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Introduction

Big Data ... Massive Data ...
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Efficient and Effective Optimization Methods

Scientific Computing and Machine Learning share the same challenges,
and use the same means,

but to get to different ends!

Machine Learning has been, and continues to be, very busy designing
efficient and effective optimization methods
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Efficient and Effective Optimization Methods

First Order Methods

• Variants of Gradient Descent (GD):

Reduce the per-iteration cost of GD ⇒ Efficiency

Achieve the convergence rate of the GD ⇒ Effectiveness

x(k+1) = x(k) − αk∇F (x(k))

Michael W. Mahoney (UC Berkeley) Second order machine learning 14 / 96



Efficient and Effective Optimization Methods

First Order Methods

E.g.: SAG, SDCA, SVRG, Prox-SVRG, Acc-Prox-SVRG,
Acc-Prox-SDCA, S2GD, mS2GD, MISO, SAGA, AMSVRG, ...
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Efficient and Effective Optimization Methods

1st order method and “over-fitting”

Challenges with “simple” 1st order method for “over-fitting”:

Highly sensitive to ill-conditioning

Very difficult to tune (many) hyper-parameters

“Over-fitting” is difficult with “simple” 1st order method!
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Efficient and Effective Optimization Methods

Remedy?

1 “Not-So-Simple” 1st order method, e.g., accelerated and adaptive

2 2nd order methods, e.g., methods

x(k+1) = x(k) − [∇2F (x(k))]−1∇F (x(k))
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Second-order methods: Stochastic Newton-Type Methods

1 2nd order methods: Stochastic Newton-Type Methods

Stochastic Newton (think: convex)
Stochastic Trust Region (think: non-convex)
Stochastic Cubic Regularization (think: non-convex)

Problem 2: Minimizing Finite Sum Problem

min
x∈X⊆Rd

F (x) =
1

n

n∑
i=1

fi (x)

fi : (Non-)Convex and Smooth

n� 1
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Second-order methods: Stochastic Newton-Type Methods

Second Order Methods

Deterministically approximating second order information cheaply

Quasi-Newton, e.g., BFGS and L-BFGS [Nocedal, 1980]

Randomly approximating second order information cheaply

Sub-Sampling the Hessian [Byrd et al., 2011, Erdogdu et al., 2015,
Martens, 2010, RM-I, RM-II, XYRRM, 2016, Bollapragada et al., 2016,
...]
Sketching the Hessian [Pilanci et al., 2015]
Sub-Sampling the Hessian and the gradient [RM-I & RM-II, 2016,
Bollapragada et al., 2016, ...]
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Second-order methods: Stochastic Newton-Type Methods

Iterative Scheme

x (k+1) = arg min
x∈D∩X

{
F (x(k)) + (x − x(k))Tg(x(k)) +

1

2αk
(x − x(k))TH(x(k))(x − x(k))

}
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Second-order methods: Stochastic Newton-Type Methods

Convex Problems

Each fi is smooth and weakly convex

F is γ-strongly convex
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Second-order methods: Stochastic Newton-Type Methods

“We want to design methods for machine learning that are not as ideal as
Newton’s method but have [these] properties: first of all, they tend to turn
towards the right directions and they have the right length, [i.e.,] the step
size of one is going to be working most of the time...and we have to have

an algorithm that scales up for machine leaning.”

Prof. Jorge Nocedal
IPAM Summer School, 2012

Tutorial on Optimization Methods for ML
(Video - Part I: 50’ 03”)
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Second-order methods: Stochastic Newton-Type Methods

What do we need?

Requirements:

(R.1) Scale up: |S| must be independent of n, or at least smaller than n and
for p � 1, allow for inexactness

(R.2) Turn to right directions: H(x) must preserve the spectrum of
∇2F (x) as much as possible

(R.3) Not ideal but close: Fast local convergence rate, close to that of
Newton

(R.4) Right step length: Unit step length eventually works
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Second-order methods: Stochastic Newton-Type Methods

Sub-sampling Hessian

Lemma (Uniform Hessian Sub-Sampling)

Given any 0 < ε < 1, 0 < δ < 1 and x ∈ Rp, if

|S| ≥ 2κ2 ln(2p/δ)

