAPACK, and more demands

from GPU-based ML model training and scientific computing

Smaller theory-practice gap

Opens up door to new theory, new implementations, new applications, ...
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Basic Principles of “Classical” RandNLA [DM16]

Basic RandNLA method: given an input matrix:

Construct a “sketch” (a smaller or sparser matrix that represents the essential

information in the original matrix) by random sampling.

Use that sketch as a surrogate to compute quantities of interest.

Basic design principles1 underlying RandNLA:

Randomly sample (in a careful data-dependent manner) a small number of

elements to create a much sparser sketch of the original matrix.

Randomly sample (in a careful data-dependent manner) a small number of

columns and/or rows to create a much smaller sketch of the original matrix.

Preprocess an input matrix with a random-projection-type matrix and then do

uniform sampling of rows/columns/elements in order to create a sketch.

1
First two principles deal with identifying nonuniformity structure. Third principle deals with

preconditioning input (i.e., uniformizing nonuniformity structure) s.t. uniform random sampling performs well.
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Approximating Matrix Multiplication [DKM06]

Problem Statement: Given an m× n matrix A and an n× p matrix B,
approximate the product A ·B.

OR, equivalently,

Problem Statement: Approximate the sum of n rank-one matrices.

A ·B =

n∑
k=1

 A∗k

 · ( Bk∗
)

︸ ︷︷ ︸
∈Rm×p
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Approximating Matrix Multiplication [DKM06]

A sampling approach:

1 Fix a set of probabilities pi, i = 1, . . . , n, summing up to 1.

2 For t = 1, . . . , c,

set jt = i, where P[jt = i] = pi.

(Pick c terms of the sum, with replacement, with respect to the pi.)

3 Approximate the product AB by summing the c terms, after scaling.

A·B =
n∑
k=1

 A∗k

·
(

Bk∗

)
≈

c∑
t=1

1

cpjt

 A∗jt

·
(

Bjt∗

)
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Approximating Matrix Multiplication [DKM06]

The same algorithm, in matrix notation:

1 Pick c columns of A to form an m× c matrix C and the corresponding c rows

of B to form a c× p matrix R.

2 Rescale the columns/rows prior to including them in C/R.

3 Approximate A ·B by C ·R.


A


m×n


B


n×p

≈


C


m×c

 R


c×p

Can use a “sampling matrix” formalism:

Let S be n× c matrix whose tth column (t = 1, . . . , c) has one non-zero:

Sjtt =
1

√
cpjt

Clearly: A ·B ≈ C ·R = (AS) ·
(
STB

)
.
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Approximating Matrix Multiplication [DKM06]

A

aitm

q

× O(mqn)

B n

b>it

AB ≈ 1

c

c∑
t=1

1

pit
aitb

>
it = CR ⇓

C

m

c

1√
cpit

ait

× O(mcn)

R n

1√
cpit

b>it
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Approximating Matrix Multiplication [DKM06]

Some simple lemmas:

For any sampling probabilities:

E[(CR)ij ] = (AB)ij

Var[(CR)ij ] =
1

c

n∑
k=1

A2
ikB

2
kj

pk
− 1

c
(AB)2

ij

From these, it’s easy to bound E [‖AB − CR‖F ].

Remove the expectation with Markov’s inequality or a martingale argument.

To minimize E [‖AB − CR‖F ], use these probabilities:

P[jt = i] =
‖A∗i‖2‖Bi∗‖2∑n
j=1 ‖A∗j‖2‖Bj∗‖2

(1)

This gives:

E [‖AB − CR‖F ] = E
[
‖AB −ASSTB‖F

]
≤ 1√

c
‖A‖F ‖B‖F (2)

Similar bounds to (2) if approximate probabilities (1) in one of many ways.
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Approximating Matrix Multiplication [DKM06]

This Frobenius norm bound is used in many places in RandNLA, but ...

a “better” spectral norm bound is possible via Chernoff/Bernstein inequalities.

Lemma ([DMMS10] Thm 4)

Assume:

‖A‖2 ≤ 1: (“not important,” just normalization)

‖A‖F ≥ 0.2: (“not important,” simplifies bounds)

Set:

c = Ω

(
‖A‖2F
ε2

ln

(
‖A‖2F
ε2
√
δ

))
.

Then, for any ε ∈ (0, 1), w.p. ≥ 1− δ, we have:

‖AAT − CCT ‖2 = ‖AAT −ASSTAT ‖2 ≤ ε.
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Approximating Matrix Multiplication [DKM06]

The spectral norm bound is “better,” but:

It only holds for B = AT , so it doesn’t hold for arbitrary AB.

The “not important” conditions mean it doesn’t hold for arbitrary A.

The “main use case” for the spectral norm bound:

Let AT be an n× d matrix U with orthonormal columns, where n� d.

Then UTU = Id, and we want to show that

‖UTSSTU − UTU‖2 = ‖UTSSTU − Id‖2 ≤ ε ∈ (0, 1).

Using the Frobenius norm bound, we get

‖UTSSTU − I‖2 ≤ ‖UTSSTU − I‖F ≤
1√
c
‖U‖2F =

d√
c
.

Using the spectral norm bound, we get

‖UTSSTU − I‖2 .
ln c√
c
‖U‖F ‖U‖2 =

√
d ln c√
c

.
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Subspace Embeddings [Mah11, Woo14]

Definition

Let U be an m× n orthogonal matrix, and let S be any n×m matrix. Then, S is a

subspace embedding if

‖UTU − (SU)T SU‖2 = ‖I − (SU)T SU‖2 ≤ ε.

Things to note:

Many constructions (random sampling and projection methods, deterministic

constructions, hashing functions, etc.) satisfy this condition.

First used in data-aware context with leverage score sampling [DMM06, DMM08]

Used in data-oblivious context with Hadamard-based projections [Sar06, DMMS10]

For NLA, this is an acute perturbation.

For TCS, this is a subspace analogue of JL lemma.

This is a “must must have” for TCS; for everyone else, it’s optional.

Numerical implementations: loosing rank still gives a good preconditioner.

Statistics and machine learning: loosing rank introduces a bit of bias.
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Least-squares approximation

Least-squares (LS) : given m× n matrix A and m-dimensional vector b, solve

xopt = arg min
x∈Rn

‖Ax− b‖2.

If m� n, it is overdetermined/overconstrained.

Compute solution in O(mn2) time (in RAM model) with one of several

methods: normal equations; QR decompositions; or SVD.

RandNLA provides faster algorithms for this ubiquitous problem.

TCS: faster in terms of low-precision asymptotic worst-case theory.

NLA: faster in terms of high-precision wall-clock time.

Implementations: can compute (in Spark/MPI/etc.) low, medium, and

high precision solutions on up to terabyte-sized data.

Data Applications: faster algorithms and/or implicit regularization for

many machine learning and data science problems.

The basic RandNLA approach extends to many other matrix problems.
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Visualizing least-squares

Given: n points ai, each in d-dimensional space,2 with labels bi ∈ R
Goal: Minimize loss L(x) =

∑
i(a
>
i x− bi)2 = ‖Ax− b‖2

Goal′: Find x∗ = argminx L(x)

b

Ax*

A*1
A*2

L(x*)
col-span(A) n

d

a>i

A b

bi

O(nd2) operations
Let col-span(A) be the column span of A. Then:

Ax∗ = argmin
v∈col-span(A)

‖v − b‖2 = AA†︸︷︷︸
projection

· b

2Oops: {n, d} ↔ {m,n}; be careful!!!
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Two important notions: leverage and condition [Mah11]

Statistical leverage. (Think: eigenvectors. Important for low-precision.)

The statistical leverage scores of A (assume m� n) are the diagonal

elements of the projection matrix onto the column span of A.

They equal the `2-norm-squared of any orthogonal basis spanning A.

They measure:

how well-correlated the singular vectors are with the canonical basis

which constraints have largest “influence” on the LS fit

a notion of “coherence” or “outlierness”

Computing them exactly is as hard as solving the LS problem.

Condition number. (Think: eigenvalues. Important for high-precision.)

The `2-norm condition number of A is κ(A) = σmax(A)/σ+
min(A).

κ(A) bounds the number of iterations; for ill-conditioned problems (e.g.,

κ(A) ≈ 106 � 1), the convergence speed is very slow.

Computing κ(A) is generally as hard as solving the LS problem.

These are for the `2-norm. Generalizations exist for the `1-norm, etc.
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Meta-algorithm for `2-norm regression (1 of 3)

1: Using the `2 statistical leverage scores of A, construct an importance sampling

distribution {pi}mi=1.

2: Randomly sample a small number of constraints according to {pi}mi=1 to construct a

subproblem.

3: Solve the `2-regression problem on the subproblem.

A näıve version of this meta-algorithm:

gives a 1 + ε relative-error approximation, that fails with probability δ, in roughly

O(mn2/ε) time [DMM06, DMM08] (Ugh—seems bad—why would one do this?)

A non-näıve version of this meta-algorithm:

gives the best worst-case algorithm in RAM.

beats LAPACK for high precision in wall-clock time.

super-terabyte-scale implementations in parallel/distributed environments.

provides the foundation for low-rank approximations and the rest of RandNLA.

