
Terabyte-scale Computational Statistics

Michael W. Mahoney

(AMPLab, ICSI, and Department of Statistics, UC Berkeley)

November 2016

Thoughts on data, large data, massive data, big data, etc.

Thoughts on scientific data: problems, running times, and choosing
good columns as features.

Linear Algebra in Spark for science problems
•  CX and SVD/PCA implementations and performance
•  Applications of the CX and PCA matrix decompositions
•  To mass spec imaging, climate science, etc.

The Next Step: Alchemist

Overview

How do we view BIG data?

Algorithmic & Statistical Perspectives ...

Computer Scientists
•  Data: are a record of everything that happened.
•  Goal: process the data to find interesting patterns and associations.
•  Methodology: Develop approximation algorithms under different
models of data access since the goal is typically computationally hard.

Statisticians (and Natural Scientists, etc)
•  Data: are a particular random instantiation of an underlying process
describing unobserved patterns in the world.
•  Goal: is to extract information about the world from noisy data.
•  Methodology: Make inferences (perhaps about unseen events) by
positing a model that describes the random variability of the data
around the deterministic model.

Lambert (2000), Mahoney (2010)

... are VERY different paradigms

Statistics, natural sciences, scientific computing, etc:
•  Problems often involve computation, but the study of computation
per se is secondary
•  Only makes sense to develop algorithms for well-posed* problems
•  First, write down a model, and think about computation later

Computer science:
•  Easier to study computation per se in discrete settings, e.g., Turing
machines, logic, complexity classes
•  Theory of algorithms divorces computation from data
•  First, run a fast algorithm, and ask what it means later

*Solution exists, is unique, and varies continuously with input data

E.g., application in: Human Genetics

Scientific data and choosing good columns as features

 Single Nucleotide Polymorphisms: the most common type of genetic variation in the
genome across different individuals.

 They are known locations at the human genome where two alternate nucleotide bases
(alleles) are observed (out of A, C, G, T).

SNPs

in
di

vi
du

al
s

 … AG CT GT GG CT CC CC CC CC AG AG AG AG AG AA CT AA GG GG CC GG AG CG AC CC AA CC AA GG TT AG CT CG CG CG AT CT CT AG CT AG GG GT GA AG …!
… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CT AA GG GG CC GG AA GG AA CC AA CC AA GG TT AA TT GG GG GG TT TT CC GG TT GG GG TT GG AA …!

… GG TT TT GG TT CC CC CC CC GG AA AG AG AA AG CT AA GG GG CC AG AG CG AC CC AA CC AA GG TT AG CT CG CG CG AT CT CT AG CT AG GG GT GA AG …!
… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CC GG AA CC CC AG GG CC AC CC AA CG AA GG TT AG CT CG CG CG AT CT CT AG CT AG GT GT GA AG …!

… GG TT TT GG TT CC CC CC CC GG AA GG GG GG AA CT AA GG GG CT GG AA CC AC CG AA CC AA GG TT GG CC CG CG CG AT CT CT AG CT AG GG TT GG AA …!

… GG TT TT GG TT CC CC CG CC AG AG AG AG AG AA CT AA GG GG CT GG AG CC CC CG AA CC AA GT TT AG CT CG CG CG AT CT CT AG CT AG GG TT GG AA …!

… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA TT AA GG GG CC AG AG CG AA CC AA CG AA GG TT AA TT GG GG GG TT TT CC GG TT GG GT TT GG AA …!

 Matrices including thousands of individuals and hundreds of thousands (large for
some people, small for other people) if SNPs are available.

HGDP data

•  1,033 samples

•  7 geographic regions

•  52 populations

Cavalli-Sforza (2005) Nat Genet Rev

Rosenberg et al. (2002) Science

Li et al. (2008) Science

The International HapMap Consortium
(2003, 2005, 2007) Nature

Apply SVD/PCA on the
(joint) HGDP and HapMap

Phase 3 data.

