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Efficient and Effective Optimization Methods

Scientific Computing and Machine Learning share the same challenges,
and use the same means,
but to get to different ends!

Machine Learning has been, and continues to be, very busy designing
efficient and effective optimization methods

Michael W. Mahoney (UC Berkeley) Second order machine learning 13 / 96
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Efficient and Effective Optimization Methods

FIrRsT ORDER METHODS

e Variants of Gradient Descent (GD):

o Reduce the per-iteration cost of GD = Efficiency
e Achieve the convergence rate of the GD = Effectiveness

x(kF) = x(k) _ o W F(x(F)

Michael W. Mahoney (UC Berkeley) Second order machine learning 14 / 96



Efficient and Effective Optimization Methods

FIrRsT ORDER METHODS

e E.g.: SAG, SDCA, SVRG, Prox-SVRG, Acc-Prox-SVRG,
Acc-Prox-SDCA, S2GD, mS2GD, MISO, SAGA, AMSVRG, ...

Michael W. Mahoney (UC Berkeley) Second order machine learning 15 / 96



Efficient and Effective Optimization Methods

1ST ORDER METHOD AND “OVER-FITTING”

Challenges with “simple” 1st order method for “over-fitting”:
e Highly sensitive to ill-conditioning

o Very difficult to tune (many) hyper-parameters

“Over-fitting” is difficult with “simple” 1st order method!

Michael W. Mahoney (UC Berkeley) Second order machine learning



Efficient and Effective Optimization Methods

Remedy?

@ "Not-So-Simple” 1st order method, e.g., accelerated and adaptive

@ 2nd order methods, e.g., methods

x(FD) = x(0) _ w2 F(xU)] 71w F(x(K)

Michael W. Mahoney (UC Berkeley) Second order machine learning 18 / 96



Second-order methods: Stochastic Newton-Type Methods

@ 2nd order methods: Stochastic Newton-Type Methods
o Stochastic Newton (think: convex)
o Stochastic Trust Region (think: non-convex)
o Stochastic Cubic Regularization (think: non-convex)

PROBLEM 2: MINIMIZING FINITE SUM PROBLEM

1 n
=23t

o fiz (Non-)Convex and Smooth
e n>1
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SECOND ORDER METHODS

@ Deterministically approximating second order information cheaply
o Quasi-Newton, e.g., BFGS and L-BFGS [Nocedal, 1980]

e Randomly approximating second order information cheaply

o Sub-Sampling the Hessian [Byrd et al., 2011, Erdogdu et al., 2015,
Martens, 2010, RM-I, RM-1l, XYRRM, 2016, Bollapragada et al., 2016,

o Sketching the Hessian [Pilanci et al., 2015]

o Sub-Sampling the Hessian and the gradient [RM-I & RM-II, 2016,
Bollapragada et al., 2016, ...]
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Second-order methods: Stochastic Newton-Type Methods

ITERATIVE SCHEME

<)~ arg min { FO) 4+ (x — xM) Tg(x) + ﬁ(x =T H(x 8 (x x(k))}

X2

Current Point
x(k) ¢

Predicted Minimizers .
X4 x(k+1 X*
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Second-order methods: Stochastic Newton-Type Methods

CoONVEX PROBLEMS

e Each f; is smooth and weakly convex

e [ is y-strongly convex

Michael W. Mahoney (UC Berkeley) Second order machine learning



Second-order methods: Stochastic Newton-Type Methods

“We want to design methods for machine learning that are not as ideal as

Newton'’s method but have [these] properties: first of all, they tend to turn

towards the right directions and they have the right length, [i.e.,] the step

size of one is going to be working most of the time...and we have to have
an algorithm that scales up for machine leaning.”

Prof. Jorge Nocedal
IPAM Summer School, 2012
Tutorial on Optimization Methods for ML
(Video - Part I: 50" 03")
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WHAT DO WE NEED?

e Requirements:

(R.1) Scale up: |S| must be independent of n, or at least smaller than n and
for p > 1, allow for inexactness

(R.2) Turn to right directions: H(x) must preserve the spectrum of
V2F(x) as much as possible

(R.3) Not ideal but close: Fast local convergence rate, close to that of
Newton

(R.4) Right step length: Unit step length eventually works

Michael W. Mahoney (UC Berkeley) Second order machine learning 61 / 96



SUB-SAMPLING HESSIAN

LEMMA (UNIFORM HESSIAN SUB-SAMPLING)

Given any0<e<1l, 0<d<1landxeRP, if

2k2In(2p/6)
N

then

Pr ((1 — )V2F(x) = H(x) < (1 + €)V2F(x )) >1-
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SSN-H ALGORITHM: INEXACT UPDATE