(Drineas, Mahoney, etc., starting with [DMM06]; [DMM08]; [Mah11])

Dereziński and Mahoney RandNLA for ML Foundations of “classical” RandNLA 26



Meta-algorithm for `2-norm regression (2 of 3)

Randomly sample high-leverage

constraints

Solve the subproblem

(In many moderately large-scale

applications, one uses “`2 objectives,”

not since they are “right,” but since

other things are even more expensive.)

(Drineas, Mahoney, etc., starting with [DMM06]; [DMM08]; [Mah11])

Dereziński and Mahoney RandNLA for ML Foundations of “classical” RandNLA 27



Meta-algorithm for `2-norm regression (2 of 3)

Randomly sample high-leverage

constraints

Solve the subproblem

(In many moderately large-scale

applications, one uses “`2 objectives,”

not since they are “right,” but since

other things are even more expensive.)

(Drineas, Mahoney, etc., starting with [DMM06]; [DMM08]; [Mah11])
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Meta-algorithm for `2-norm regression (3 of 3)

We can make this meta-algorithm “fast” in RAM:3

This meta-algorithm runs in O(mn log n/ε) time in RAM if:

we perform a Hadamard-based random random projection and sample

uniformly sampling in the randomly rotated basis, or

we quickly computing approximations to the statistical leverage scores

and using those as an importance sampling distribution.

We can make this meta-algorithm “high precision” in RAM:4

This meta-algorithm runs in O(mn log n log(1/ε)) time in RAM if:

we use the random projection/sampling basis to construct a

preconditioner and couple with a traditional iterative algorithm.

See Blendenpik/LSRN for NLA-style wall-clock time comparisons.

Both can be improved (in theory) to run in almost O(nnz(A)) time.
3

(Sarlós [Sar06]; Drineas, Mahoney, Muthu, Sarlós [DMMS10]; Drineas, Magdon-Ismail, Mahoney,

Woodruff [DMIMW12]
4

(Rokhlin & Tygert [RT08]; Avron, Maymounkov, & Toledo [AMT10]; Meng, Saunders, & Mahoney

[MSM14].)
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Least-squares approximation: basic structural result

Consider the over-determined least-squares approximation problem:

Z2
2 = min

x∈Rn
‖b−Ax‖22 = ‖b−Axopt‖22

as well as the “preconditioned ” the least-squares approximation problem:

Z̃2
2 = min

x∈Rn
‖Ω(b−Ax)‖22 = ‖b−Ax̃opt‖22

where Ω is any matrix.

Theorem (Fundamental Structural Result for Least-Squares)

If Ω satisfies the two basic conditions (constants are somewhat arbitrary):

σ2
min(ΩUA) ≥ 1/

√
2∥∥∥UTAΩTΩb⊥

∥∥∥2

2
≤ εZ2

2/2, where b⊥ = b− UAUTAA,

then:

‖Ax̃opt − b‖2 ≤ (1 + ε)Z2

‖xopt − x̃opt‖2 ≤
1

σmin(A)

√
εZ2.

DMMS [DMMS10, Mah11]
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Least-squares approximation: satisfying the conditions

Both conditions are an approximate matrix-matrix multiplication result:

First condition:

‖UTAUA − U
T
AΩΩTUA‖22 = ‖I − UTAΩΩTUA‖22 ≤ ε,

w.p. ≥ 1− δ, if r = O
(
n
ε2

ln
(

n

ε2
√
δ

))
.

Second condition:

E
[
‖UTAΩΩT b⊥ − UTA b

⊥‖22
]
≤

1

r
‖UA‖2F ‖b

⊥‖22 =
n

r
Z2

2 ,

and remove expectation with Markov.

Things to note:

Many constructions (random sampling and projection methods, deterministic

constructions, hasing functions, etc.) satisfy these conditions.

Which construction you use depends on which you like.

εs don’t matter: TCS people don’t care; NLA people precondition; ML/DA poeple

have different pain points

Dereziński and Mahoney RandNLA for ML Foundations of “classical” RandNLA 32



Least-squares approximation: RAM implementations

Conclusions:

Randomized algorithms “beats Lapack’s direct dense least-squares solver by a

large margin on essentially any dense tall matrix.”

These results “suggest that random projection algorithms should be incorporated

into future versions of Lapack.”

Avron, Maymounkov, and Toledo [AMT10]
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Using RandNLA methods more generally ...

Three paradigms that apply more broadly than least squares:

1 Sketch-and-solve: Construct a smaller least squares problem; then solve

it using a direct method.

Low-precision estimate, e.g., ε = 0.1

Simplest to highlight structure of the theory

2 Iterative sketching: Repeatedly sketch/sub-sample the problem; and

iteratively refine the estimate.

Medium (to high, depending on method) precision estimate, e.g., ε = 10−3

SGD, SGD++, sketch-and-project, preconditioned weighted SGD

3 Sketch-and-precondition: Construct an equivalent but well-conditioned

problem; then use a deterministic iterative method.

High-precision solution, e.g., ε = 10−10

Best (usually) for high-quality numerical solutions
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Using RandNLA methods more generally ...

Runtime

TCS

ML

NLA

P
re

c
is

io
n

Sketch-and-Solve

Sketch-and-Precondition

Iterative Sketching
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Low-rank approximation

A ≈ Ã = ÂV > = AV V >

A

a>i

n

d

≈

Â k

â>i

×

V > d

A - Original data matrix
V - Embedding between high and low dimension

Â = AV - Low-dimensional representation
Ã = ÂV > - Low-rank approximation matrix
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Truncated SVD

If A has rank higher than k (up to min{n, d}), then:

Use truncated SVD, A ≈ UkΣkV
>
k (top k singular values).

Costs O(nd2) for n ≥ d (computing the SVD).

Uk k

n

Σk k

σ1

σk
σk+1

σd

V >k d

Recall that we order the singular values so that σ1 ≥ σ2 ≥ ... ≥ σd.
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Error of truncated SVD

How much information is lost in a truncated SVD?

A−Ak =
∑
i>k

σiuiv
>
i

In terms of spectral norm error, this is:

‖A−Ak‖ = σk+1.

In terms of Frobenius norm error, this is:

‖A−Ak‖F =
(∑
i>k

σ2
i

)1/2

.

For most norms, this is an optimal rank-k approximation:

Ak = argmin
B : rank(B)=k

‖A−B‖·
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Truncated SVD as a projection

P = VkV
>
k is the projection onto the span of v1, ..., vk.

We can use that to derive Ak as a projection of A:

AP =

d∑
i=1

σiuiv
>
i P =

k∑
i=1

σiuiv
>
i = UkΣkV

>
k = Ak,

Total projection error equals squared
Frobenius norm error:

n∑
i=1

‖ai − Pai‖2 = ‖A−Ak‖2F .
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Column/row subset selection

Instead of the singular vectors, project onto the span of a subset of data

points {ai : i ∈ S} for S ⊆ {1, ..., n}.

Does not require computing SVD, but hard to find best S.

Preserves the structure of the data.

Let PS = V V > be a projection onto the
row-span of AS∗, where V is the
embedding matrix.

Find argmin
S:|S|=k

‖A−APS‖F
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Sketched low-rank approximation

Strategy: Extract top k singular vectors from a sketch

s ≥ k

S A SA

Sketching matrix × Data = Sketch

Let P = V V > be the projection onto the row-span of SA.

Approximation: A ≈ AP = (AV )︸ ︷︷ ︸
Â

V >
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Extensions to Low-rank Approximation (Projections)

In scientific computing, goal is to find a good basis for the span of A ...

Input: m× n matrix A, target rank k and over-sampling parameter p

Output: Rank-(k + p) factors U , Σ, and V s.t. A ≈ UΣV T .

1 Draw a n× (k + p) Gaussian random matrix Ω.

2 Form the n× (k + p) sample matrix Y = AΩ.

3 Compute an orthonormal matrix Q s.t. Y = QQTY .

4 Form the small matrix B = QTA.

5 Factor the small matrix B = ÛΣV T .

6 Form U = QÛ .

Can prove bounds of the form:

‖A−QQTA‖F ≤
(

1 +
k

p− 1

)1/2

min{m,n}∑
j=k+1

σ
2
j

1/2

‖A−QQTA‖2 ≤
(

1 +

√
k

p− 1

)
σk+1 +

e
√
k + p

p

min{m,n}∑
j=k+1

σ
2
j

1/2

Question: How does one prove bounds of this form?

Halko, Martinsson, and Tropp [HMT11]
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Extensions to Low-rank Approximation (Sampling)

Answer: Basic structural result for RLA low-rank matrix approximation.

Lemma (Fundamental Structural Result for Low-Rank [MD16])

Given A ∈ Rm×n, let Vk ∈ Rn×k be the matrix of the top k right singular vectors of A. Let

Ω ∈ Rn×r (r ≥ k) be any matrix such that Y TΩ has full rank. Then, for any unitarily

invariant norm ξ,

‖A− PAΩA‖ξ ≤ ‖A−Ak‖ξ + ‖Σk,⊥
(
V Tk,⊥Ω

)(
V Tk Ω

)+
‖ξ.

