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Lots of DNNs analyzed: Look at nearly every
publicly-available SOTA model in CV and NLP

Don’t evaluate your method on one/two/three NNs, evaluate it on:
I dozens (2017)
I hundreds (2019)
I thousands (2021)

Don’t use bad/toy models, use SOTA models.
I If you do, don’t be surprised if low-quality/toy models are different

than high-quality/SOTA models.

Don’t train models, instead validate pre-trained models.
I Validating models is harder than training models.
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Results: LeNet5 (an old/small NN example)

Figure: Full and zoomed-in ESD for LeNet5, Layer FC1.

Older and/or smaller and/or less well-trained models look like bulk+spike.
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Results: AlexNet (a typical modern/large DNN example)

Figure: Zoomed-in ESD for Layer FC1 and FC3 of AlexNet.

Newer SOTA models have heavy-tail structure in their weight matrix
correlations (i.e., not elements but eigenvalues).
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Random Matrix Theory 101: Wigner and Tracy-Widom

Wigner: global bulk statistics approach universal semi-circular form
Tracy-Widom: local edge statistics fluctuate in universal way

Problems with Wigner and Tracy-Widom:
Weight matrices usually not square
Typically do only a single training run
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Random Matrix Theory 102’: Marchenko-Pastur

(c) Vary aspect ratios (d) Vary variance parameters

Figure: Marchenko-Pastur (MP) distributions.
Important points:

Global bulk stats: The overall shape is deterministic, fixed by Q and σ.
Local edge stats: The edge λ+ is very crisp, i.e.,
∆λM = |λmax − λ+| ∼ O(M−2/3), plus Tracy-Widom fluctuations.

We use both global bulk statistics as well as local edge statistics in our theory.
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Random Matrix Theory 103: Heavy-tailed RMT

Go beyond the (relatively easy) Gaussian Universality class:
model strongly-correlated systems (“signal”) with heavy-tailed random matrices.

Generative Model
w/ elements from
Universality class

Finite-N
Global shape
ρN (λ)

Limiting
Global shape
ρ(λ), N →∞

Bulk edge
Local stats
λ ≈ λ+

(far) Tail
Local stats
λ ≈ λmax

Basic MP Gaussian MP
distribution MP TW No tail.

Spiked-
Covariance

Gaussian,
+ low-rank
perturbations

MP +
Gaussian
spikes

MP TW Gaussian

Heavy tail,
4 < µ

(Weakly)
Heavy-Tailed

MP +
PL tail MP Heavy-Tailed∗ Heavy-Tailed∗

Heavy tail,
2 < µ < 4

(Moderately)
Heavy-Tailed

(or “fat tailed”)

PL∗∗

∼ λ−(aµ+b)
PL

∼ λ−( 12 µ+1) No edge. Frechet

Heavy tail,
0 < µ < 2

(Very)
Heavy-Tailed

PL∗∗

∼ λ−( 12 µ+1)
PL

∼ λ−( 12 µ+1) No edge. Frechet

Basic MP theory, and the spiked and Heavy-Tailed extensions we use, including known, empirically-observed, and conjectured

relations between them. Boxes marked “∗” are best described as following “TW with large finite size corrections” that are likely

Heavy-Tailed, leading to bulk edge statistics and far tail statistics that are indistinguishable. Boxes marked “∗∗” are

phenomenological fits, describing large (2 < µ < 4) or small (0 < µ < 2) finite-size corrections on N →∞ behavior.



RMT-based 5+1 Phases of Training (in pictures)

(a) Random-like. (b) Bleeding-out. (c) Bulk+Spikes.

(d) Bulk-decay. (e) Heavy-Tailed. (f) Rank-collapse.