Matrix dimensions:

2,240 subjects (rows)

447,143 SNPs (columns)

Dense matrix:

over one billion entries

The Human Genome Diversity Panel (HGDP)

ASW, MKK, LWK,
& YRI

CEU

TSI
JPT, CHB, & CHD

GIH

MEX

HapMap Phase 3 data

•  1,207 samples

•  11 populations

HapMap Phase 3

Africa

Middle East

South Central
Asia

Europe

Oceania

East Asia

America

Gujarati
Indians

Mexicans

•  Top two Principal Components (PCs or eigenSNPs)
(Lin and Altman (2005) Am J Hum Genet)

•  The figure renders visual support to the “out-of-Africa” hypothesis.

•  Mexican population seems out of place: we move to the top three PCs.

Paschou, et al (2010) J Med Genet

Africa
Middle East

S C Asia &
Gujarati Europe Oceania

East Asia

America

•  Not altogether satisfactory: the principal components are linear combinations of
all SNPs, and – of course – can not be assayed!

•  Can we find actual SNPs that capture the information in the singular vectors?

•  Relatedly, can we compute them and/or the truncated SVD “efficiently.”

Paschou, et al. (2010) J Med Genet

Two related issues with eigen-analysis
Computing large SVDs: computational time
•  In commodity hardware (e.g., a 4GB RAM, dual-core laptop), using MatLab 7.0 (R14),
the computation of the SVD of the dense 2,240-by-447,143 matrix A takes ca 20 minutes.

•  Computing this SVD is not a one-liner, since we can not load the whole matrix in RAM
(runs out-of-memory in MatLab).

•  Instead, compute the SVD of AAT.

•  In a similar experiment, compute 1,200 SVDs on matrices of dimensions (approx.) 1,200-
by-450,000 (roughly, a full leave-one-out cross-validation experiment) (DLP2010)

Selecting actual columns that “capture the structure” of the top PCs
•  Combinatorial optimization problem; hard even for small matrices.

•  Often called the Column Subset Selection Problem (CSSP).

•  Not clear that such “good” columns even exist.

•  Avoid “reification” problem of “interpreting” singular vectors!

•  (Solvable in “random projection time” with CX/CUR decompositions! (PNAS, MD09))

Where do you run your linear algebra?

Single machine
• Think about RAM, call LAPACK, etc.

• Someone else thought about numerical issues, memory hierarchies, etc.

• This is the 99%

Supercomputer
• High end, compute-intensive.

• Big emphasis on HPC (High Performance Computing)

• C+MPI, etc.

Distributed data center
• High end, data-intensive

• BIG emphasis on HPC (High Productivity Computing)

• Databases, MapReduce/Hadoop, Spark, etc.

Spark Architecture

  Data parallel programming model
  Resilient distributed datasets (RDDs) (think: distributed array type)
  RDDs can optionally be cached in memory b/w iterations
  Driver forms DAG, schedules tasks on executors

Spark Communication

  Computation operate on one RDD to produce another RDD
  Each overall job (DAG) broken into stages
  Stages broken into parallel, independent tasks
  Communication happens only between stages

Why do linear algebra in Spark?

  Classical MPI-based linear algebra algorithms are faster
and more efficient

  No way, currently, to leverage legacy parallel linear
algebra codes

  JVM matrix size restrictions, and RDD rigidity

Cons:

  Widely used
  Easier to use for non-experts
  An entire ecosystem that can be used before and after the

NLA computations
  Spark can take advantage of available single-machine

linear algebra codes (e.g. through netlib-java)
  Automatic fault-tolerance
  Transparent support for out of memory calculations

Pros:

Our Goals

  Provide implementations of low-rank factorizations (PCA,
NMF, and randomized CX) in Spark

  Apply low-rank matrix factorization methods to TB-scale
scientific datasets in Spark

  Understand Spark performance on commodity clusters vs
HPC platforms

  Quantify the scalability gaps between highly-tuned C/MPI
and current Spark-based implementations

  Provide a general-purpose interface for matrix-based
algorithms between Spark and traditional MPI codes

Motivation

  NERSC: Spark for data-centric workloads and scientific analytics
  AMPLab: characterization of linear algebra in Spark (MLlib, MLMatrix)
  Cray: customers demand for Spark; understand performance concerns

Three Science Drivers
Climate Science:
extract trends in variations of oceanic
and atmospheric variables (PCA)

Nuclear Physics:
learn useful patterns for
classification of subatomic particles
(NMF)

Mass Spectrometry:
location of chemically important ions
(CX)