Algorithm 5 Globally Convergent SSN-H with inexact solve
CInput: X0, 0<d<1,0<e<1,0<f,01.60, <1
: - Set the sample size, |S|, with € and §
: for k=0,1,2,--- until termination do
- Select a sample set, S, of size |S| and form H(x(¥))
- Update x(**1) with H(x(k)) and inexact solve
end for

jary

QG kN
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GLOABL CONVERGENCE SSN-H: INExacT UPDATE

THEOREM (GLOBAL CONVERGENCE OF ALGORITHM 5)

Using Algorithm 5 with 01 ~ 1/.\/k, with high-probability, we have
FO) — Fx) < (1 - p) (FM) = F(x)),

201-6:)(1-B)(1-¢)

where p = ay /K and oy >
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LocAL + GLOBAL

For any p < 1 and € ~ p/\/, Algorithm 5 is globally convergent and after O(x?)
iterations, with high-probability achieves “problem-independent” Q-linear
convergence, i.e.,

I — x| < pllx — x|

Moreover, the step size of ooy = 1 passes Armijo rule for all subsequent iterations.

Michael W. Mahoney (UC Berkeley) Second order machine learning 72 / 96



Second-order methods: Stochastic Newton-Type Methods

e Trust Region: Classical Method for Non-Convex Problem [Sorensen,
1982, Conn et al., 2000]

st =arg min (s, VF(xM)) + %(s, V2F(x(K)s)

lIsll<Ax

@ Cubic Regularization: More Recent Method for Non-Convex Problem
[Griewank, 1981, Nesterov et al., 2006, Cartis et al., 2011a, Cartis et
al., 2011b]

1
s() = arg min (s, VF(x()) + = (s, V2F(x()s) + ZK||s|®
seR4 2 3
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Second-order methods: Stochastic Newton-Type Methods

o To get iteration complexity, all previous work required:

| (HO) = v2F () s < st 1)

e Stronger than “Dennis-Moré”

I (H(x(k)) — V2F(x(k))) s(K)ll

lim =0
k=00 IsCk)l
o We relaxed (1) to
| (Hx®) = 92F(x4)) s < el}s®)] (2)

e Quasi-Newton, Sketching, Sub-Sampling satisfy Dennis-Moré and (2)
but not necessarily (1)

Michael W. Mahoney (UC Berkeley) Second order machine learning 79 / 96
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Executive Summary

« We propose ADAHESSIAN, a novel second order optimizer that achieves new

SOTA on various tasks:

o CV:Upto 5.55% better accuracy than Adam on ImageNet
o NLP: Upto 1.8 PPL better result than AdamW on PTB

o Recommendation System: Up to 0.032% better accuracy than Adagrad on Criteo

« ADAHESSIAN achieves these by:

o Low cost Hessian approximation, applicable to a wide range of NNs

o Anovel temporal and spatial smoothing scheme to reduce Hessian noise across iterations

___________________________________________________________________________________________________________________________________________________________________________



AdaHessian Motivation

« Choosing the right hyper-parameter for optimizing a NN

training has become a (very expensive) dark-art!
Problems with existing first-order solutions:
o Brute force hyper-parameter tuning

o No convergence guarantee unless taking many iterations

o Even the choice of the optimizer is a hyper-parameter!*

Task CV NLP Recommendation System

Optimizer Choice | SGD AdamW Adagrad

*BTW, not obvious if you just do popular things, e.g., ResNet50 training on ImageNet, since years of industrial scale (i.e., .
+ brute force) hyperparameter tuning and building systems for SGD-based methods mean those methods do well ... b5

___________________________________________________________________________________________________________________________________________________________________________



First and Second Order Methods

General parameter update formula: §,, 1 = 0; — n; A6,

First Order Method Second Order Method

\ )
|

How about the middle part?

Af; = H,?gt — gt Al = Ht_lgt



Instead of using fully first or second order method, the following
formula is used: A, = Ht_kgh 0<k<I1

* For convex problem, since g;rHt_kgt > 0, Ht_kgt IS a descent
direction.

« For simple problems, computing Ht_k Is not a problem and it can
be done by an eigen-decomposition.

« However, for large scale machine learning problems (e.g., DNNSs),

forming/storing Hessian are impractical.

10



Opening the Black Box with Second Derivative

Loss Lndscape Gradient: g € R4 Hessian: H € Rdxd

I | Fm e = oy
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E Pearlmutter BA. Fast exact multiplication by the Hessian. Neural computation. 1994.