Figure: The 5+1 phases of learning we identified in DNN training.
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Bulk+Spikes: Small Models ∼ Tikhonov regularization

Low-rank perturbation

Wl 'Wrand
l + ∆large

Perturbative correction

λmax = σ2
(

1
Q + |∆|2

N

)(
1 + N

|∆|2

)
|∆| > (Q)−

1
4

λ+

simple scale threshold

x =
(
X̂ + αI

)−1
ŴTy

eigenvalues > α (Spikes)
carry most of the
signal/information

Bulk → Spikes
↙

Smaller, older models like LeNet5 exhibit traditional regularization and can
be described perturbatively with Gaussian RMT
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Heavy-tailed Self-regularization

W is strongly-correlated and highly non-random
We model strongly-correlated systems by heavy-tailed random matrices
We model signal (not noise) by heavy-tailed random matrices

Then RMT/MP ESD will also have heavy tails.
The eigenvalues are heavy-tailed; the weights are NOT.

“All” larger, modern DNNs exhibit novel Heavy-tailed self-regularization
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Watching weights with WeightWatcher
https://github.com/CalculatedContent/WeightWatcher

“pip install weightwatcher”

Mahoney (UC Berkeley) WeightWatcher April 2022 25 / 50

https://github.com/CalculatedContent/WeightWatcher 


Using the theory

Different ways one could use a theory.
Perform diagnostics for model validation, to develop hypotheses, etc.∗

Make predictions about model quality, generalization, transferability, etc.∗

Did post-training modifications damage my model?∗

Will buying more data help?∗

Will training longer help?∗

Will quantizing or distilling help?∗

Construct a regularizer to do model training.∗∗

∗Ideally, by peeking at very little or no data.
∗∗If you have lots of data, lots of GPUs, etc.
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Predicting test accuracies ... lots of metrics ...
Average log norm (a VC-like data-dependent capacity metric):

〈log ‖W‖〉 = 1
N
∑
l,i

log ‖Wl,i‖ = 1
N
∑
l,i

log(λmax
l,i )

Average alpha (also data-dependent, from HT-SR theory):

α = 1
N
∑
l,i
αl,i

Combine the two into a weighted average (weighted to compensate for
different size and scale of feature maps):

α̂ = 1
N
∑
l,i

log(λmax
l,i )αl,i

In a special case (α ≈ 2), for each layer:
PL–Norm Relation: α log λmax ≈ log ‖W‖2F .

“pip install weightwatcher”
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(The first) large-scale study (meta-analysis) of hundreds of
SOTA pretrained models ‡

Different metrics on pre-trained VGG.

Summary statistics: VGG; ResNet; DenseNet.

Summary statistics: hundreds of models.

Lots more plots to prove we can “predict trends . . . without access . . . ”
‡“Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data,” Martin,

Peng, and Mahoney, arXiv:2002.06716, Nature Communications, 2021.
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Using a theory: on SOTA models
Analyzing pre-trained models: properties of VGG vs ResNet vs DenseNet

leads to the idea of correlation flow.

Alpha versus depth: VGG, ResNet, DenseNet.
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Using a theory: on SOTA models
Analyzing pre-trained models: properties of GPTx series

leads to the idea of scale collapse.

Histogram and depth plots of αl,i and λmax
l,i .
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Using a theory: easy to break popular SLT metrics

Easy to “break” popular SLT metrics:
they are not validated counterfactually
(but they drive the development of models)

Intel’s distillation “broke” their models.

GPTx series: how does a model trained to “bad”
data differ from one trained to “good” data?
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Using a theory: leads to predictions

Based on analyzing hundreds of pre-trained SOTA models:
“Correlation flow”:

I “Shape” of ESD of adjacent layers, as well as overlap between
eigenvectors of adjecent layers, should be well-aligned.

“Scale collapse”:
I “Size” of ESD of one or more layers changes dramatically, while the size

of other layers changes very little, as a function of some perturbation of
a model, during training (or post-training modification).

“Correlation traps”:
I Spuriously large eigenvalues§ may appear, and they may even be

important for model convergence.

We can measure these quantities with Weightwatcher—so can you!

§Eigenvalues not due to signal in the data—we have theorems-style theory for Hessians (“Hessian Eigenspectra of More
Realistic Nonlinear Models,” Liao and Mahoney, https://arxiv.org/abs/2103.01519), but it’s still open for Weights.
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RandNLA: Randomized Numerical Linear Algebra

“Classical” RandNLA:

Sample/project and then solve subproblem or construct preconditioner

Theory from TCS/NLA, typically based on JL / subspace embeddings

Lots of data/ML and scientific computing applications

Initial proof-of-principle implementations (low-rank approximation,

least-squares, optimization, etc.)