Given this structural result, we obtain results for

the Column Subset Selection Problem ([BMD09])

random projections for low-rank matrix approximations ([RST09, HMT11], etc.)

improved Nyström-based low-rank SPSD matrix approximations ([GM16])

developing improved feature selection methods (many)

power, Lanczon, and other low-rank matrix approximation methods ...

BMD, “CSSP” 2009 [BMD09]; MD, “Structural properties ...” 2016 [MD16].
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Extensions to Low-rank Approximation (SPSD)

SPSD Sketching Model. Let A be an n× n positive semi-definite matrix, and let S be

a matrix of size n× `, where `� n. Take

C = AS and W = STAS.

Then CW+CT is a low-rank approximation to A with rank at most `.

Lemma (Fundamental Structural Result for SPSD Low-Rank)

Let A be an n× n SPSD matrix s.t. A = UΣUT , where U1 is top k eigenvalues,

Ω1 = UT1 S, etc., and let S be a sampling/sketching matrix of size n× `. Then

‖A− CW †CT ‖2 ≤ ‖Σ2‖2 + ‖Σ1/2
2 Ω2Ω†1‖

2
2,

‖A− CW †CT ‖F ≤ ‖Σ2‖F +
√

2‖Σ2Ω2Ω†1‖F + ‖Σ1/2
2 Ω2Ω†1‖

2
F

‖A− CW †CT ‖Tr ≤ Tr(Σ2) + ‖Σ1/2
2 Ω2Ω†1‖

2
F

assuming Ω1 has full row rank.

From this, easy to derive additive-error approximations for spectral and Frobenius

norm (with scale set by Trace norm error) and relative-error approximation for Trace

norm in “random projection time.”

Gittens and Mahoney, “Revisiting the Nystrom Method ...,” [GM16]
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Randomized Block Power Method Analysis

Initialize Ṽ0 ∈ Rd×k (e.g., i.i.d sub-Gaussian entries)

Ṽi+1 = orthonormalize(A>AṼi)

Return Ṽq

Hope: Ṽq converges to the span(Vk); and AVqV Tq gives a good k-rank approx of A.

Lemma (e.g., 4.15 from [Woo14])

For any orthonormal Z ∈ Rd×k

‖A−AZZ>‖2 ≤ ‖(A>A)q − (ATA)qZZ>‖
1
2q

2

With q = O(log(d)/ε) and a random Ṽ0, we compute Ṽq such that w.h.p.

‖A−AṼqṼ Tq ‖2 ≤ (1 + ε) · min
V ∈Rd×k

‖A−AV V T ‖2

Runtime: O
(
ndkq + qdk2

)
ndkq → q matrix vector multiplications.

qdk2 → q orthonormalizations.

Conclusion: Leads to high precision low-rank approximations in spectral norm.

[HMT11, Woo14, MM15, DIKMI18]
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The proportional limit

Consider A ∈ Rn×d and iid Gaussian sketching matrix S ∈ Rl×d

Quality of Ã = SA is often measured by cond(SU) for U = orth(A)
(e.g., subspace embedding, quality of a preconditioner, etc.)

Thanks to the rotation invariance of Gaussian distribution, SU is also
Gaussian, so we can use the Marchenko-Pastur law:

σmin(SU) ∼ 1−
√
d

l
, σmax(SU) ∼ 1 +

√
d

l

Question: Can we obtain similar results with non-Gaussian sketches?
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RMT analysis in RandNLA

Consider sketching matrix S ∈ Rl×n with iid Gaussian entries.

Sketch-and-precondition: Construct R−1 from the QR of SA

cond(AR−1) ≤ 6 with high probability for l ≥ 2d.

Sketch-and-solve: x̂ = argminx ‖S(Ax− b)‖22

E‖A(x̂− x∗)‖22 =
d

l − d− 1
‖Ax∗ − b‖22 for l ≥ d+ 2.

Low-rank approximation: Compute Q = orth(AS)

E‖A−QQ>A‖2F ≤
(

1 +
k

l − k − 1

)
· ‖A−Ak‖2F for l ≥ k + 2.

These are all easy to show for iid Gaussian matrices.

Dereziński and Mahoney RandNLA for ML Foundations of “modern” RandNLA 50



Inversion bias: the key challenge [DM19, DLDM21]

Given n× d data matrix A of rank d, where n ≥ d,

approximate F ((A>A)−1), where F (·) is a linear functional.

(A>A)−1b, for a vector b:

Is the OLS solution (multivariate statistical analysis, Newton’s method in

numerical optimization, etc.)

x>(A>A)−1x, for a vector x:

If x = ai is one of the rows of A, then it is leverage scores

If x = ei is a standard basis vector, then this is the squared length of the

confidence interval for the i-th coefficient in OLS

trC(A>A)−1 for a matrix C:

Used to quantify uncertainty

Used for experimental design criteria, e.g., A-designs and V-designs

Inversion bias: E[(Ã>Ã)−1] 6= (A>A)−1, even though E[Ã>Ã] = A>A
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General phenomenon: Inversion bias [DM19, DLDM21]

Inversion bias: E[X−1] 6=
(
E[X]

)−1
for random X

X−1

(
E[X]

)−1

E[X−1]

a−1

b−1

X = a X = bE[X]

Extends to inverting high-dimensional random matrices

In the “proportional regime”

inversion bias is large, e.g., as large as the approximation error

“averaging” (and other statistical/ML methods) becomes ineffective ...
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Why focus on the inverse?

Consider S ∈ Rl×n having i.i.d. zero-mean rows statistically.

A>S>SA is a sample covariance estimator of the “population covariance

matrix” A>A ∈ Rd×d.

How does the spectrum differ between sample and population covariance?

RMT answers this by looking at the resolvent matrix :

(A>S>SA− zI)−1 for z ∈ C \ R+.

The Stieltjes transform (normalized trace of the resolvent) exhibits

inversion bias, leading to discrepancy between sample and population.

Traditional RMT studies limiting eigenvalue distribution as l, n, d→∞.

Our goal: precise and non-asymptotic results on resolvent matrices for

sketching, e.g., (A>S>SA)−1, leading to RMT analysis for RandNLA.
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Correcting the bias (for Gaussian sketching matrices)

Consider Ĥ = Ã>Ã ≈ A>A = H,

(where Ã = SA is an l × d sketch of an n× d matrix A)

Simple correction for a Gaussian sketching matrix S:

Rescale by a dimensional factor: E
[
(γĤ)−1

]
= H−1 for γ = l

l−d−1

This is not true for other sketching methods. Other sketches:

are not perfectly rotationally symmetric, etc.

could lose rank, with very small probability

suffer from “coupon collector” problems

In general, the bias occurs differently in each direction,

(so you cannot correct it with a single rescaling)

Q: Can we quickly correct the inversion bias, exactly or approximately?
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Near-unbiasedness: an (ε, δ)-unbiased estimator

This motivates the following definition.

Definition

A random p.s.d. matrix C̃ is an (ε, δ)-unbiased estimator of C if there is an

event E that holds with probability 1− δ such that

EE [C̃] ≈1+ε C, and C̃ � O(1) · C when conditioned on E.
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Sub-gaussian sketches have small inversion bias

Consider a full rank n× d matrix A with n� d.

Proposition (Near-unbiasedness of sub-gaussian sketches)

Let S be an m× n random matrix such that
√
mS has i.i.d.

O(1)-sub-gaussian entries with mean zero and unit variance.

If m ≥ C
(
d+
√
d/ε+ log(1/δ)

)
, then

( m
m−dA

>S>SA)−1 is an (ε, δ)-unbiased estimator of (A>A)−1.

So, there is an event E that holds with probability 1− e−cm, s.t.

EE
[
( m
m−dA

>S>SA)−1
]
≈ε (A>A)−1, for ε = O

(√
d

m

)
.

[DLDM21]
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Comparison with JL / subspace embeddings

Condition: Subspace embedding

Sketching matrix S with probability 1− δ satisfies

A>S>SA ≈η A>A for η = O(1).

Subspace embedding: w.h.p. (A>S>SA)−1 ≈η (A>A)−1

Near-unbiasedness: EE
[
( m
m−dA

>S>SA)−1
]
≈ε (A>A)−1

For sub-gaussian sketches, we have:

η = Θ

(√
d

m

)
and ε = O

(√
d

m

)
Subspace embedding is not enough to show near-unbiasedness!
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Corollary for model averaging

Effectively, we showed that for sub-gaussian sketches:

Bias2 � Variance

Corollary (Model averaging)

For q = Õ(m) sub-gaussian sketches of size m = O(d+
√
d/ε),

1

q

q∑
i=1

( m
m−dA

>S>i SiA)−1 ≈ε (A>A)−1.

Applies to distributed averaging of linear functionals, e.g.:

trC( m
m−dA

>S>i SiA)−1.
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Extending RMT-style analysis to fast sketching

Most RMT for sketching requires:

different “gaussianization” assumptions

and different parameter regimes (e.g., proportional regime)

compared to classical JL or subspace embedding approaches.

Most out-of-the-box theory applies only to expensive dense Gaussian or

sub-gaussian sketching matrices.

