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Thoughts on data, large data, massive data, big data, etc. 
 
Thoughts on scientific data: problems, running times, and choosing 
good columns as features. 
 
Linear Algebra in Spark for science problems 
•  CX and SVD/PCA implementations and performance 
•  Applications of the CX and PCA matrix decompositions 
•  To mass spec imaging, climate science, etc. 
 
The Next Step: Alchemist 
 

Overview 



How do we view BIG data? 



Algorithmic & Statistical Perspectives ... 

Computer Scientists  
•  Data: are a record of everything that happened.  
•  Goal: process the data to find interesting patterns and associations. 
•  Methodology: Develop approximation algorithms under different 
models of data access since the goal is typically computationally hard. 
 
Statisticians (and Natural Scientists, etc) 
•  Data: are a particular random instantiation of an underlying process 
describing unobserved patterns in the world. 
•  Goal: is to extract information about the world from noisy data. 
•  Methodology: Make inferences (perhaps about unseen events) by 
positing a model that describes the random variability of the data 
around the deterministic model.  

Lambert (2000), Mahoney (2010)   



... are VERY different paradigms 

Statistics, natural sciences, scientific computing, etc:  
•  Problems often involve computation, but the study of computation 
per se is secondary 
•  Only makes sense to develop algorithms for well-posed* problems 
•  First, write down a model, and think about computation later 
 
Computer science: 
•  Easier to study computation per se in discrete settings, e.g., Turing 
machines, logic, complexity classes  
•  Theory of algorithms divorces computation from data 
•  First, run a fast algorithm, and ask what it means later 

*Solution exists, is unique, and varies continuously with input data 



E.g., application in: Human Genetics 
 

Scientific data and choosing good columns as features 

 Single Nucleotide Polymorphisms: the most common type of genetic variation in the 
genome across different individuals. 

 They are known locations at the human genome where two alternate nucleotide bases 
(alleles) are observed (out of A, C, G, T). 
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 … AG CT GT GG CT CC CC CC CC AG AG AG AG AG AA CT AA GG GG CC GG AG CG AC CC AA CC AA GG TT AG CT CG CG CG AT CT CT AG CT AG GG GT GA AG …!
… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CT AA GG GG CC GG AA GG AA CC AA CC AA GG TT AA TT GG GG GG TT TT CC GG TT GG GG TT GG AA …!

… GG TT TT GG TT CC CC CC CC GG AA AG AG AA AG CT AA GG GG CC AG AG CG AC CC AA CC AA GG TT AG CT CG CG CG AT CT CT AG CT AG GG GT GA AG …!
… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CC GG AA CC CC AG GG CC AC CC AA CG AA GG TT AG CT CG CG CG AT CT CT AG CT AG GT GT GA AG …!

… GG TT TT GG TT CC CC CC CC GG AA GG GG GG AA CT AA GG GG CT GG AA CC AC CG AA CC AA GG TT GG CC CG CG CG AT CT CT AG CT AG GG TT GG AA …!

… GG TT TT GG TT CC CC CG CC AG AG AG AG AG AA CT AA GG GG CT GG AG CC CC CG AA CC AA GT TT AG CT CG CG CG AT CT CT AG CT AG GG TT GG AA …!

… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA TT AA GG GG CC AG AG CG AA CC AA CG AA GG TT AA TT GG GG GG TT TT CC GG TT GG GT TT GG AA …!

 Matrices including thousands of individuals and hundreds of thousands (large for 
some people, small for other people) if SNPs are available. 



HGDP data 

•  1,033 samples 

•  7 geographic regions 

•  52 populations 

Cavalli-Sforza (2005) Nat Genet Rev 

Rosenberg et al. (2002) Science 

Li et al. (2008) Science 

The International HapMap Consortium 
(2003, 2005, 2007) Nature 

Apply SVD/PCA on the 
(joint) HGDP and HapMap 

Phase 3 data. 

 

Matrix dimensions: 

2,240 subjects (rows) 

447,143 SNPs (columns) 

 

Dense matrix:  

over one billion entries 

The Human Genome Diversity Panel (HGDP) 
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HapMap Phase 3 data 

•  1,207 samples 

•  11 populations 

HapMap Phase 3 
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South Central 
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America 

Gujarati 
Indians 

Mexicans 

•  Top two Principal Components (PCs or eigenSNPs)  
(Lin and Altman (2005) Am J Hum Genet) 

•  The figure renders visual support to the “out-of-Africa” hypothesis. 