Relatively large theory-practice gap (esp. when used in ML pipelines)

“Modern” RandNLA:

More sophisticated theory going beyond worst-case JL / subspace

embeddings, with stronger connections to RMT

Improved statistical analysis and improved optimization algorithms

Implementations in RandBLAS/RandLAPACK, and more demands

from GPU-based ML model training and scientific computing

Smaller theory-practice gap

Opens up door to new theory, new implementations, new applications, ...
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Basic Principles of “Classical” RandNLA [DM16]

Basic RandNLA method: given an input matrix:

Construct a “sketch” (a smaller or sparser matrix that represents the essential

information in the original matrix) by random sampling.

Use that sketch as a surrogate to compute quantities of interest.

Basic design principles1 underlying RandNLA:

Randomly sample (in a careful data-dependent manner) a small number of

elements to create a much sparser sketch of the original matrix.

Randomly sample (in a careful data-dependent manner) a small number of

columns and/or rows to create a much smaller sketch of the original matrix.

Preprocess an input matrix with a random-projection-type matrix and then do

uniform sampling of rows/columns/elements in order to create a sketch.

1
First two principles deal with identifying nonuniformity structure. Third principle deals with

preconditioning input (i.e., uniformizing nonuniformity structure) s.t. uniform random sampling performs well.
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Dereziński and Mahoney RandNLA for ML Foundations of “classical” RandNLA 12



Subspace Embeddings [Mah11, Woo14]

Definition

Let U be an m⇥ n orthogonal matrix, and let S be any n⇥m matrix. Then, S is a

subspace embedding if

kU
T
U � (SU)T SUk2 = kI � (SU)T SUk2  ✏.

Things to note:

Many constructions (random sampling and projection methods, deterministic

constructions, hashing functions, etc.) satisfy this condition.

First used in data-aware context with leverage score sampling [DMM06, DMM08]

Used in data-oblivious context with Hadamard-based projections [Sar06, DMMS10]

For NLA, this is an acute perturbation.

For TCS, this is a subspace analogue of JL lemma.

This is a “must must have” for TCS; for everyone else, it’s optional.

Numerical implementations: loosing rank still gives a good preconditioner.

Statistics and machine learning: loosing rank introduces a bit of bias.
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Least-squares approximation

Least-squares (LS) : given m⇥ n matrix A and m-dimensional vector b, solve

xopt = arg min
x2Rn

kAx� bk2.

If m � n, it is overdetermined/overconstrained.

Compute solution in O(mn2) time (in RAM model) with one of several

methods: normal equations; QR decompositions; or SVD.

RandNLA provides faster algorithms for this ubiquitous problem.

TCS: faster in terms of low-precision asymptotic worst-case theory.

NLA: faster in terms of high-precision wall-clock time.

Implementations: can compute (in Spark/MPI/etc.) low, medium, and

high precision solutions on up to terabyte-sized data.

Data Applications: faster algorithms and/or implicit regularization for

many machine learning and data science problems.

The basic RandNLA approach extends to many other matrix problems.
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Least-squares approximation: basic structural result

Consider the over-determined least-squares approximation problem:

Z
2
2 = min

x2Rn
kb�Axk

2
2 = kb�Axoptk

2
2

as well as the “preconditioned ” the least-squares approximation problem:

Z̃
2
2 = min

x2Rn
k⌦(b�Ax)k22 = kb�Ax̃optk

2
2

where ⌦ is any matrix.

Theorem (Fundamental Structural Result for Least-Squares)

If ⌦ satisfies the two basic conditions (constants are somewhat arbitrary):

�
2
min(⌦UA) � 1/

p
2

���UT
A⌦T⌦b

?
���
2

2
 ✏Z

2
2/2, where b

? = b� UAU
T
AA,

then:

kAx̃opt � bk2  (1 + ✏)Z2

kxopt � x̃optk2 
1

�min(A)

p
✏Z2.