Question: Can we extend this line of work to fast sketches, e.g., sparse or

structured?

Answer: Yes!
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Recent developments in fast RMT-style sketches

Consider l × d sketch SA, where S ∈ Rl×n and A ∈ Rn×d.

Asymptotic RMT-style analysis for structured sketches [DL19, LLDP20]

Free probability theory via asymptotically liberating sequences applied to

SRHT sketches when l/d→ const and n/d→ const.

Sparse sketches close to sub-gaussian in TV distance [Der23]

LESS embeddings with Õ(d) non-zeros per row.

Implies small inversion bias and non-asymptotic RMT results.

Sparse sketches with the same spectrum as Gaussian sketches [CDDR23]

LESS embeddings with polylog(d) non-zeros per row

CountSketch/OSNAP with polylog(d) non-zeros per column

Implies subspace embedding for sketch size l ≥ (1 + θ)d with any θ > 0.

Dereziński, Dobriban, et al. [DL19, LLDP20, DLDM21, Der23, CDDR23]
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Analysis: Two structural conditions

Conditions for S to ensure small inversion bias:

1 Subspace embedding

Standard approximation guarantee for sketching methods

2 Restricted Bai-Silverstein ← key novelty

A variance bound for random quadratic forms
Inspired by an inequality of Bai and Silverstein [BS10]
Related to the Hanson-Wright inequality [RV13]
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Analysis: Second structural condition

Consider a specific matrix A ∈ Rn×d, with n� d

Idea: Restrict matrices B to quadratic forms that act only on the column
span of A

Condition: Restricted Bai-Silverstein

Any row vector si ∈ Rn of the random matrix
√
mS satisfies:

Var[s>i Bsi] ≤ O(1) · tr(B2),

for all n× n p.s.d. matrices B such that:

PBP = B, where P = proj(span(A)).

“Spectral analysis of large dimensional random matrices” [BS10]
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Reducing the cost of sub-gaussian sketches

1 Satisfies Subspace Embedding for S

2 Satisfies Restricted Bai-Silverstein for each si

Sub-gaussian Sketch

Sketching S

s>i
×

Data A leverage scores

i-th leverage score = i-th diagonal entry of P
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Reducing the cost of sub-gaussian sketches

1 Satisfies Subspace Embedding for S

2 Satisfies Restricted Bai-Silverstein for each si x

Leverage Score Sampling [DMM06]

Sketching S

s>i

1 non-zero per row

×

Data A leverage scores

i-th leverage score = i-th diagonal entry of P
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Reducing the cost of sub-gaussian sketches

1 Satisfies Subspace Embedding for S

2 Satisfies Restricted Bai-Silverstein for each si x

Uniform Sparsification [CW13]

Sketching S

s>i

n/d non-zeros per row

×

Data A leverage scores

i-th leverage score = i-th diagonal entry of P
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Reducing the cost of sub-gaussian sketches

1 Satisfies Subspace Embedding for S

2 Satisfies Restricted Bai-Silverstein for each si

Leverage Score Sparsification (LESS) [DLDM21]

Sketching S

s>i

d non-zeros per row

×

Data A leverage scores

i-th leverage score = i-th diagonal entry of P
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Correcting inversion bias for LESS embeddings

Theorem (Near-unbiasedness for LESS [DLDM21])

If S is a LESS embedding of size m ≥ C(d log(d/δ) +
√
d/ε),

EE
[
( m
m−dA

>S>SA)−1
]
≈ε (A>A)−1.

Preprocessing cost: O(nnz(A) log n+ d3 log d)

Approximating leverage scores [DMIMW12]

Sketching cost: O(md2)

Sparse matrix multiplication

Note: One can show a lower bound for leverage score sampling

nnz(A) = number of non-zeros in matrix A.
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Generally: Central Limit Theorem for Sparse Sketches

s>g1 . . . gk1√
k

Sparse sketching vector

k non-zeros per row

×

Data A

= 1√
k

∑k
j=1 gja

>
Ij

N (0, 1/pIj )

Random row ∼ p

Central Limit Theorem:

1√
k

k∑
j=1

gja
>
Ij

k→∞−→ N (0d, A
>A)

Questions:

How many samples/non-zeros do we need, and how do we select them?

How to measure the convergence, what Gaussian concentration to use?
e.g. Wasserstein distance, total variation (TV) distance
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Generally: Central Limit Theorem for Sparse Sketches

Optimal CLT rates are when sampling non-zeros according to leverage scores:

i-th leverage score = a>i (A>A)−1ai

Leverage Score Sparsification

Sketching S

s>i

k non-zeros per row

×

Data A leverage scores

For k = Õ(log d) nnz per row, close to Gaussian in spectral distribution.

For k = Õ(d) nnz per row, close to sub-gaussian in TV distance.
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Landscape of Algorithmic Gaussianization

Sub-gaussian concentration of x ∈ Rd w.r.t. a set of functions F
∀f ∈ F : X = f(x)− E f(x) is O(‖f‖Lip)-sub-gaussian︸ ︷︷ ︸

E exp(cX2/‖f‖Lip)≤ 2

Examples
x ∈ Rd

i.i.d. Gaussian entries

i.i.d. bounded entries

i.i.d. sub-gaussian entries

LESS embeddings

JL-type embeddings

Concentration
F ⊆ {Rd→R}

Lipschitz functions

Convex functions

Euclidean functions

f(x) =
√
x>Bx

Linear functions

f(x) = |v>x|
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What about random sampling?

RMT improves random sketching in the proportional limit.

What about random sub-sampling (e.g., leverage scores)?

Sampling is inherently “non-RMT”

involves coordinate axes / coordinate subspaces

lower bounds due to the Coupon Collector problem

Answer: Determinantal Point Processes
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Determinantal Point Processes (DPPs) [DM21]

A family of non-i.i.d. sampling distributions

1 Applications in RandNLA

Least squares regression [DW17, DWH18]

Low-rank approximation [DRVW06, GS12, DKM20]

Iterative optimization [DM19, MDK20, DY23]

2 Connections to i.i.d. sampling methods

Row norm scores

Leverage scores

Ridge leverage scores

3 (Theoretically) fast DPP sampling algorithms

Exact sampling via eigendecomposition [HKPV06, KT11, GKMV19]

Intermediate sampling via leverage scores [Der19, DCV19, CDV20]

Markov chain Monte Carlo sampling [AGR16, AD20, ALV22]
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Determinantal Point Processes (DPPs) [DM21]

Given a psd n× n matrix L, sample subset S ⊆ {1..n}:

(L-ensemble) DPP(L) : Pr(S) =
det(LS,S)

det(I + L)
over all subsets.

closed form normalization!

(k-DPP) k-DPP(L) : DPP(L) conditioned on |S| = k.

DPPs appear everywhere!

Physics (fermions)

Random matrix theory (eigenvalue distribution)

Graph theory (random spanning trees)

Optimization (variance reduction)

Machine learning (diverse sets)
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WAIT!!! Determinants???

det(A) =
∏
i

λi(A)

Some popular wisdom about determinants:

Expensive to compute

Numerically unstable

Exponentially large... or exponentially small
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Volume (determinant) as a measure of diversity

Consider a subset S ⊆ {1, .., n} of feature vectors x1, . . . , xn ∈ Rd

det
(
[x>i xj ]ij∈S

)︸ ︷︷ ︸
Determinant

= Vol2
(
{xi}i∈S

)︸ ︷︷ ︸
Volume squared

If we let L =
[
x>i xj

]
ij

then Vol2
(
{xi}i∈S

)
= det(LS,S).

Related to “volume sampling” from “classical” RandNLA [DRVW06].
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Example: DPP vs i.i.d.

Negative correlation: Pr(i ∈ S | j ∈ S) < Pr(i ∈ S)

i.i.d. (left) versus DPP (right)

Image from Kulesza and Taskar “DPPs for ML” [KT12]
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DPPs for two types of RandNLA sketches

Given: data matrix X

Goal: efficiently construct a small sketch X̃ (e.g., with row sampling from X)

X

X̃

Least-squares sketch

X

X̃

Low-rank approximation

i.i.d. sampling: Leverage scores Ridge leverage scores

DPP sampling: Projection DPPs L-ensembles
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Connections to i.i.d. sampling

Given: full rank n× d matrix X

Methods based on i.i.d. row sampling:

1 Row norm scores: pi = ‖xi‖2
‖X‖2F

‖xi‖2
‖X‖2F

= Pr
(
i ∈ S

)
for S ∼ 1-DPP(XX>)

2 Leverage scores: pi = 1
dx
>
i (X>X)−1xi

x>i (X>X)−1xi = Pr
(
i ∈ S

)
for S ∼ d-DPP(XX>)

3 Ridge leverage scores: pi = 1
dλ
x>i (X>X + λI)−1xi

x>i (X>X + λI)−1xi = Pr
(
i ∈ S

)
for S ∼ DPP( 1

λXX
>)

Marginals correspond to well-known RandNLA sampling methods!
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Correcting inversion bias for DPP sampling

Theorem

Let A be an n× d full-rank matrix. If we sample subset S ⊆ {1, ..., n} of size l

so that Pr(S) ∝ det(A>SAS), then the row-sampled matrix AS satisfies:

E
[
(A>SAS)−1

]
=
n− d+ 1

l − d+ 1
(A>A)−1.