•  Mexican population seems out of place: we move to the top three PCs. 

Paschou, et al (2010) J Med Genet 
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•  Not altogether satisfactory: the principal components are linear combinations of 
all SNPs, and – of course – can not be assayed! 

•  Can we find actual SNPs that capture the information in the singular vectors? 

•  Relatedly, can we compute them and/or the truncated SVD “efficiently.” 

Paschou, et al. (2010) J Med Genet 



  
 

Two related issues with eigen-analysis 
Computing large SVDs: computational time 
•   In commodity hardware (e.g., a 4GB RAM, dual-core laptop), using MatLab 7.0 (R14), 
the computation of the SVD of the dense 2,240-by-447,143 matrix A takes ca 20 minutes. 

•   Computing this SVD is not a one-liner, since we can not load the whole matrix in RAM 
(runs out-of-memory in MatLab). 

•   Instead, compute the SVD of AAT. 

•   In a similar experiment, compute 1,200 SVDs on matrices of dimensions (approx.) 1,200-
by-450,000 (roughly, a full leave-one-out cross-validation experiment) (DLP2010) 

 

Selecting actual columns that “capture the structure” of the top PCs 
•   Combinatorial optimization problem; hard even for small matrices.  

•   Often called the Column Subset Selection Problem (CSSP). 

•   Not clear that such “good” columns even exist. 

•   Avoid “reification” problem of “interpreting” singular vectors! 

•  (Solvable in “random projection time” with CX/CUR decompositions! (PNAS, MD09)) 



  
 

Where do you run your linear algebra? 

Single machine 
• Think about RAM, call LAPACK, etc.  

• Someone else thought about numerical issues, memory hierarchies, etc. 

• This is the 99% 
 

Supercomputer 
• High end, compute-intensive. 

• Big emphasis on HPC (High Performance Computing) 

• C+MPI, etc. 
 

Distributed data center 
• High end, data-intensive 

• BIG emphasis on HPC (High Productivity Computing) 

• Databases, MapReduce/Hadoop, Spark, etc. 

 



Spark Architecture 

  Data parallel programming model 
  Resilient distributed datasets (RDDs) (think: distributed array type) 
  RDDs can optionally be cached in memory b/w iterations 
  Driver forms DAG, schedules tasks on executors 



Spark Communication 

  Computation operate on one RDD to produce another RDD 
  Each overall job (DAG) broken into stages 
  Stages broken into parallel, independent tasks 
  Communication happens only between stages 



Why do linear algebra in Spark? 

  Classical MPI-based linear algebra algorithms are faster 
and more efficient 

  No way, currently, to leverage legacy parallel linear 
algebra codes 

  JVM matrix size restrictions, and RDD rigidity 

Cons:

 
  Widely used 
  Easier to use for non-experts 
  An entire ecosystem that can be used before and after the 

NLA computations 
  Spark can take advantage of available single-machine 

linear algebra codes (e.g. through netlib-java) 
  Automatic fault-tolerance 
  Transparent support for out of memory calculations 

Pros:



Our Goals 

  Provide implementations of low-rank factorizations (PCA, 
NMF, and randomized CX) in Spark 

  Apply low-rank matrix factorization methods to TB-scale 
scientific datasets in Spark 

  Understand Spark performance on commodity clusters vs 
HPC platforms

  Quantify the scalability gaps between highly-tuned C/MPI 
and current Spark-based implementations 

  Provide a general-purpose interface for matrix-based 
algorithms between Spark and traditional MPI codes 



Motivation 

  NERSC: Spark for data-centric workloads and scientific analytics 
  AMPLab: characterization of linear algebra in Spark (MLlib, MLMatrix) 
  Cray: customers demand for Spark; understand performance concerns 



Three Science Drivers 
Climate Science:  
extract trends in variations of oceanic 
and atmospheric variables (PCA) 

Nuclear Physics:  
learn useful patterns for 
classification of subatomic particles 
(NMF) 

Mass Spectrometry:
location of chemically important ions 
(CX) 



Datasets 

MSI — a sparse matrix from measurements of drift times and mass charge 
ratios at each pixel of a sample of Peltatum; used for CX decomposition 
 
Daya Bay — neutrino sensor array measurements; used for NMF 
 
Ocean and Atmosphere — climate variables (ocean temperature, 
atmospheric humidity) measured on a 3D grid at 3 or 6 hour intervals over 
about 30 years; used for PCA 