ε2
,

then
Pr
(

(1− ε)∇2F (x) � H(x) � (1 + ε)∇2F (x)
)
≥ 1− δ.
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Second-order methods: Stochastic Newton-Type Methods

SSN-H Algorithm: Inexact Update

Algorithm 5 Globally Convergent SSN-H with inexact solve

1: Input: x(0), 0 < δ < 1, 0 < ε < 1, 0 < β, θ1, θ2 < 1
2: - Set the sample size, |S|, with ε and δ
3: for k = 0, 1, 2, · · · until termination do
4: - Select a sample set, S, of size |S| and form H(x(k))
5: - Update x(k+1) with H(x(k)) and inexact solve
6: end for
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Second-order methods: Stochastic Newton-Type Methods

Gloabl Convergence SSN-H: Inexact Update

Theorem (Global Convergence of Algorithm 5)

Using Algorithm 5 with θ1 ≈ 1/
√
κ, with high-probability, we have

F (x(k+1))− F (x∗) ≤ (1− ρ)
(
F (x(k))− F (x∗)

)
,

where ρ = αkβ/κ and αk ≥ 2(1−θ2)(1−β)(1−ε)
κ .
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Second-order methods: Stochastic Newton-Type Methods

Local + Global

Theorem

For any ρ < 1 and ε ≈ ρ/
√
κ, Algorithm 5 is globally convergent and after O(κ2)

iterations, with high-probability achieves “problem-independent” Q-linear
convergence, i.e.,

‖x(k+1) − x∗‖ ≤ ρ‖x(k) − x∗‖.

Moreover, the step size of αk = 1 passes Armijo rule for all subsequent iterations.
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Second-order methods: Stochastic Newton-Type Methods

Trust Region: Classical Method for Non-Convex Problem [Sorensen,
1982, Conn et al., 2000]

s(k) = arg min
‖s‖≤∆k

〈s,∇F (x(k))〉+
1

2
〈s,∇2F (x(k))s〉

Cubic Regularization: More Recent Method for Non-Convex Problem
[Griewank, 1981, Nesterov et al., 2006, Cartis et al., 2011a, Cartis et
al., 2011b]

s(k) = arg min
s∈Rd
〈s,∇F (x(k))〉+

1

2
〈s,∇2F (x(k))s〉+

σk
3
‖s‖3
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Second-order methods: Stochastic Newton-Type Methods

To get iteration complexity, all previous work required:∥∥∥(H(x(k))−∇2F (x(k))
)

s(k)
∥∥∥ ≤ C‖s(k)‖2 (1)

Stronger than “Dennis-Moré”

lim
k→∞

‖
(
H(x(k))−∇2F (x(k))

)
s(k)‖

‖s(k)‖
= 0

We relaxed (1) to∥∥∥(H(x(k))−∇2F (x(k))
)

s(k)
∥∥∥ ≤ ε‖s(k)‖ (2)

Quasi-Newton, Sketching, Sub-Sampling satisfy Dennis-Moré and (2)
but not necessarily (1)
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θt+1 = θt − ηt∆θt

∆θt = H0
t gt = gt ∆θt = H−1

t gt



∆θt = H−k
t gt, 0 ≤ k ≤ 1

gTt H
−k
t gt ≥ 0 H−k

t gt

H−k
t



Hessian: H ∈ Rd×d
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Output: ŷ

Loss Landscape Gradient: g ∈ Rd
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D = diag(H) = E[z � (Hz)], z ∼ Rademacher(0.5)



Dt

D = diag(H) = E[z � (Hz)], z ∼ Rademacher(0.5)

∂gT z

∂θ
=

∂gT

∂θ
z + gT

∂z

∂θ
=

∂gT

∂θ
z = Hz.



Hessian: H ∈ Rd×dGradient: g ∈ Rd

Attention Module Dim: 64
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mt =
(1− β1)

∑t
i=1 β

t−i
1 gi

1− βt
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√
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Stochastic optimizers

In deep learning...

I Stochastic gradient descent (SGD)

wk+1 = wk −
γ

|Ωk |
∑
i∈Ωk

∇fi(wk)

I Momentum

I Stochastic Newton methods

I Adam

I and many others...



