


Motivation (1 of 2) 

•  Data are medium-sized, but things we want to compute 
are “intractable,” e.g., NP-hard or n3 time, so develop an 
approximation algorithm. 
•  Data are large/Massive/BIG, so we can’t even touch 
them all, so develop a sublinear approximation algorithm. 

Goal: Develop an algorithm s.t.: 

Typical Theorem: My algorithm is faster than the exact 
algorithm, and it is only a little worse. 



Motivation (2 of 2) 

•  Fact 1: I have not seen many examples (yet!?) where sublinear 
algorithms are a useful guide for LARGE-scale “vector space” or 
“machine learning” analytics 

•  Fact 2: I have seen real examples where sublinear algorithms are 
very useful, even for rather small problems, but their usefulness 
is not primarily due to the bounds of the Typical Theorem.  

•  Fact 3: I have seen examples where (both linear and sublinear) 
approximation algorithms yield “better” solutions than the output 
of the more expensive exact algorithm. 

Mahoney, “Approximate computation and implicit regularization ...” (PODS, 2012) 



Overview for today 

Consider two approximation algorithms from spectral 
graph theory to approximate the Rayleigh quotient f(x) 

Roughly (more precise versions later): 

•  Diffuse a small number of steps from starting condition 

•  Diffuse a few steps and zero out small entries (a local 
spectral method that is sublinear in the graph size) 

These approximation algorithms implicitly regularize 

•  They exactly solve regularized versions of the Rayleigh 
quotient, f(x) + λg(x), for familiar g(x) 



Statistical regularization (1 of 3) 
Regularization in statistics, ML, and data analysis 
•  arose in integral equation theory to “solve” ill-posed problems 

•  computes a better or more “robust” solution, so better 
inference  

•  involves making (explicitly or implicitly) assumptions about data 

•  provides a trade-off between “solution quality” versus 
“solution niceness” 

•  often, heuristic approximation procedures have regularization 
properties as a “side effect”  

•  lies at the heart of the disconnect between the “algorithmic 
perspective” and the “statistical perspective” 



Statistical regularization (2 of 3) 
Usually implemented in 2 steps: 
•  add a norm constraint (or “geometric 
capacity control function”) g(x) to 
objective function f(x) 

•  solve the modified optimization problem 

 x’ = argminx f(x) + λ g(x) 

Often, this is a “harder” problem, 
e.g., L1-regularized L2-regression 

 x’ = argminx ||Ax-b||2 + λ ||x||1   



Statistical regularization (3 of 3) 
Regularization is often observed as a side-effect or 
by-product of other design decisions 
•  “binning,” “pruning,” etc. 

•  “truncating” small entries to zero, “early stopping” of iterations 

•  approximation algorithms and heuristic approximations engineers 
do to implement algorithms in large-scale systems 

BIG question:  
•  Can we formalize the notion that/when approximate computation 
can implicitly lead to “better” or “more regular” solutions than 
exact computation? 

•  In general and/or for sublinear approximation algorithms? 



Notation for weighted undirected graph 



Approximating the top eigenvector 
Basic idea: Given an SPSD (e.g., Laplacian) matrix A,  
•  Power method starts with v0, and iteratively computes 

 vt+1 = Avt / ||Avt||2   . 

•  Then, vt = Σi γi
t vi -> v1   . 

•  If we truncate after (say) 3 or 10 iterations, still have some mixing 
from other eigen-directions 

What objective does the exact eigenvector optimize? 
•  Rayleigh quotient R(A,x) = xTAx /xTx, for a vector x. 

•  But can also express this as an SDP, for a SPSD matrix X.  

•  (We will put regularization on this SDP!) 



Views of approximate spectral methods 
Three common procedures (L=Laplacian, and M=r.w. matrix): 

•  Heat Kernel: 

•  PageRank: 

•  q-step Lazy Random Walk: 

Question: Do these “approximation procedures” exactly 
optimizing some regularized objective? 

Mahoney and Orecchia  (2010)   



Two versions of spectral partitioning 

VP: 

R-VP: 

Mahoney and Orecchia  (2010)   



Two versions of spectral partitioning 

VP: SDP: 

R-SDP: R-VP: 

Mahoney and Orecchia  (2010)   



A simple theorem  
Modification of the usual 
SDP form of spectral to 
have regularization (but, 
on the matrix X, not the 
vector x). 