DMMS [DMMS10, Mah11]
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Least-squares approximation: RAM implementations

Conclusions:

Randomized algorithms “beats Lapack’s direct dense least-squares solver by a

large margin on essentially any dense tall matrix.”

These results “suggest that random projection algorithms should be incorporated

into future versions of Lapack.”

Avron, Maymounkov, and Toledo [AMT10]
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Using RandNLA methods more generally ...

Three paradigms that apply more broadly than least squares:

1 Sketch-and-solve: Construct a smaller least squares problem; then solve

it using a direct method.

Low-precision estimate, e.g., ✏ = 0.1

Simplest to highlight structure of the theory

2 Iterative sketching: Repeatedly sketch/sub-sample the problem; and

iteratively refine the estimate.

Medium (to high, depending on method) precision estimate, e.g., ✏ = 10�3

SGD, SGD++, sketch-and-project, preconditioned weighted SGD

3 Sketch-and-precondition: Construct an equivalent but well-conditioned

problem; then use a deterministic iterative method.

High-precision solution, e.g., ✏ = 10�10

Best (usually) for high-quality numerical solutions
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Using RandNLA methods more generally ...

Runtime

TCS

ML

NLA

P
re

ci
si

o
n

Sketch-and-Solve
Sketch-and-Precondition
Iterative Sketching
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The proportional limit

Consider A 2 Rn⇥d and iid Gaussian sketching matrix S 2 Rl⇥d

Quality of Ã = SA is often measured by cond(SU) for U = orth(A)
(e.g., subspace embedding, quality of a preconditioner, etc.)

Thanks to the rotation invariance of Gaussian distribution, SU is also
Gaussian, so we can use the Marchenko-Pastur law:

�min(SU) ⇠ 1�
r

d

l
, �max(SU) ⇠ 1 +

r
d

l

Question: Can we obtain similar results with non-Gaussian sketches?
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RMT analysis in RandNLA

Consider sketching matrix S 2 Rl⇥n with iid Gaussian entries.

Sketch-and-precondition: Construct R�1 from the QR of SA

cond(AR�1)  6 with high probability for l � 2d.

Sketch-and-solve: x̂ = argmin
x
kS(Ax� b)k2

2

EkA(x̂� x⇤)k2
2
=

d

l � d� 1
kAx⇤ � bk2

2
for l � d+ 2.

Low-rank approximation: Compute Q = orth(AS)

EkA�QQ>Ak2
F


⇣
1 +

k

l � k � 1

⌘
· kA�Akk2F for l � k + 2.

These are all easy to show for iid Gaussian matrices.

Dereziński and Mahoney RandNLA for ML Foundations of “modern” RandNLA 50



Inversion bias: the key challenge [DM19, DLDM21]

Given n⇥ d data matrix A of rank d, where n � d,

approximate F ((A>A)�1), where F (·) is a linear functional.

(A>A)�1b, for a vector b:

Is the OLS solution (multivariate statistical analysis, Newton’s method in

numerical optimization, etc.)

x>(A>A)�1x, for a vector x:

If x = ai is one of the rows of A, then it is leverage scores

If x = ei is a standard basis vector, then this is the squared length of the

confidence interval for the i-th coe�cient in OLS

trC(A>A)�1 for a matrix C:

Used to quantify uncertainty

Used for experimental design criteria, e.g., A-designs and V-designs

Inversion bias: E[(Ã>Ã)�1] 6= (A>A)�1, even though E[Ã>Ã] = A>A
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Why focus on the inverse?

Consider S 2 Rl⇥n having i.i.d. zero-mean rows statistically.

A>S>SA is a sample covariance estimator of the “population covariance

matrix” A>A 2 Rd⇥d.

How does the spectrum di↵er between sample and population covariance?

RMT answers this by looking at the resolvent matrix :

(A>S>SA� zI)�1 for z 2 C \ R+.

The Stieltjes transform (normalized trace of the resolvent) exhibits

inversion bias, leading to discrepancy between sample and population.

Traditional RMT studies limiting eigenvalue distribution as l, n, d!1.