Based on classical (convex)
optimization algorithms.

Stochastic component (minibatches)
can allow them to work well in

unconstrained non-convex settings.

Robbins, H., Monro, S. (1951) A stochastic approximation method.
The Annals of Mathematical Statistics, pp.400-407



Phases of Training

Exploration
large learning rate

(sampler)

Exploitation
small learning rate

(optimizer)

Mandt, S., Hoffman, M., Blei, D. (2016) A variational analysis of
stochastic gradient algorithms. ICML 2016, pp. 354–363.



A distributional approach

Investigate how a stochastic optimizer
explores the loss landscape

1. Model stochastic optimization as a
random dynamical system (Markov)

2. Fix all hyperparameters to particular
values (time-homogeneous; no annealing)

3. Examine properties of the stationary
(invariant) distribution

I Avoid continuous-time approximations



Our Findings

Multiplicative noise results in heavy-tailed
stationary behaviour

I Tails of the stationary distribution are an
indication of capacity to explore

I Decay rates in the tails that are slower than
exponential are heavy, e.g.

P(W > t) ≈ ct−α



Heavy tails are significant

Recent efforts have empirically tied the

presence of strong heavy tails during training

with good generalization performance.

Simsekli, U., Sagun, L., Gürbüzbalaban, M. (2019). A Tail-Index
Analysis of Stochastic Gradient Noise in Deep Neural Networks

Martin, C. H., Peng, T., Mahoney, M. W. (2020). Predicting trends
in the quality of state-of-the-art neural networks without access to
training or testing data.

Heavier tails imply wider exploration



Figure: Histograms of 106 iterations of GD with combinations
of small, moderate, and strong vs. light additive, heavy
additive, and multiplicative noise, applied to a non-convex
objective & initial starting location for the optimization.



Generalization

Does heavy-tailed exploration imply better
generalization? Yes.

Theorem (Simsekli et al., 2020)

For a process Wt with Hausdorff dimension dH

(decreases as Wt exhibits more heavy-tailed
fluctuations)

sup
t∈[0,1]

|R̂n(Wt)−R(Wt)| ≤ CR

√
dH log n

n
+

log(1/γ)

n

with probability 1− γ.



Generalization

Brownian motion
light-tailed
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Establishing heavy
tails



Ridge regression

Consider least squares linear regression with

L2 regularization:

M∗ = arg min
M∈Rd×m

1
2E‖Y −MX‖2 + 1

2λ‖M‖
2
F ,

where

I X ∈ Rd are the inputs

I Y ∈ Rm are the labels



Ridge regression

Lemma

The iterates Mk of minibatch SGD satisfy the
following: for Wk = vec(Mk),

Wk+1 = AkWk + Bk ,
where

Ak = I ⊗

(
(1− λ)I − γn−1

n∑
i=1

XikX
>
ik

)
, Bk = −γn−1

n∑
i=1

YikX
>
ik

There is both additive and multiplicative noise.

Kesten (1973): P(‖Ak‖ > 1) > 0 =⇒ heavy tails



The Kesten mechanism

Heavy tails (power laws) arise gradually over time
due to the presence of noise on multiple scales

Wk+1 = fk(Wk) ≈ AkWk + Bk

Ak Bk
logarithmic scale linear scale

multiplicative noise additive noise
D1fk D0fk



General stochastic optimization

In machine learning, solving problems of the

form

w ∗ = arg min
w

f (w), f (w) := ED`(w ,X ),

for a loss ` depending on weights w and data

X from some dataset D.



General stochastic optimization

Fixed point iteration: if Ψ is chosen

such that fixed points of EDΨ(·,X ) are

minimizers of f , then

wk+1 = EDΨ(wk ,X )

either diverges, or converges to w ∗.



General stochastic optimization

Estimating the expectation gives a stochastic
optimizer:

Wk+1 =
1

n

n∑
i=1

Ψ(Wk ,Xik), Xik
iid∼ X

where Xik is the i -th datum from the k-th
minibatch.

I Assuming data is shuffled in each epoch

I Forms a time-homogeneous Markov chain for
fixed hyperparameters



Stochastic optimization as a Markov chain

The sequence of iterated random functions

Wk+1 = Ψ(Wk ,Xk) Xk
iid∼ X .