! Z.Yao*, A. Gholami*, Q. Lei, K. Keutzer, M. W. Mahoney, Hessian-based Analysis of Large Batch Training and Robustness to Adversaries, NeurlPS’18, 2018.

i Z.Yao*, A. Gholami*, K. Keutzer, M. W. Mahoney, PyHessian: Neural Networks Through the Lens of the Hessian Spotlight at ICML’20 workshop on Beyond First-Order Optimization Methods in Machine
i Learning, 2020.

E Code: https://github.com/amirgholami/PyHessian



Different Optimizers

Table 1: Summary of the first and second moments used in dif-
ferent optimization algorithms for updating model parameters
(wey1 = wi — ymy/ve). Here B1 and (B2 are first and second
moment hyperparameters.

Optimizer my Vg

SGD [36] Brimi—1 + (1 — S1)8t 1

Adagrad [16] g Vil 8igi
Adam [21] (1-p1) 12:_%{1 Bi g \/(1—ﬂ2) Z]:_:—:ﬂlé y g
RMSProp [40] g VBt + (1 - B

ADAHESSIAN

Q-8 3¢, B g (1-B2) ¢, B D) D
1-B¢ 1-BE

' H Robbins and S Monro. A stochastic approximation method. The annals of mathematical statistics, 1951 :
i J Duchi, E Hazan, Y Singer. Adaptive subgradient methods for online learning and stochastic optimization, JMLR 2011 -
i D Kingma and J Ba. Adam: A method for stochastic optimization, ICLR 2015 :
i TTieleman and G Hinton. Lecture 6.5-RMSProp: Divide the gradient by a running average of its recent magnitude, 2012 |
' Z Yao, A Gholami, S Shen, M Mustafa, K Keutzer, MW Mahoney, ADAHESSIAN: An Adaptive Second Order Optimizer for Machine Learning, arXiv: 2006.00719 :
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How can we get Diagonal without explicitly forming the Hessian?

Randomized Numerical Linear Algebra (RandNLA):
D = diag(H) = E[2 © (Hz)], 2~ Rademacher(0.5)

H Diag(H) z H 7
HEEEE -1 1 ] I RE
HOOEEN [1] [] IIII
EECEE =0 ~H © ENCEEE
HEENN 1 || 1w BE

HEEN [1] HEEREN

Diag(H) = E[z O (Hz)]
s.t. z ~ Rademacher(0.5)
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How can we get Diagonal without explicitly forming the Hessian?

The remaining question is how to compute /), ?

» Hessian-vector product:

g’ Og’ 0 g’
g Z: g z{gT—Z:LZ:HZ.

00 00 00 00

 Randomized numerical linear algebra (RandNLA):

D =diag(H) =E[z ® (Hz)], =z~ Rademacher(0.5)

« Getting Hessian information takes roughly 2X backprop time!

i Pearlmutter BA. Fast exact multiplication by the Hessian. Neural computation. 1994.

E Z. Yao*, A. Gholami*, Q. Lei, K. Keutzer, M. W. Mahoney, Hessian-based Analysis of Large Batch Training and Robustness to Adversaries, NeurlPS’18, 2018. !

i Z.Yao", A. Gholami*, K. Keutzer, M. W. Mahoney, PyHessian: Neural Networks Through the Lens of the Hessian Spotlight at ICML’20 workshop on Beyond First-Order Optimization Methods in Machine

i Learning, 2020. '

E Code: https://github.com/amirgholami/PyHessian : 18
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Spatial Smoothing

 We also incorporate spatial averaging to smooth out the stochastic Hessian
noise across different iterations

3 x 3 Convolution

Gradient: g € RY Hessian: H € R9*d
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Variance Reduction

Incorporating momentum for both first and second order term:
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AdaHessian Algorithm

Algorithm 1: ADAHESSIAN

Require: Initial Parameter: 6

Require: Learning rate: 7

Require: Exponential decay rates: 31, (32
Require: Block size: b

Require: Hessian Power: £

Set: go = 0, Dy =0

for t =1,2,...do // Training Iterations
g; <— current step gradient

D; < current step estimated diagonal Hessian
Update m;, v; based on Eq. 10

O = 0i—1 — 77’Ut_kmt

22



Important Points for Empirical Results

« What hyper-parameters we modified in the experiments:
o Fixed learning rate

o Space averaging block size

» What hyper-parameters we did not modify in the experiments:
o Learning rate schedule
o Weight decay
o Warmup schedule
o Dropout rate

o First and second order momentum coefficients, £,/

23



Some related Work: pyHessian

PYHESSIAN
N
7 Zm'gt(“'“"") Gradient: o8 e RIVI
i=1 ow

o)
u H ol ol 0 1150- -0 [To

| i

min E(w) =
w ]