Consider Ĥ = A>SAS and H = A>A, Then we can correct inversion bias with:

E
[
(γĤ)−1

]
= H−1 for γ = n−d+1

l−d+1

Recall: We could do the same for a Gaussian sketching matrix S

Conclusion: DPPs have a “Gaussianizing” effect on row sampling.
Many examples of this phenomenon, e.g., low-rank approximation [DKM20],
regression [DLM20b], optimization [DBPM20].

Dereziński/Warmuth, Unbiased estimates for linear regression via volume sampling [DW17]
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DPPs, Core RandNLA, and Implicit Regularization

Least-squares sketch Low-rank approximation

Projection DPP S∼d-DPPL(XX>) L-ensemble S∼DPPL( 1
λ
XX>)

subset size

E |S| =
dimension d effective dim. tr(X(X>X + λI)−1X>)

marginal

Pr{i ∈ S} =
leverage score x>i (X>X)−1xi ridge lev. score x>i (X>X + λI)−1xi

expectation

EX†
S
yS =

least squares argmin
w

‖Xw − y‖2 ridge regression argmin
w

‖Xw − y‖2+ λ‖w‖2

Table: Key properties of the DPPs, as they relate to: RandNLA tasks of least

squares and ridge regression; RandNLA methods of leverage score sampling and

ridge leverage score sampling.
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An aside on Implicit Regularization

Explicit: Replace min f with min f + λg:

interpret heuristically or i.t.o. a Bayesian prior.

Implicit 1: min f is intractable → so approximate it:

Thm 1: fapprox ≈ fopt
Thm 2: fapprox exactly solves min f + λg, for some λ, g.

“Approximate Computation and Implicit Regularization ...” [Mah12].

Implicit 2: Do SGD for NN training and fiddle with knobs:

Every training knob de facto is a regularization knob.

“Regularization for Deep Learning: A Taxonomy,” [KGC17].

Implicit Self-Regularization: The training process itself regularizes, depending on

(correlated) properties of the data.

“Implicit Self-Regularization in Deep Neural Networks ...,” [MM21].

Implicit 3: With DPPs: precise control for “noise” due to sampling/sketching;

quantitatively useful for statistics, optimization, etc.

Dereziński et al. [WGM18, DM21, DLM20b, DBPM20, DLPM21].
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Optimization in ML

Training ML model with parameter vector x on large dataset of size n:

Minimize f(x) =
1

n

n∑
i=1

ψi(x)

Each ψi(x) corresponds to the loss for the ith data point.

Stochastic methods: Converge to the optimum with fast noisy updates

by sampling the gradient (SGD, AdaGrad, SVRG, etc)

RandNLA: helps improve convergence, stability, communication cost,

and injecting curvature information into stochastic methods.
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Optimization in ML

Types of optimization methods:

1 First-order: Use the gradient of f at xt.

Example: Gradient descent (GD)

xt+1 = xt−ηtgt, where gt := ∇f(xt) ∈ Rd.

2 Second-order: Also use the Hessian matrix

Example: Newton’s method

xt+1 = xt−ηtH−1
t gt, where Ht := ∇2f(xt) ∈ Rd×d.

Iterative sketching: Instead of the exact gradient/Hessian, use a

sketched/sub-sampled estimate ĝt or Ĥt.
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Paradigms in iterative sketching for optimization

1 Gradient Sketch:

Compute a stochastic gradient estimate g̃t ≈ gt using RandNLA.

Application: Variance reduction and compression.

2 Hessian Sketch:

Compute a stochastic Hessian estimate H̃t ≈ Ht using RandNLA.

Application: Injecting curvature information into optimization.

3 Sketch-and-Project:

Iteratively project onto a sketched/subsampled linear system.

Application: Solving the Newton system Ht(xt − x) = gt.
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Starting point: SGD

Minimize f(x) =
1

n

n∑
i=1

ψi(x)

Gradient descent using a stochastic gradient estimate, e.g., ĝt = ∇ψit(xt)

xt+1 = xt − ηtĝt, where E[ĝt] = ∇f(xt).

Limitations of SGD:

Large variance E
[
‖ĝt − gt‖2

]
slows the convergence near the optimum.

Sensitive to hyper-parameters (step size, mini-batch size, etc.)

Lots of variants for different areas (so, more hyper-parameters to tune)
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RandNLA perspective on SGD

RandNLA techniques for addressing limitations of SGD:

Use weighted SGD with better gradient sampling (e.g., leverage scores):

ĝt =
1

b

b∑
i=1

1

wIi
∇ψIi(xt), Pr(Ii) ∝ wIi .

Use a sketching-based preconditioner (more on that shortly...):

xt+1 = xt − ηtMĝt, M ≈ H−1
t .

Or extend it to Sketch-and-Project (more on that later...)
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Example: Preconditioned Weighted SGD for regression

Minimize f(x) =
1

n
‖Ax− b‖2 =

1

n

n∑
i=1

ψi(x), ψi(x) = (a>i x− bi)2.

1: Compute SA with some sketching operator S

2: Compute R such that SA = QR−1 for orthogonal Q

3: Compute leverage score estimates l̃i for A

4: for t = 0 to T − 1 do

5: Compute

gt ← 1
b

∑b
i=1

Z
l̃Ii
∇ψIi (xt), Pr(Ii) ∝ l̃Ii .

6: Compute xt+1 ← xt − ηtRR>gt
7: end for

n

d

a>i

A b

bi

Matrix RR> is the preconditioner, i.e., ≈ (A>A)−1

Leverage score estimates of A are the weights: l̃i ≈ a>i (A>A)−1ai

Often initialized by a Sketch-and-Solve estimate x0.

[YCRM17]
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Example: Preconditioned Weighted SGD for regression

Convergence of PW-SGD, e.g., Lemma 6.1 in [CDDR23]

Suppose that leverage score estimates satisfy: l̃i ≥ li(A)/α for all i. Then,

letting ηt := β
1+βt/8 for β = k/8

k+4αd , PW-SGD satisfies the following:

E[f(xt)− f(x∗)] ≤ f(x0)

1 + bt/(cαd)
∀t≥1.

Convergence: t = O(d/bε), independent of n or the condition number κ.

Better than Sketch-and-Solve or Sketch-and-Precondition for reaching

moderate precision in least squares.

Extensions to lp, Lasso, Ridge, GLMs, etc, but with different sampling

(Lewis weights, ridge leverage, sensitivity scores, ...) [DLS18, ABH17]

[YCRM17, CDDR23]
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Further approaches

Gradient sketching for non-finite-sum settings:

gt ∈ Rd → Sgt ∈ Rl for l� d, e.g., Sega [HMR18]

Gradient compression via CountSketch for distributed/federated

learning, e.g., FetchSGD [RPU+20]

Randomized Kaczmarz-inspired methods (more on that in the

Sketch-and-Project section...) e.g., [NWS14]

Randomized coordinate descent-inspired methods, e.g., [LS13]

Randomized preconditioning for other stochastic gradient methods, e.g.,

Preconditioned SVRG [GOSS16], and others [GLRB18, LFY19]
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Second-order optimization

Newton’s method: Minimize a quadratic approximation of the objective using
gradient gt and Hessian Ht

xt+1 = xt + argmin
v

{
g>t v +

ηt
2
v>Htv︸ ︷︷ ︸

quadratic approximation

}
= xt − ηtH−1

t gt

In other words, solve the linear system Ht(xt − x) = gt in each iteration.
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Example: Generalized linear models (GLMs)

f(x) =
1

n

n∑
i=1

li(a
>
i x) +

γ

2
‖x‖2

Prediction a>i x is a linear function of a data point ai ∈ Rd.

Loss li encodes prediction error, dependent on a label yi.

Examples:

Ridge regression: bi ∈ R,

and li(a
>
i x) = 1

2 (a>i x− yi)2.

Logistic regression: bi = ±1, and

li(a
>
i x) = log(1 + e−yia

>
i x).

...
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Computing gradients and Hessians of GLMs

Computing gradients and Hessians of GLMs as matrix operations:

1 Full gradient: Matrix-vector products

∇f(x) =
1

n
A>r + γx

The cost is O(nd), i.e., linear in data size.

2 Full Hessian: matrix-matrix products

∇2f(x) =
1

n
A>DA+ γI,

The cost is O(nd2), i.e., worse than linear.

n

d

a>i

A r

l′i(a
>
i x)

D 
l′′1 (a>1 x)

. . .

l′′n(a>n x)



Idea: Reduce the cost of computing the Hessian with sketching/sampling
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Example: Newton Sketch

For GLMs, we can sketch with St ∈ Rl×n to approximate the Hessian:

Ĥt =
1

n
Ã>Ã+ γI, where Ã = StD

1/2
t A.