Equivalently, as a root-finding problem:

Wk+1 = Wk − Ψ̃(Wk ,Xk) (Borovkov)

Assume this Markov chain is ergodic.

Diaconis, P., Freedman, D. (1999) Iterated Random Functions.
SIAM Review. 41(1), 45–76.

Alsmeyer, G. (2003) On the Harris recurrence of iterated random
Lipschitz functions and related convergence rate results. Journal of
Theoretical Probability, 16(1):217247,



Every iterative stochastic
optimization algorithm in ML
(with fixed hyperparameters)
can be written as a Markov

chain in this way.



SGD & SGD with momentum

Minibatch SGD: For minibatch size n and step
size γ,

Ψ(w ,X ) = w − γn−1
n∑

i=1

∇`(w ,Xi).

Momentum: Incorporating velocity v ,

Ψ

((
v

w

)
, X

)
=

1

n

n∑
i=1

(
ηv +∇`(w ,Xi)

w − γ(ηv +∇`(w ,Xi))

)



Main Result

Theorem

Suppose X is non-atomic and there exist kΨ,KΨ,
MΨ,w

∗ such that as ‖w‖ → ∞,

kΨ(X )− o(1) ≤ ‖Ψ(w ,X )−Ψ(w ∗,X )‖
‖w − w ∗‖

≤ KΨ(X ) + o(1).

If P(kΨ(X ) > 1) > 0 and E logKΨ(X ) < 0, for
some µ, ν,Cµ,Cν > 0,

Cµ(1 + t)−µ ≤ P(‖W∞‖ > t) ≤ Cνt
−ν.



II. Factors influencing tail behaviour

Run SGD w/ constant step size on two-layer NN
with L2 loss using Wine Quality UCI dataset.

α̂ is an estimate of the tail exponent α such that

P(‖D∞‖ > t) ≈ ct−α

.
I for fluctuations Dk = Wk+1 −Wk (for SGD,

corresponds to gradient norm)

I D∞ = limk→∞Dk has the same tail exponent
as Wk



Factors: step size

Prediction: larger step sizes =⇒ heavier tails

step size
γ α̂

0.001 4.12 ± 0.04
0.005 3.70 ± 0.02
0.01 3.71 ± 0.04

0.025 2.97 ± 0.03
gradient norm



Factors: minibatch size

Prediction: smaller batch sizes =⇒ heavier tails

minibatch size
n α̂
10 5.99 ± 0.05
5 4.98 ± 0.07
2 3.62 ± 0.03
1 2.97 ± 0.03

gradient norm



Factors: L2 regularization

Prediction: more regularization =⇒ heavier tails

L2 regularization
λ α̂

10−4 2.97 ± 0.03
0.01 3.02 ± 0.02
0.1 2.77 ± 0.01
0.2 2.55 ± 0.01

gradient norm



Factors: optimizer

Prediction: SGD, SSN heavier than Adagrad, Adam

optimizer
α̂

Adagrad 3.2 ± 0.1
Adam 2.119 ± 0.005
SGD 2.93 ± 0.03
SSN 0.79 ± 0.04

gradient norm



Factors: depth

The theory isn’t particularly informative

Empirically, however...

Figure: Histograms of gradient norms for varying architectures.
Courtesy of Yaoqing Yang.

So it seems greater depth =⇒ heavier tails



Summary

Multiplicative noise is a critical element for
understanding performance of stochastic optimizers

I Results in heavy-tailed stationary behaviour

I Far-reaching, but efficient, exploration

Future work:

I Improve precision for tail exponent estimates in
more specific models (e.g. deep neural nets)

I The Kesten mechanism in the spectral domain

I Generalization bounds in discrete time
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Conclusions

I Theory for second-order stochastic optimization

I Faster and similar convergence for convex-like problems

I Practice for second-order stochastic optimization

I Implementations and downstream use cases are very different

I Existing theory often fail to provide even qualitative guidance

I Theory for second-order stochastic optimization

I Relate to Markov processes and random recurrence relations

I Other possible theoretical approaches make connections to

I Dynamical systems more generally

I Non-asymptotic randomized linear algebra

I Heavy-tailed random matrix theory
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