-~

W W) o5 L%

Introduction

PyHessian is a pytorch library for Hessian based analysis of neural network models. The library enables computing
the following metrics:

* Top Hessian eigenvalues
* The trace of the Hessian matrix
e The full Hessian Eigenvalues Spectral Density (ESD)

Compute lots of Hessian

information for:

* Training (ADAHESSIAN)

* Quantization (HAWQ,
QBERT)

* |nference

Also for:

» Validation: loss landscape

« Validation: model robustness
« Validation: adversarial data

« Validation: test hypotheses

34
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Stochastic optimizers

In deep learning...
Stochastic gradient descent (SGD)

Wil = W — = Z Vfi(wi

Momentum
Stochastic Newton methods

Adam
and many others...



Based on classical (convex)
optimization algorithms.

Stochastic component (minibatches)
can allow them to work well in
unconstrained non-convex settings.

[ Robbins, H., Monro, S. (1951) A stochastic approximation method.
The Annals of Mathematical Statistics, pp.400-407



Phases of Training

Exploration Exploitation
large learning rate small learning rate

-4 -2 [ 2 4

(sampler) (optimizer)

ﬁ Mandt, S., Hoffman, M., Blei, D. (2016) A variational analysis of
stochastic gradient algorithms. ICML 2016, pp. 354-363.



A distributional approach

Investigate how a stochastic optimizer
explores the loss landscape

1. Model stochastic optimization as a
random dynamical system (Markov)

2. Fix all hyperparameters to particular
values (time-homogeneous; no annealing)

3. Examine properties of the stationary
(invariant) distribution

» Avoid continuous-time approximations




Our Findings

Multiplicative noise results in heavy-tailed
stationary behaviour

» Tails of the stationary distribution are an
indication of capacity to explore

» Decay rates in the tails that are slower than
exponential are heavy, e.g.

P(W > t)~ct @



Heavy tails are significant

Recent efforts have empirically tied the
presence of strong heavy tails during training
with good generalization performance.

Simsekli, U., Sagun, L., Giirbiizbalaban, M. (2019). A Tail-Index
Analysis of Stochastic Gradient Noise in Deep Neural Networks

[ Martin, C. H., Peng, T., Mahoney, M. W. (2020). Predicting trends
in the quality of state-of-the-art neural networks without access to
training or testing data.

Heavier tails imply wider exploration
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Generalization

Does heavy-tailed exploration imply better
generalization? Yes.

Theorem (Simsekli et al., 2020)

For a process W; with Hausdorff dimension dj
(decreases as W; exhibits more heavy-tailed
fluctuations)

dy log n i log(1/7)
n n

sup ‘ﬁn(Wt)_R(WtN < CR\/
te[0,1]

with probability 1 — .



Generalization

Brownian motion Levy flight
light-tailed heavy-tailed

-10

-20
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Establishing heavy
tails



Ridge regression

Consider least squares linear regression with
L2 regularization:

M* = argmin 3E|| Y — MX|]> + I\|| M7,
McRdxm
where
» X € RY are the inputs
» Y € R are the labels



Ridge regression

Lemma

The iterates My of minibatch SGD satisfy the
following: for W) = vec(Mjy),

Wi1 = AWy + By,

where

Ac=1® <(1 — M) —n7t Zx,-m[) , Be=—ynm D YaXy
i=1

i=1

There is both additive and multiplicative noise.

Kesten (1973): P(||A«|| > 1) > 0 = heavy tails



The Kesten mechanism

Heavy tails (power laws) arise gradually over time
due to the presence of noise on multiple scales

W1 = fi(Wi) = AcWic + By

Ak B
logarithmic scale linear scale

multiplicative noise | additive noise
D*f, Df,




General stochastic optimization

In machine learning, solving problems of the
form

w* =argmin f(w), f(w):=Epl(w,X),

w

for a loss ¢ depending on weights w and data
X from some dataset D.



General stochastic optimization

Fixed point iteration: if V is chosen
such that fixed points of EpW(-, X) are
minimizers of f, then

Wki1 = ]EDW(Wk, X)

either diverges, or converges to w*.



General stochastic optimization

Estimating the expectation gives a stochastic
optimizer:

1< i
Wi = — STU(Wi Xa), X X
=1

where Xj is the /-th datum from the k-th
minibatch.
» Assuming data is shuffled in each epoch
» Forms a time-homogeneous Markov chain for
fixed hyperparameters



Stochastic optimization as a Markov chain

The sequence of iterated random functions

Wii1 = V(Wi Xk) X 7S X

Equivalently, as a root-finding problem:
Wii1 = Wi — (Wi, X))  (Borovkov)
Assume this Markov chain is ergodic.
[4 Diaconis, P., Freedman, D. (1999) Iterated Random Functions.