Our goal: precise and non-asymptotic results on resolvent matrices for

sketching, e.g., (A>S>SA)�1, leading to RMT analysis for RandNLA.
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Correcting the bias (for Gaussian sketching matrices)

Consider Ĥ = Ã>Ã ⇡ A>A = H,

(where Ã = SA is an l ⇥ d sketch of an n⇥ d matrix A)

Simple correction for a Gaussian sketching matrix S:

Rescale by a dimensional factor: E
⇥
(�Ĥ)�1

⇤
= H�1 for � = l

l�d�1

This is not true for other sketching methods. Other sketches:

are not perfectly rotationally symmetric, etc.

could lose rank, with very small probability

su↵er from “coupon collector” problems

In general, the bias occurs di↵erently in each direction,

(so you cannot correct it with a single rescaling)

Q: Can we quickly correct the inversion bias, exactly or approximately?

Dereziński and Mahoney RandNLA for ML Foundations of “modern” RandNLA 54



Near-unbiasedness: an (✏, �)-unbiased estimator

This motivates the following definition.

Definition

A random p.s.d. matrix C̃ is an (✏, �)-unbiased estimator of C if there is an

event E that holds with probability 1� � such that

EE [C̃] ⇡1+✏ C, and C̃ � O(1) · C when conditioned on E.
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Sub-gaussian sketches have small inversion bias

Consider a full rank n⇥ d matrix A with n� d.

Proposition (Near-unbiasedness of sub-gaussian sketches)

Let S be an m⇥ n random matrix such that
p
mS has i.i.d.

O(1)-sub-gaussian entries with mean zero and unit variance.

If m � C
�
d+
p
d/✏+ log(1/�)

�
, then

( m

m�d
A>S>SA)�1

is an (✏, �)-unbiased estimator of (A>A)�1
.

So, there is an event E that holds with probability 1� e�cm, s.t.

EE
⇥
( m

m�d
A>S>SA)�1

⇤
⇡✏ (A

>A)�1, for ✏ = O

✓p
d

m

◆
.

[DLDM21]
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Comparison with JL / subspace embeddings

Condition: Subspace embedding

Sketching matrix S with probability 1� � satisfies

A>S>SA ⇡⌘ A>A for ⌘ = O(1).

Subspace embedding: w.h.p. (A>S>SA)�1 ⇡⌘ (A>A)�1

Near-unbiasedness: EE
⇥
( m

m�d
A>S>SA)�1

⇤
⇡✏ (A

>A)�1

For sub-gaussian sketches, we have:

⌘ = ⇥

✓r
d

m

◆
and ✏ = O

✓p
d

m

◆

Subspace embedding is not enough to show near-unbiasedness!
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Corollary for model averaging

E↵ectively, we showed that for sub-gaussian sketches:

Bias2 ⌧ Variance

Corollary (Model averaging)

For q = Õ(m) sub-gaussian sketches of size m = O(d+
p
d/✏),

1

q

qX

i=1

( m

m�d
A>S>

i
SiA)�1 ⇡✏ (A

>A)�1.

Applies to distributed averaging of linear functionals, e.g.:

trC( m

m�d
A>S>

i
SiA)�1.
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Extending RMT-style analysis to fast sketching

Most RMT for sketching requires:

di↵erent “gaussianization” assumptions

and di↵erent parameter regimes (e.g., proportional regime)

compared to classical JL or subspace embedding approaches.

Most out-of-the-box theory applies only to expensive dense Gaussian or

sub-gaussian sketching matrices.

Question: Can we extend this line of work to fast sketches, e.g., sparse or

structured?

Answer: Yes!
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Landscape of Algorithmic Gaussianization

Sub-gaussian concentration of x 2 Rd w.r.t. a set of functions F
8f 2 F : X = f(x)� E f(x) is O(kfkLip)-sub-gaussian| {z }

E exp(cX2/kfkLip) 2

Examples
x 2 Rd

i.i.d. Gaussian entries

i.i.d. bounded entries

i.i.d. sub-gaussian entries

LESS embeddings

JL-type embeddings

Concentration
F ✓ {Rd

!R}

Lipschitz functions

Convex functions

Euclidean functions
f(x) =

p
x>Bx

Linear functions
f(x) = |v>

x|
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Gaussianization in RandNLA vs Statistical Inference

RandNLA Statistical Inference

Big data Population

No assumptions Gaussian assumptions

Sketch Sample

Gaussianization

Statistical model
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Multiple-descent in low-rank approximation

Theory: Characterizing the approximation factor using RMT [DKM20]
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Experiments

Connection: double descent in over-parameterized ML models [DLM20b]

“Classical” ML: parameters ⌧ data

“Modern” ML: parameters � data

Phase transition: parameters ⇠ data
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Developing standard libraries for RandNLA

RandBLAS

Library that concerns basic sketching for dense data matrices.