Experiments 
1.  Compare EC2 and two HPC platforms using CX 

implementation 
2.  More detailed analysis of Spark vs C+MPI scaling 

for PCA and NMF on the two HPC platforms 

Some details: 
  All datasets are tall and skinny 
  The algorithms work with row-partitioned 

matrices 
  Use H5Spark to read dense matrices from 

HDF5, so MPI and Spark reading from same 
data source 



Platform comparisons 
Two Cray HPC machines and EC2, using CX 



Randomized CX/CUR 
Decomposition 

  Dimensionality reduction is a ubiquitous tool in science 
(bio-imaging, neuro-imaging, genetics, chemistry, 
climatology, …), typical approaches include PCA and 
NMF which give approximations that rely on non-
interpretable combinations of the data points in A 

  PCA, NMF lack reifiability. Instead, CX matrix 
decompositions identify exemplar data points (columns of 
A) that capture the same information as the top singular 
vectors, and give approximations of the form 



The Randomized CX Decomposition 

   To get accuracy comparable to the truncated rank-k SVD, 
the randomized CX algorithm randomly samples O(k) 
columns with replacement from A according to the 
leverage scores  

where 



The Randomized CX Decomposition 

   It is expensive to compute the right singular vectors 
  Since the algorithm is already randomized, we use a 

randomized algorithm to quickly approximate them 



The Randomized SVD algorithm 

The matrix analog of the power method: 

requires only matrix-matrix 
multiplies against ATA

assumes B fits on one machine



Computing the power iterations using Spark 

is computed using a treeAggregate operation over the RDD 

[src: https://databricks.com/blog/2014/09/22/spark-1-1-mllib-performance-improvements.html]!



CX run-times: 1.1Tb 



Differences in write timings 
have more impact: 
•  4800 write tasks per 

iteration 
•  68 read tasks per 

iteration 

Timing breakdowns 



Observations 

  EXP_CC outperforms EC2 and XC40 because of local 
storage and faster interconnect 

  On HPC platforms, can focus on modifying Spark to 
mitigate drawbacks of the global filesystem: 

1.  clean scratch more often to help fit scratch entirely 
in RAM, no need to spill to Lustre 

2.  allow user to specify order to fill scratch 
directories (RAM disk, *then* Lustre) 

3.  exploit fact that scratch on shared filesystem is 
global, to avoid wasted communication 



Spark vs MPI 
PCA and NMF, on NERSC’s Cori supercomputer 



CFSR Ocean Temperature Dataset (II)!



Climate Science Results on Ocean 
(CFSRO) dataset 

•  First principal component of temperature field at 180 degree latitude.!
•  Clear that there is a significant vertical component to the PCs which are 

lost when you do the traditional surface-only analyses 



Cori’s specs:  
•  1630 compute nodes,  
•  128 GB/node,  
•  32 2.3GHz Haswell cores/node  

Running times for NMF and PCA 

•  Anti-scaling! !
•  And it worsens both with concurrency and data size. !



Computing the truncated PCA 

The two steps in computing the truncated PCA of A are: 

1.  Compute the truncated EVD of ATA to get Vk 

2.  Compute the SVD of AVk to get Σk and Vk 

use Lanczos: requires only matrix vector multiplies

assume this is small enough that the SVD can be computed locally 

Often (for dimensionality reduction, physical interpretation, etc.), 
the rank-k truncated PCA (SVD) is desired. It is defined as 



Computing the Lanczos iterations using Spark 

If then the product can be computed as 

We call the spark.mllib.linalg.EigenvalueDecomposition 
interface to the ARPACK implementation of the Lanczos 
method 
This requires a function which computes a matrix-product 
against ATA  



Spark Overheads: the view of one task 

task start delay = (time between stage start and when driver sends task to executor) 

scheduler delay = (time between task being sent and time starts deserializing)+ 
(time between task result serialization and driver receiving task’s completion 
message)

task overhead time = (fetch wait time) + (executor deserialize time) +  (result 
serialization time) + (shuffle write time) 
 
time waiting until stage end = (time waiting for final task in stage to end) 



PCA Run Times: rank 20 PCA of 2.2TB Climate 



Rank 20 PCA of 16 TB Climate using 48K+ cores 



Spark PCA Overheads: 16 TB Climate,1522 nodes 



Nonnegative Matrix 
Factorization 

Useful when the observations are positive, and assumed to 
be positive combinations of basis vectors (e.g., medical 
imaging modalities, hyperspectral imaging) 

In general, NMF factorizations are non-unique and NP-
hard to compute for a fixed rank.  
 