Datasets

MSI — a sparse matrix from measurements of drift times and mass charge
ratios at each pixel of a sample of Peltatum; used for CX decomposition

Daya Bay — neutrino sensor array measurements; used for NMF

Ocean and Atmosphere — climate variables (ocean temperature,
atmospheric humidity) measured on a 3D grid at 3 or 6 hour intervals over
about 30 years; used for PCA

Experiments
1.  Compare EC2 and two HPC platforms using CX

implementation
2.  More detailed analysis of Spark vs C+MPI scaling

for PCA and NMF on the two HPC platforms

Some details:
  All datasets are tall and skinny
  The algorithms work with row-partitioned

matrices
  Use H5Spark to read dense matrices from

HDF5, so MPI and Spark reading from same
data source

Platform comparisons
Two Cray HPC machines and EC2, using CX

Randomized CX/CUR
Decomposition

  Dimensionality reduction is a ubiquitous tool in science
(bio-imaging, neuro-imaging, genetics, chemistry,
climatology, …), typical approaches include PCA and
NMF which give approximations that rely on non-
interpretable combinations of the data points in A

  PCA, NMF lack reifiability. Instead, CX matrix
decompositions identify exemplar data points (columns of
A) that capture the same information as the top singular
vectors, and give approximations of the form

The Randomized CX Decomposition

  To get accuracy comparable to the truncated rank-k SVD,
the randomized CX algorithm randomly samples O(k)
columns with replacement from A according to the
leverage scores

where

The Randomized CX Decomposition

  It is expensive to compute the right singular vectors
  Since the algorithm is already randomized, we use a

randomized algorithm to quickly approximate them

The Randomized SVD algorithm

The matrix analog of the power method:

requires only matrix-matrix
multiplies against ATA

assumes B fits on one machine

Computing the power iterations using Spark

is computed using a treeAggregate operation over the RDD

[src: https://databricks.com/blog/2014/09/22/spark-1-1-mllib-performance-improvements.html]!

CX run-times: 1.1Tb

Differences in write timings
have more impact:
•  4800 write tasks per

iteration
•  68 read tasks per

iteration

Timing breakdowns

Observations

  EXP_CC outperforms EC2 and XC40 because of local
storage and faster interconnect

  On HPC platforms, can focus on modifying Spark to
mitigate drawbacks of the global filesystem:

1.  clean scratch more often to help fit scratch entirely
in RAM, no need to spill to Lustre

2.  allow user to specify order to fill scratch
directories (RAM disk, *then* Lustre)

3.  exploit fact that scratch on shared filesystem is
global, to avoid wasted communication

Spark vs MPI
PCA and NMF, on NERSC’s Cori supercomputer

CFSR Ocean Temperature Dataset (II)!

Climate Science Results on Ocean
(CFSRO) dataset

•  First principal component of temperature field at 180 degree latitude.!
•  Clear that there is a significant vertical component to the PCs which are

lost when you do the traditional surface-only analyses

Cori’s specs:
•  1630 compute nodes,
•  128 GB/node,
•  32 2.3GHz Haswell cores/node

Running times for NMF and PCA

•  Anti-scaling! !
•  And it worsens both with concurrency and data size. !

Computing the truncated PCA

The two steps in computing the truncated PCA of A are:

1.  Compute the truncated EVD of ATA to get Vk

2.  Compute the SVD of AVk to get Σk and Vk

use Lanczos: requires only matrix vector multiplies

assume this is small enough that the SVD can be computed locally

Often (for dimensionality reduction, physical interpretation, etc.),
the rank-k truncated PCA (SVD) is desired. It is defined as

Computing the Lanczos iterations using Spark

If then the product can be computed as

We call the spark.mllib.linalg.EigenvalueDecomposition
interface to the ARPACK implementation of the Lanczos
method
This requires a function which computes a matrix-product
against ATA

Spark Overheads: the view of one task

task start delay = (time between stage start and when driver sends task to executor)

scheduler delay = (time between task being sent and time starts deserializing)+
(time between task result serialization and driver receiving task’s completion
message)

task overhead time = (fetch wait time) + (executor deserialize time) + (result
serialization time) + (shuffle write time)

time waiting until stage end = (time waiting for final task in stage to end)

PCA Run Times: rank 20 PCA of 2.2TB Climate

Rank 20 PCA of 16 TB Climate using 48K+ cores

Spark PCA Overheads: 16 TB Climate,1522 nodes

Nonnegative Matrix
Factorization

Useful when the observations are positive, and assumed to
be positive combinations of basis vectors (e.g., medical
imaging modalities, hyperspectral imaging)

In general, NMF factorizations are non-unique and NP-
hard to compute for a fixed rank.