The Newton Sketch update with step size ηt:

xt+1 = xt + argmin
v

{
g>t v +

ηt
2
v>Ĥtv

}
= xt − ηtĤ−1

t gt

[PW16, PW17]
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Example: Newton Sketch

The Newton Sketch update with step size ηt:

xt+1 = xt + argmin
v

{
g>t v +

ηt
2
v>Ĥtv

}
= xt − ηtĤ−1

t gt

Theory: Ensure that Ĥt is a spectral approximation of Ht:

1

1 + εH
Ht � Ĥt � (1 + εH)Ht

E.g., when Ã is a subspace embedding of D
1/2
t A, but this is often overkill.

sketch size: l = Õ(d/ε2H).

Reduces the cost of a Newton step from O(nd2) to roughly Õ(nd+ d3/ε2H).

[PW16, PW17]
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Newton Sketch: Linear-quadratic convergence

εH ∼ ‖Ĥt −Ht‖ - Hessian sketch approximation error

εt ∼ ‖xt − x∗‖ - iterate optimization error

Two phases of local convergence:

1 Quadratic convergence. When εH � εt, then we get quadratic

(Newton-like) convergence until εt → εH :

‖xt+1 − x∗‖ . ‖xt − x∗‖2,

2 Fast linear convergence. When εt � εH , then we get linear

(preconditioned GD-like) convergence:

‖xt+1 − x∗‖ .
(

1− 1

(1 + εH)2

)
︸ ︷︷ ︸

. εH

‖xt − x∗‖
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Newton Sketch: Linear-quadratic convergence

εH ∼ ‖Ĥt −Ht‖ - Hessian sketch approximation error

εt ∼ ‖xt − x∗‖ - iterate optimization error

x∗

εt = 1/2

εt = 1/4

. . .

εt < εH

Global phase

Quadratic phase

Linear phase
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Extending to distributed settings

1 Ensemble methods

2 Distributed optimization

3 Federated learning

x̄ =
1

m

∑
i

x̃(i)

A

Ã1 Ã2 · · · Ãm

x̃(1) x̃(2) · · · x̃(m)

x̄

Sketching

Estimation

Aggregation
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Example: Distributed Newton sketch

The Newton Sketch update with step size ηt and Hessian sketch Ĥ
(i)
t :

x
(i)
t+1 = xt + argmin

v

{
g>t v +

ηt
2
v>Ĥ

(i)
t v
}

Distributed Newton Sketch based on m Hessian sketches Ĥ
(1)
t , ..., Ĥ

(m)
t :

xt+1 =
1

m

m∑
i=1

x
(i)
t+1

We would like xt+1 to get closer to exact Newton as we increase m.

This may not occur because of inversion bias:

E
[
Ĥ−1
t

]
6= H−1

t , even though E
[
Ĥt

]
= Ht.

We saw how to correct this using RMT-style analysis for DPP, LESS.

[WRXM18, DBPM20, DLPM21]
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Parameter tuning in sketched Newton-type methods

Question: How to choose parameters such as sketch size l, step size η, etc?

Could find the right step size η using line search.

Or use RMT to derive the optimal η for a given sketch size l:

E
‖xt+1 − x∗‖2

‖xt − x∗‖2
� (1− η)2 +

d

l − d
η2.

Step size

C
o

n
v
e

rg
e

n
c
e

 r
a

te

Optimal rate

[LLDP20, DLPM21]
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Further approaches

Newton Sketch-type methods and RMT-style analysis, e.g.,

[LP22, LLDP20, NDM22, DLPM21]

Subsampled Newton-type methods [EM15, RKM19, BBN18, BBN20]

Subsampled Hessian approximations via Taylor expansion, e.g., LiSSA

[ABH17]

Approximating the Hessian diagonal/trace via Hutchinson’s method

[MMMW21] and Stochastic Lanczos Quadrature, particularly for

non-convex problems, e.g., PyHessian [YGKM20], AdaHessian [YGS+21]

Stochastic Quasi-Newton type methods [KMR19, MER18].
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Key primitive: Solving linear systems

Task: Given A ∈ Rm×n and b ∈ Rm, find x ∈ Rn such that Ax = b,
i.e., system of m linear equations with n unknowns.

m

n

a>i

A

×

x

=

b

bi

Examples:

Newton system Ht(xt − x) = gt in second-order methods.

Kernel ridge regression, e.g., (K + λI)x = y (more on that later).

Many applications in scientific computing and engineering.
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“Classical” RandNLA perspective

Task: Given A ∈ Rm×n and b ∈ Rm, find x ∈ Rn such that Ax = b,
i.e., system of m linear equations with n unknowns.

Sketch-and-Precondition: Construct a preconditioner by sketching matrix A,
and then run your favorite iterative solver (GD, CG, etc.)

“Least squares” approach: Use a subspace embedding of A

Applicable only when the system is very “tall” (over-determined) or very

“wide” (under-determined). [AMT10, MSM14]

“Low-rank” approach: Use a low-rank approximation of A

Applicable for “low-rank+noise” matrices A or with regularized linear systems,

i.e., where A = K + λI. [ACW17, FTU21]

Alternative: Iteratively solve parts of the linear system at a time.
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Kaczmarz algorithm

Iteratively project onto the solutions of individual equations.

[Kac37]
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Randomized Kaczmarz

Starting at x0 ∈ Rn:

1 Sample equation It with prob. ∝ ‖aIt‖2

2 Project current iterate xt onto the solutions

of equation It:

xt+1 = xt −
a>Itxt − bIt
‖aIt‖2

aIt

Theorem (Linear convergence of Randomized Kaczmarz)

If the linear system has a solution Ax∗ = b, then:

E ‖xt − x∗‖2 ≤
(

1− σ2
min(A)

‖A‖2F

)t
‖x0 − x∗‖2.

[SV09]
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Randomized Kaczmarz as Weighted SGD

We can interpret Randomized Kaczmarz as solving the problem:

Minimize f(x) =
1

m

m∑
i=1

ψi(x), ψi(x) = (a>i x− bi)2.

Claim

Randomized Kaczmarz is Weighted SGD with importance sampling:

xt+1 = xt −
ηt
wi
∇ψi(xt), Pr(i) ∝ wi = Lipschitz(∇ψi).

Achieves linear convergence iff x∗ minimizes all components ψi.

Otherwise, we get a sublinear SGD rate by decaying step sizes ηt.

[NWS14]
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Randomized Kaczmarz as Sketch-and-Project

Sketch-and-Project:

1 Sample random k ×m sketching matrix S = S(t).

2 Project iterate xt onto the solutions of SAx = Sb:

xt+1 = argmin
x
‖xt − x‖2 subject to SAx = Sb.

m

A

×

x

=

b

⇒

k

SA
×

x
=
Sb

Note: Projection step is solving a “wide” linear system, so it can be done fast
using the “least squares” approach of Sketch-and-Precondition.

[GR15]
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Sketch-and-Project

xt+1 = argmin
x
‖xt − x‖2

subject to SAx = Sb.

Extends to many stochastic optimization methods:

Block Kaczmarz, e.g., [NW13, NT14, RN21],

Coordinate Descent, e.g., [LL10, RK20, MDK20],

Randomized Newton, e.g., [GKLR19, KMR19, HDNR20, YLG22],

Accelerated variants, e.g., [LS13, GHRS18, RT20]

...

Convergence analysis: very tricky – complex dependence on A’s spectrum
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RMT analysis of Sketch-and-Project

Convergence rate of Sketch-and-Project, e.g., [DR22]

For Gaussianized sketching/sampling, Sketch-and-Project satisfies:

E ‖xt − x∗‖2 .

(
1− kσ2

min(A)

‖A− ProjSA(A)‖2F

)t
‖x0 − x∗‖2.

Recall convergence rate of Randomized Kaczmarz:
(

1− σ2
min

‖A‖2F

)t
.

Requires RMT-style analysis and Gaussianized sketches (DPP, LESS)

Implicit preconditioning:

‖A− ProjSA(A)‖2F is the error of low-rank projection on the span of SA

Algorithm converges as if it was preconditioned with a low-rank sketch

(no real preconditioning required).

[RK20, MDK20, DR22]
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Making it practical: Fast Kaczmarz algorithm

1: Input: matrix A ∈ Rm×n, vector b ∈ Rm, block size k, iterate x0

2: Transform A, b using Randomized FFT/FHT; . Gaussianize the data.

3: for t = 0, 1, . . . , tmax − 1 do

4: Uniformly sample k equations Ã = SA, b̃ = Sb; . Sketching step.

5: Solve xt+1 ≈ argminx ‖xt − x‖2 s.t. Ãx = b̃; . Projection step.

6: end for

7: return x̃ = xtmax ; . Solves Ax = b.

Randomized Fourier/Hadamard transform Gaussianizes the data.

Analysis goes via a reduction to DPP-based Sketch-and-Project.

Recall: Projection step uses a black-box RandNLA least squares solver.

Question: How does this compare to “Classical” RandNLA-based solvers?

[DY23]
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Example: Linear systems with low-rank structure

Consider m× n linear system Ax = b with “rank-k + noise”

“Classical” RandNLA: Precondition a gradient-based

solver (GD, CG) with randomized rank k approximation

Cost (via Power Iteration): Õ(mnk)︸ ︷︷ ︸
precondition

+ Õ(mn)︸ ︷︷ ︸
solve

“Modern” RandNLA: Rely on implicit preconditioning by using

Gaussianized Sketch-and-Project with sample size k

Cost (via Fast Kaczmarz): Õ(mn+ nk2)

Various trade-offs once we look past Õ() complexity, which need to be taken
into account when integrating into RandLAPACK.