We use the one-pass approach of Benson et al. 2014 



Nearly-Separable NMF 
Assumption: some k-subset of the columns of A comprise a 
good W 

Key observation of Benson et al. : finding those columns of A 
can be done on the R factor from the QR decomposition of A 

So the problem reduces to a distributed QR on a tall matrix 
A, then a local NMF on a much smaller matrix 



Tall-Skinny QR (TSQR) 

When A is tall and skinny, you can efficiently compute R: 
  uses a tree reduce  
  requires only one pass over A 



NMF Run Times: rank 10 NMF of 1.6TB Daya Bay 



MPI vs Spark: Lessons Learned 

  With favorable data (tall and skinny) and well-adapted 
algorithms, Spark LA is 4x-26x slower than MPI when IO 
is included

  Spark overheads are orders of magnitude higher than 
the computations in PCA (time till stage end, scheduler 
delay, task start delay, executor deserialize time). 

  H5Spark performance is inconsistent this needs more 
work

  The large gaps mean it is worthwhile to investigate 
efficiently interfacing MPI-based codes with Spark



The Next Step: Alchemist 
  Since Spark is 4+x slower than MPI, propose sending the 

matrices to MPI codes, then receiving the results 
  For efficiency, want as little overhead as possible (File I/O, 

RAM, network usage, computational efficiency) 

File I/O RAM Network 
Usage

Computational 
Efficiency

HDFS writes to disk! 2x RAM! manual 
shuffling! yes!

Apache Ignite none! 2-3x RAM! intelligent! restricted 
partitioning!

Alluxio none! 2-3x RAM! intelligent! restricted 
partitioning!

Alchemist none! 2x RAM! intelligent! yes!



Alchemist Architecture 

Spark: 
1) Send metadata for input/output matrices to the Alchemist gateway 
2) Sends the matrix to the Alchemist gateway using RDD.pipe() 
3) Waits on a matrix from the Alchemist gateway using RDD.pipe() 

 
Alchemist: 
    1) repartitions the matrix for MPI 
    2) executes the MPI codes 

3) repartitions the output and returns to Spark 
 
Each call to Alchemist will be single stage in the execution of Spark jobs!
 

Spark! MPI!
Alchemist!
Gateway!



What Alchemist Will Enable 

  Use MPI NLA/ML Codes from Spark: libSkylark, MaTeX, etc. 

… 
val xMat = alcMat(xRDD) 
val yMat = alcMat(yRDD) 
 
// Elemental NLA 
val (u,s,v) = 
alchemist.SVD(xMat,k).toIndexRowMatrices() 
 
// libSkylark ML 
val (rffweights,alpha)  = 
alchemist.RFFRidgeRegression(xMat,yMat,lambda,D)  
 
// MaTeX ML 
val clusterIndicators = alchemist.kMeans(xMat,k) 
… 

It will be easy to write lightweight wrappers around APIs 
of existing MPI codes.!



Multi-platform evaluation of randomized CX/CUR (IPDPS 2016 Workshop) 
 
Poster presentations at climate science venues 
 
Technical Report on Spark performance for Terabyte-scale Matrix 
Decompositions (submitted): https://arxiv.org/abs/1607.01335 
 
 
Attendant MPI and Spark codes: 

https://github.com/alexgittens/SparkAndMPIFactorizations  
 
End-to-end 3D Climate EOF codes: 

https://github.com/alexgittens/climate-EOF-suite 
 
CUG 2016 Paper on H5Spark: 

https://github.com/valiantljk/h5spark/files/261834/h5spark-cug16-final.pdf 
 

For more info, contact me or Alex Gittens: gittens@icsi.berkeley.edu 



Sophisticated statistical data analysis involves strong control over 
linear algebra. 
 
Most workflows/applications currently do not demand much of the 
linear algebra. 
 
Low-rank matrix algorithms for interpretable scientific analytics on 
scores of terabytes of data! 
 
Complex data workflows invoke linear algebra as one step (of a 
multi-stage pipeline), and data/communication optimization might 
be needed across function calls. 
 
What is the “right” way to do linear algebra for large-scale data 
analysis? 
 
 
 

Conclusion 