We use the one-pass approach of Benson et al. 2014

Nearly-Separable NMF
Assumption: some k-subset of the columns of A comprise a
good W

Key observation of Benson et al. : finding those columns of A
can be done on the R factor from the QR decomposition of A

So the problem reduces to a distributed QR on a tall matrix
A, then a local NMF on a much smaller matrix

Tall-Skinny QR (TSQR)

When A is tall and skinny, you can efficiently compute R:
  uses a tree reduce
  requires only one pass over A

NMF Run Times: rank 10 NMF of 1.6TB Daya Bay

MPI vs Spark: Lessons Learned

  With favorable data (tall and skinny) and well-adapted
algorithms, Spark LA is 4x-26x slower than MPI when IO
is included

  Spark overheads are orders of magnitude higher than
the computations in PCA (time till stage end, scheduler
delay, task start delay, executor deserialize time).

  H5Spark performance is inconsistent this needs more
work

  The large gaps mean it is worthwhile to investigate
efficiently interfacing MPI-based codes with Spark

The Next Step: Alchemist
  Since Spark is 4+x slower than MPI, propose sending the

matrices to MPI codes, then receiving the results
  For efficiency, want as little overhead as possible (File I/O,

RAM, network usage, computational efficiency)

File I/O RAM Network
Usage

Computational
Efficiency

HDFS writes to disk! 2x RAM! manual
shuffling! yes!

Apache Ignite none! 2-3x RAM! intelligent! restricted
partitioning!

Alluxio none! 2-3x RAM! intelligent! restricted
partitioning!

Alchemist none! 2x RAM! intelligent! yes!

Alchemist Architecture

Spark:
1) Send metadata for input/output matrices to the Alchemist gateway
2) Sends the matrix to the Alchemist gateway using RDD.pipe()
3) Waits on a matrix from the Alchemist gateway using RDD.pipe()

Alchemist:
 1) repartitions the matrix for MPI
 2) executes the MPI codes

3) repartitions the output and returns to Spark

Each call to Alchemist will be single stage in the execution of Spark jobs!

Spark! MPI!
Alchemist!
Gateway!

What Alchemist Will Enable

  Use MPI NLA/ML Codes from Spark: libSkylark, MaTeX, etc.

…
val xMat = alcMat(xRDD)
val yMat = alcMat(yRDD)

// Elemental NLA
val (u,s,v) =
alchemist.SVD(xMat,k).toIndexRowMatrices()

// libSkylark ML
val (rffweights,alpha) =
alchemist.RFFRidgeRegression(xMat,yMat,lambda,D)

// MaTeX ML
val clusterIndicators = alchemist.kMeans(xMat,k)
…

It will be easy to write lightweight wrappers around APIs
of existing MPI codes.!

Multi-platform evaluation of randomized CX/CUR (IPDPS 2016 Workshop)

Poster presentations at climate science venues

Technical Report on Spark performance for Terabyte-scale Matrix
Decompositions (submitted): https://arxiv.org/abs/1607.01335

Attendant MPI and Spark codes:

https://github.com/alexgittens/SparkAndMPIFactorizations

End-to-end 3D Climate EOF codes:

https://github.com/alexgittens/climate-EOF-suite

CUG 2016 Paper on H5Spark:

https://github.com/valiantljk/h5spark/files/261834/h5spark-cug16-final.pdf

For more info, contact me or Alex Gittens: gittens@icsi.berkeley.edu

Sophisticated statistical data analysis involves strong control over
linear algebra.

Most workflows/applications currently do not demand much of the
linear algebra.

Low-rank matrix algorithms for interpretable scientific analytics on
scores of terabytes of data!

Complex data workflows invoke linear algebra as one step (of a
multi-stage pipeline), and data/communication optimization might
be needed across function calls.

What is the “right” way to do linear algebra for large-scale data
analysis?

Conclusion