SIAM Review. 41(1), 45-76.

[4 Alsmeyer, G. (2003) On the Harris recurrence of iterated random
Lipschitz functions and related convergence rate results. Journal of
Theoretical Probability, 16(1):217247,



Every iterative stochastic
optimization algorithm in ML
(with fixed hyperparameters)
can be written as a Markov

chain in this way.



SGD & SGD with momentum

Minibatch SGD: For minibatch size n and step
size v,

V(w,X)=w—yn? Z Vi(w, X;).

i=1
Momentum: Incorporating velocity v,

n

o)1) 35 ()

i=1



Main Result

Theorem

Suppose X is non-atomic and there exist ky, Ky,
My, w* such that as ||w| — oo,

[W(w, X) = W(w", X)||

[[w — w]|

ky(X) — o(1) <

If P(ky(X) > 1) > 0 and Elog Ky(X) < 0, for
some u,v, C,, G, > 0,

Cu(L+ ) < P(|Wal| > ) < Gt ™.



Il. Factors influencing tail behaviour

Run SGD w/ constant step size on two-layer NN
with L2 loss using Wine Quality UCI dataset.

Qv is an estimate of the tail exponent « such that

P(||Dso|| > t) = ct™@

» for fluctuations Dy = W1 — W (for SGD,
corresponds to gradient norm)

» Dy = limg_ Dk has the same tail exponent
as W,



Prediction:

Factors: step size

step size

gl

~

(07

0.001
0.005
0.01
0.025

4.12 £ 0.04
3.70 £ 0.02
3.71 £ 0.04
2.97 £ 0.03

102 4

109 4

10-2 1

107 1

10"

larger step sizes = heavier tails

step size

T T T T T T
103 1072 1071 10° 10! 10?
gradient norm




Factors: minibatch size

Prediction: smaller batch sizes == heavier tails

minibatch size

minibatch size

S

n a 100 4

10 | 5.99 + 0.05 10-2 1
5 14.98 = 0.07 141
2 13.62 £ 0.03
11297 £0.03

10-6 4

T T T T T T
10-3 102 101 100 10! 102
gradient norm



Factors: L? regularization

Prediction: more regularization = heavier tails

L2 regularization

L? regularization

A & a

107*]2.97 & 0.03 1071
0.01 | 3.02 = 0.02 10-¢ 1
0.1 | 277 =£0.01 1o-5 1
0.2 | 255 £0.01

T T T T T T
103 102 10! 10° 10! 10°?

gradient norm



Factors: optimizer

Prediction:
optimizer
&
Adagrad 32+0.1
Adam | 2.119 4 0.005
SGD 2.93 + 0.03
SSN 0.79 &+ 0.04

SGD, SSN heavier than Adagrad, Adam

optimizer

Adagrad

. —- SGD
B I ot s ey, e 1Y, _
i @” I(\.?-\ Adam

) SSN
A
o BN
w\
'1\\.
F‘K
LI
~e
10-5 10-3 10-1 101 103

gradient norm




Factors: depth

The theory isn’t particularly informative

Empirically, however...

resnet20 resnet32 resnetd4 resnet56 resnet110
I « I o I
=) =) =) =) =)
S S 2 S S
2 2 ] a 2
T T T T T
1 it it t 1 1 100 1
Gradient norm Gradient norm Gradient norm Gradient norm Gradient norm

Figure: Histograms of gradient norms for varying architectures.
Courtesy of Yaoqing Yang.

So it seems greater depth = heavier tails



Summary

Multiplicative noise is a critical element for
understanding performance of stochastic optimizers

» Results in heavy-tailed stationary behaviour
» Far-reaching, but efficient, exploration
Future work:

» Improve precision for tail exponent estimates in
more specific models (e.g. deep neural nets)

» The Kesten mechanism in the spectral domain
» Generalization bounds in discrete time
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Conclusions

» Theory for second-order stochastic optimization
» Faster and similar convergence for convex-like problems
» Practice for second-order stochastic optimization
» Implementations and downstream use cases are very different
» Existing theory often fail to provide even qualitative guidance
» Theory for second-order stochastic optimization
» Relate to Markov processes and random recurrence relations
» Other possible theoretical approaches make connections to

» Dynamical systems more generally
» Non-asymptotic randomized linear algebra

» Heavy-tailed random matrix theory
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