[DY23]
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ML perspective on RandNLA

TCS / NLA perspective:

Given A ∈ Rn×d, b ∈ Rn find xLS = argmin
x

n∑
i=1

|σ(a>i x)− bi|2

Data A and labels b are both deterministic and given.

Goal: directly compute or estimate xLS – approximation error

ML perspective:

Labels are noisy, e.g., bi = σ(a>i x
∗) + ξi (and may be missing)

Data may be coming from a larger population ai ∼ D

Goal: estimate the underlying model x∗ – generalization error
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ML perspective on RandNLA

Runtime

TCS

ML

NLA

Generalization error at optimum

P
re

c
is

io
n

Sketch-and-Solve

Sketch-and-Precondition

Iterative Sketching

Key question: How does RandNLA affect generalization in ML?
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Advances in RandNLA for ML

1 Statistical learning approaches:

RandNLA sampling for robust learning

Kernel-based learning via low-rank approximation

2 Statistical inference approaches:

Incorporating statistical inference tools

Asymptotic bias-variance analysis

3 Random matrix theory approaches:

Multiple-descent in low-rank approximation

Implicit regularization induced by sketching
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Motivating example: Robust active learning

You are given a dataset with n unlabeled data points: a1, . . . , an ∈ Rd.
For each point ai, you can decide to query the random label bi ∈ R.

Goal: Query subset S of k � n labels to output x̂ that has small

(Generalization Error) E Err(x̂) := E
1

n

n∑
i=1

(a>i x̂− bi)2.

Select S = {4, 6, 9}

Receive b4, b6, b9

a>4

a>6

a>9

A
d

b

b4 .

b6 .

b9
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Motivating example: Robust active learning

Question: How should we choose the data points to label?

Answer: It depends!

Suppose that we know the label noise distribution, e.g.:

bi = a>i x
∗ + ξi, ξi ∼ N (0, σ2).

This is the setting of classical experimental design. [Fed72, Puk06]

For each subset S we can simply compute expected generalization error

= 1
n

tr(A(A>SAS)−1A>), so just pick the best subset.

[WYS17, AZLSW17, DLM20a]

What if we don’t know anything about the label noise?

This is the setting of worst-case (adversarial) active learning.

[SN09, CP19]

Any deterministic choice of subset S could be very bad, so we must

randomize.
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RandNLA sampling for robust learning

Strategy: Treat this as a RandNLA Sketch-and-Solve problem where we are
not allowed to look at vector b

Theorem (e.g., [Mah11])

For any fixed A and random b, if we query O(d log d+ d/ε) entries of b,

sampled according to A’s leverage scores, and solve (AS , bS), then:

E Err(x̂) ≤ (1 + ε) min
x

E Err(x).

Improves to O(d/ε) using Gaussianized RandNLA sampling (DPP, BSS).

[DW17, DWH18, CP19]

Other regression losses lead to other RandNLA sampling schemes

(inverse scores, Lewis weights, ridge leverage, sensitivity scores etc.)

[DCMW19, CD21, PPP21, MMWY22, CLS22]
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Extensions to kernel-based learning

Kernel-based learning methods extract “non-linear” structure:

Define features in an expanded space F .

Map the data space, X , to F using φ : X → F .

Do classification/regression with linear methods.

Basic idea:

Use dot products for information about mutual positions.

Define the n× n kernel matrix: K =
[
φ(x(i)), φ(x(j))

]
ij

= ΦΦ>,

where Φ is the kernel representation matrix.

RandNLA + Nyström: Improves the complexity of kernel-based learning from
O(n3) to O(n) while retaining the same generalization guarantees.
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Kernel-based learning model

Generative model: We receive a dataset (xi, yi)
n
i=1 ∼ D such that

yi = f∗(xi) + ξi, f∗ ∈ F ,

where F is a reproducing kernel Hilbert space defined by k : X × X → R.

Label noise ξi: Statistical [Bac13, AM15] or worst-case [RCR17, RCCR18]

Learning algorithm: We can construct an estimator f̃ for f∗ by minimizing a
regularized objective over the kernel space F :

min
f∈F

1

n

n∑
i=1

`(f(xi), yi) +
λ

2
‖f‖2F
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Example: Kernel Ridge Regression (KRR)

Using square loss and representer theorem, this problem can be cast as kernel
ridge regression, with respect to the n× n kernel matrix K = [k(xi, xj)]ij .

min
α∈Rn

1

n

n∑
i=1

([Kα]i − yi)2 +
λ

2
α>Kα,

where [Kα]i corresponds to our trained prediction f(xi).

This is equivalent to solving the following regularized linear system:

(K + nλI)α = y.

Conclusion: Ultimately, we’re back to a matrix problem, which takes O(n3)
time to solve exactly. What does RandNLA have to say about it?
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Kernel Ridge Regression as a RandNLA problem

Problem: Given an n× n positive semidefinite (psd) matrix K and a vector
y ∈ Rn, solve the linear system

(K + nλI)α = y.

“Classical” RandNLA approaches to this problem:

Low/Moderate precision: E.g., construct a low-rank approximation K̃ of

K and solve the resulting smaller problem – Sketch-and-Solve

High precision: E.g., construct a low-rank approximation K̃ and use it to

precondition an iterative solver – Sketch-and-Precondition

Note: Either way, we need a low-rank approximation of K.
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Taking into account the learning model

Recall: We receive a dataset (xi, yi)
n
i=1 ∼ D such that

yi = f∗(xi) + ξi, f∗ ∈ F ,

where F is a reproducing kernel Hilbert space defined by k : X × X → R.
Here, the kernel matrix arises as Kij = k(xi, xj), not as a “given psd matrix”.

Even an exact KRR solution only gives us an estimate f̃ with

generalization error ‖f̃ − f∗‖.
⇒ It is typically enough to seek “moderate precision”.

Even just computing the matrix K takes O(n2) time, which may already

be prohibitively expensive.

⇒ We need to reformulate our low-rank approximation task.
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Low-rank approximation via the Nyström method

Goal: Find a low-rank approximation K̃ of an n× n psd matrix K,
using only a subset of the entries of K.

Idea: Approximate K using a subset of rows and columns.

K

n

n

≈

KS>

k

×

(SKS>)−1

k

×

SK

n

Let S ∈ Rk×n have a single 1 in every row. Then KS> selects k columns from
K and SK selects k rows from K

K̃ = KS>(SKS>)−1SK
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Nyström method with RandNLA sampling

K̃ = KS>(SKS>)−1SK

Requires computing only nk entries of K

Interpretation: Projection onto the k anchor points selected by S in the

kernel representation space described by matrix Φ

If K = ΦΦ> then K̃ = Φ · ProjSΦ · Φ>

How should we choose the anchors?

Originally: Uniform sampling, e.g., [WS01, Bac13, RCR17]

More robust: ridge leverage score sampling (as in, kernel ridge regression),

e.g., [AM15, MM17, RCCR18]

RMT approach: DPP sampling to further improve the anchors, e.g.,

[DCV19, BRVDW19, DKM20]
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Sublinear time Nyström approximation

Question: How can we construct a worst-case robust low-rank approximation
of kernel matrix K, without computing K?

Naive anwer: Uniform sampling ⇒ not worst-case robust!

“Classical” RandNLA: Use leverage score sampling, but to estimate the

leverage scores you need to look at the whole matrix

Idea: Use the positive semidefinite (psd) structure of a kernel matrix K.

Theorem (Sublinear time leverage score sampling)

Given query access to an n× n psd matrix K, we can estimate its “rank k”

ridge leverage scores using Õ(nk) entries and Õ(nk2) time.

[MM17, RCCR18]

Dereziński and Mahoney RandNLA for ML Advances in RandNLA for ML 129



Further related advances

Statistical learning analysis of Nyström KRR with RandNLA, e.g.,

[AM15, RCR17, RCCR18]

Nyström for Gaussian Process regression, e.g., [BRVDW19, CCL+19]

Sketching-based Nyström methods, e.g., [GM16, BBGL22]

High-precision solvers for KRR, e.g., [ACW17, FTU21]

Sublinear time low-rank approximation of structured matrices, e.g.,

[MW17, BW18]

Sublinear time DPP sampling, e.g., [DCV19, CDV20, ALV22]
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Dereziński and Mahoney RandNLA for ML Advances in RandNLA for ML 131



Modeling data in statistical inference

z1, . . . , zn
i.i.d.∼ N (0d,Σd×d), yi = z>i β + ξi, ξi ∼ N (0, σ2)

Enables a wide range of inferential tools
for optimizing and evaluating estimators:

Cross-validation provably works

Feature selection provably works

Confidence intervals are reliable

Bootstrap, jackknife, ...
x

y
Note: This is completely different than in RandNLA, where we typically
assume arbitrary worst-case data. And yet...
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Gaussianization in RandNLA vs Statistical Inference

RandNLA Statistical Inference

Big data Population

No assumptions Gaussian assumptions

Sketch Sample

Gaussianization

Statistical model
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Incorporating statistical inference tools

RandNLA sketches follow statistical data model assumptions
⇒ We can use statistical inference tools on them.