Mahoney and Orecchia  (2010)   



Three simple corollaries 

FH(X) = Tr(X log X) - Tr(X) (i.e., generalized entropy) 
 gives scaled Heat Kernel matrix, with t = η 

FD(X) = -logdet(X) (i.e., Log-determinant) 
 gives scaled PageRank matrix, with t ~ η 

Fp(X) = (1/p)||X||p
p (i.e., matrix p-norm, for p>1) 

 gives Truncated Lazy Random Walk, with λ ~ η 

( F() specifies the algorithm; “number of steps” specifies the η ) 

Answer: These “approximation procedures” compute regularized 
versions of the Fiedler vector exactly! 

Mahoney and Orecchia  (2010)   



Spectral algorithms and  
the PageRank problem/solution 

  The PageRank random surfer 
1.  With probability β, follow a 

random-walk step 
2.  With probability (1-β), jump 

randomly ~ dist. Vv 
  Goal: find the stationary dist. x!

  Alg: Solve the linear system 

Symmetric adjacency matrix 
Diagonal degree matrix 

Solution 
Jump-vector Jump vector 



PageRank and the Laplacian 

Combinatorial Laplacian 



Push Algorithm for PageRank 
  Proposed (in closest form) in Andersen, Chung, Lang  

(also by McSherry, Jeh & Widom) for personalized PageRank 
  Strongly related to Gauss-Seidel (see Gleich’s talk at Simons for this) 

  Derived to show improved runtime for balanced solvers 

The 
Push 

Method!



Why do we care about “push”? 
1.  Used for empirical 

studies of 
“communities” 

2.  Used for “fast 
PageRank” 
approximation 

  Produces sparse 
approximations to 
PageRank!  

  Why does the “push 
method” have such 
empirical utility?  

v has a single one here 

Newman’s netscience 
379 vertices, 1828 nnz 
“zero” on most of the nodes 



New connections between PageRank, 
spectral methods, localized flow, and 
sparsity inducing regularization terms  

•  A new derivation of the PageRank vector for an 
undirected graph based on Laplacians, cuts, or flows 
•  A new understanding of the “push” methods to 
compute Personalized PageRank 

•  The “push” method is a sublinear algorithm with an 
implicit regularization characterization ... 
•  ...that “explains” it remarkable empirical success. 

Gleich and Mahoney (2014)   



The s-t min-cut problem 

Unweighted incidence matrix 
Diagonal capacity matrix 



The localized cut graph 
Gleich and Mahoney (2014)   

  Related to a construction 
used in “FlowImprove”  
Andersen & Lang (2007); 
and Orecchia & Zhu 
(2014) 



The localized cut graph 
Gleich and Mahoney (2014)   

Solve the s-t min-cut




The localized cut graph 
Gleich and Mahoney (2014)   

Solve the “electrical flow” "
s-t min-cut




s-t min-cut -> PageRank 
Gleich and Mahoney (2014)   



PageRank -> s-t min-cut 
Gleich and Mahoney (2014)   

  That equivalence works if v is degree-weighted. 
  What if v is the uniform vector?  

  Easy to cook up popular diffusion-like problems and adapt 
them to this framework. E.g., semi-supervised learning (Zhou 
et al. (2004). 



Back to the push method:  
sparsity-inducing regularization 
Gleich and Mahoney (2014)   

Regularization 
for sparsity 

Need for 
normalization 



Conclusions 

Characterize of the solution of a sublinear graph 
approximation algorithm in terms of an implicit sparsity-
inducing regularization term. 
How much more general is this in sublinear algorithms? 

Characterize the implicit regularization properties of a 
(non-sublinear) approximation algorithm, in and of iteslf, 
in terms of regularized SDPs. 

How much more general is this in approximation 
algorithms? 



MMDS Workshop on  
“Algorithms for Modern Massive Data Sets” 

(http://mmds-data.org) 

at UC Berkeley, June 17-20, 2014 

Objectives: 

-  Address algorithmic, statistical, and mathematical challenges in modern statistical 
data analysis. 

-  Explore novel techniques for modeling and analyzing massive, high-dimensional, and 
nonlinearly-structured data.  

- Bring together computer scientists, statisticians, mathematicians, and data analysis 
practitioners to promote cross-fertilization of ideas. 

Organizers: M. W. Mahoney, A. Shkolnik, P. Drineas, R. Zadeh, and F. Perez 

Registration is available now! 