Error estimation and uncertainty quantification

Example: Compute a numerical estimate q̃ ≈ ‖x̃−x∗‖ without knowing x∗

Standard approaches: Bootstrap and cross-validation

Bagging (boostrap aggregating), i.e., averaging sketching-based

estimators in distributed settings or ensemble methods.
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Example: Boostrap error estimation

Consider a deterministic matrix A ∈ Rn×d and b ∈ Rn, with n� d.
We reduce the problem with a random sketching matrix S ∈ Rl×n:
Define Ã := SA and b̃ := Sb and compute

x̃ := argmin
x

∥∥Ãx− b̃∥∥ ≈ x∗ := argmin
x

∥∥Ax− b∥∥.
Goal: Efficiently compute a numerical estimate q̃(α) such that

‖x̃− x∗‖ ≤ q̃(α) with probability 1− α.

Idea: Artificially generate a bootstrapped solution x̂ such that the

fluctuations of x̂− x̃ are similar to the fluctuations of x̃− x∗.

The bootstrap sample x̂ is the LS solution obtained by “perturbing” Ã

and b̃ (sub-sampling with replacement).

In the “bootstrap world”, x̃ plays the role of x∗, and x̂ plays the role of x̃.
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Example: Bootstrap error estimation

Theory: Guarantees are available for dense sub-gaussian sketches.

Experiment: ‘YearPredictionMSD’ data from LIBSVM: n ∼ 4.6× 105, d = 90

CSCS

[LWM18, LWM19]
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Statistical bias-variance analysis

Example: Bias-variance decomposition for a statistical estimator x̃:

E ‖x̃− x∗‖2 = Var(x̃) + Bias2(x̃).

Key observation: We can do this for sketching-based estimators x̃ = x̃(SA)
because RandNLA sketches follow statistical data assumptions

Sharp estimates for bias and variance via asymptotic RMT analysis.

Showing separation between different sketching methods in certain

parameter regimes.
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Example: Separation between sketching methods

Consider the n× p least squares task x∗ = argminx ‖Ax− b‖

The corresponding sketched least squares estimator is

x̃ = min
x∈Rp

‖Ax− b‖2 = Ã†b̃,

where Ã := SA and b̃ := Sb for sketching matrix S ∈ Rr×n.

Claim: With a fixed sketch-to-data aspect ratio r/n, asymptotic error for
orthogonal (Hadamard, Haar) sketches is less than for i.i.d/Gaussian sketches.

[DL19, LLDP20]
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Further related advances

Statistical perspective on RandNLA importance sampling, e.g.,

[MMY15, RM16, MCZ+22]

Statistical perspective on randomized low-rank approximation [YLDW20]

Bootstrapping sketched covariance estimation [LEM23]

Uncertainty quantification for randomized linear system solvers

[BCIH19, CIOR21]
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Random matrix theory approaches

Goal: Beyond worst-case analysis of RandNLA algorithms via RMT

Input 1 Input 2

Key idea: Performance of sketching is determined by the spectral decay profile
(decreasing singular values of the data matrix)

σ1
σ2 σ3 σ4 σ5

σ1

σ2
σ3 σ4 σ5
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Example: Low-rank approximation

A
≈ ×

Optimal choice: Top k Truncated SVD of matrix A

Sketching approximation factor =
Er(rank k sketch SA)

Er(top k SVD of A)
,

where Er(SA) = ‖A− ProjSA(A)‖2F is the low-rank projection error.
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Example: Low-rank approximation

Experiment: LIBSVM data with Gaussian RBF kernel parameterized by σ
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Multiple-descent in low-rank approximation

Theory: Characterizing the approximation factor using RMT [DKM20]
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Example: Implicit regularization in sketching

Sketched least squares estimator: x̃ = minx∈Rd ‖SAx− Sb‖2 = Ã†b̃ ∈ Rd

“Classical” RandNLA: Guarantees for sketch sizes l ≥ Õ(d).

Question: What happens when the sketch size is less than the dimension
(l < d, over-parameterized setting)?

Answer: In the over-parameterized setting, the estimator x̃ becomes biased
(implicit regularization).

RMT analysis shows that this bias is precisely implicit `2 regularization

E[x̃] � min ‖Ax− b‖2 + γ‖x‖2.

Connection: implicit regularization in training NNs with SGD [Ney17, MM18]

[FSS20, LJB20, DLM20b, DBPM20, LPJ+22]
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Finding optimal regularization parameters

Consider Sketch-and-Solve for ridge regression with data A and labels b:

x∗ = min
x

1

n

n∑
i=1

(a>i x− bi)2 + γ‖x‖2

Question: Suppose we sketch the problem with Ã = SA, b̃ = Sb.
What regularization parameter should we use for the sketch?

[WGM18]
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Finding optimal regularization parameters

Correcting implicit regularization with RMT

Suppose x̃ = argminx ‖Ãx− b̃‖2 + γ′‖x‖2 is based on sketch size l. Then,

defining dγ = tr(A>A(A>A+ γI)−1) as the γ-effective dimension of A,

E[x̃] � x∗, if γ′ = γ ·
(

1− dγ
l

)
,

Experiment: Distributed averaging

x̂ =
1

m

m∑
i=1

x̃i

Solid lines: estimates using γ

Dotted lines: estimates using γ′

[DBPM20]
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Standard libraries for numerical linear algebra

Basic Linear Algebra

Subprograms

BLAS

Level 1. E.g.,

s = x>y

Level 2. E.g.,

y = αAx+ βy

Level 3. E.g.,

C = αAB + βC

The Linear Algebra PACKage

LAPACK

Computational routines. E.g.,

A = QR

A = R>R

Drivers. E.g.,

min ‖Ax− b‖22
x = A−1b

A = UΛU>
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Developing standard libraries for RandNLA

RandBLAS

Library that concerns basic sketching for dense data matrices.

Reference implementation in C++.

Hope: it grows to become a community standard for RandNLA, in the sense

that its API would see wider adoption than any single implementation.

RandLAPACK

Library that concerns algorithms for solving traditional linear algebra problems

and advanced sketching functionality.

To be written in C++, build on BLAS++/LAPACK++ portability layer

Main drivers:

Least squares and optimization.

Low-rank approximation.

Full-rank decompositions.
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“The RandLAPACK book”
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“The RandLAPACK book”

Table of Contents

1 Introduction

2 Basic Sketching

3 Least Squares and Optimization

4 Low-rank Approximation

5 Further Possibilities for Drivers

6 Advanced Sketching: Leverage Score Sampling

7 Advanced Sketching: Tensor Product Structures

A Details on Basic Sketching

B Details on Least Squares and Optimization

C Details on Low-Rank Approximation

D Correctness of Preconditioned Cholesky QRCP

E Bootstrap Methods for Error Estimation

“Randomized Numerical Linear Algebra: A Perspective on the Field with an Eye to Software,”

arXiv:2302.11474, [MDM+23]
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Lots of things we did not cover

Data-driven methods for learning good sketching operators, e.g.,

[IVY19, IWW21, CDD+23]

RandNLA methods for tensor decompositions, e.g.,

[WTSA15, LHW17, EMBK20, JKW21]

RandNLA methods in streaming/online environments, e.g., [BDM+20]

Probabilistic numerics, e.g., [BCIH18]

Hutchinson and spectral function methods

Randomness deep inside an algorithm, e.g., for pivot rule decisions

Theory/practice for neural networks, e.g., NTK, Nystromformer, etc.

Graph-related and other structured matrices, e.g., Laplacians

...

Dereziński and Mahoney RandNLA for ML Concluding thoughts 155



“Concluding thoughts”

RandNLA:

Major interdisciplinary area: b/w TCS, NLA, scientific computing, ML

Recent years: major developments in implementation (e.g., GPUs, hardware)

and application (ML vs scientific/engineering ML) motivations

Existing (strong) theoretical foundations: needs revisiting (updating)

Recent years: major developments in theory

Leads to improvements: in {inferential objectives, iterative algorithms, etc.} for {old,

new} ML problems

RandBLAS/RandLAPACK: implement theory “lower in the stack”

Main theme for today:

Identify core linear algebraic structures and build algorithmic / statistical methods

around them (rather than tacking them on later as a “band aid”)

A good way to build robust (theoretical and practical) ML pipelines and avoid lots of

problems later ...
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Micha l Dereziński, Zhenyu Liao, Edgar Dobriban, and Michael Mahoney.

Sparse sketches with small inversion bias.

In Conference on Learning Theory, pages 1467–1510. PMLR, 2021.

Michal Derezinski, Feynman Liang, and Michael Mahoney.

Bayesian experimental design using regularized determinantal point processes.

In International Conference on Artificial Intelligence and Statistics, pages 3197–3207, 2020.
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Accelerated stochastic matrix inversion: general theory and speeding up bfgs rules for faster second-order

optimization.

Advances in Neural Information Processing Systems, 31, 2018.

Robert Gower, Dmitry Kovalev, Felix Lieder, and Peter Richtárik.
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