Reference implementation in C++.

Hope: it grows to become a community standard for RandNLA, in the sense

that its API would see wider adoption than any single implementation.

RandLAPACK

Library that concerns algorithms for solving traditional linear algebra problems

and advanced sketching functionality.

To be written in C++, build on BLAS++/LAPACK++ portability layer

Main drivers:

Least squares and optimization.

Low-rank approximation.

Full-rank decompositions.
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“The RandLAPACK book”
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Motivations:
•  WeightWatcher, Weight Diagnostics for Analyzing ML Models
 (with Charles H. Martin)
•  Randomized Numerical Linear Algebra for Modern ML
 (with Michal Derezinski)

Some Theory:
• RMT for NNs: Linear to Nonlinear; Shallow to Deep; etc.
 (with Zhenyu Liao)

Applications:
• Models of Heavy-Tailed Mechanistic Universality
 (with Zhichao Wang and Liam Hodgkinson)
• Spectral Estimation with Free Decompression
 (with Siavash Ameli, Chris van der Heide, and Liam Hodgkinson)
• Determinant Estimation under Memory Constraints and Neural Scaling Laws
 (with S. Ameli, C. van der Heide, L. Hodgkinson, and F. Roosta)

Overview



A Random Matrix Approach to Neural Networks:
From Linear to Nonlinear, and from Shallow to Deep

Michael W. Mahoney

joint work with Z. Liao (HUST, China) and R. Couillet (UGA, France)
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Motivation: understanding large-dimensional machine learning

Big Model
of size d

Big Data
x1, . . . , xn ∈ Rp

I Big Data era: exploit large n, p, d
I counterintuitive phenomena different from classical

asymptotics statistics
I change of understanding of many methods in statistics

and machine learning
I Random Matrix Theory (RMT) provides the tools!
I In this talk, a review of some recent progress on RMT

analysis of neural networks models, from linear to
nonlinear, and from shallow to deep
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Outline

1 Random Matrix Theory for Modern Machine Learning: Key Challenges and Core Ideas

2 Four Ways to Characterize Sample Covariance Matrices

3 Single-hidden-layer NN Model: Deterministic Equivalent and Linearization

4 Results on Non-random Deep Neural Networks
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A deep neural network model

xi ∈ Rp

φ
φ
φ
φ
φ

hidden-layer of d neurons

W ∈ Rd×pφ(Wxi) ∈ Rd

I linear transformation with first-layer weight matrix W ∈ Rd×p

I nonlinear transformation: activation function φ : R→ R acting entry-wise on Wxi

I data representation at the output of first-layer xi 7→ φ(Wxi)

I do the same thing in a layer-by-layer fashion:

1√
dL

wTφL

(
1√

dL−1
WLφL−1

(
. . .

1√
d2

φ2

(
1√
d1

W2φ1(W1xi)

)))
, (1)

for a large number n of input data points x1, . . . , xn
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Technical challenges and key ideas

Analyze and Optimize Large-scale ML model Mφ(X; Θ)

Objective: Evaluation ofMφ(X; Θ) via Performance Metric f (·)

Technical Challenge 1
High-dimensionality in X, Θ

Technical Challenge 2
Analysis of Eigen-functional

Technical Challenge 3
Non-linearity in ML model

Key Idea 1
Concentration of f

(
Mφ(X; Θ)

)
' E[f

(
Mφ(X; Θ)

)
]

Key Idea 2
Deterministic Equivalent for Resolvent

Key Idea 3
High-dimensional linearization ofMφ(X; Θ)
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High-dimensional Equivalent

Definition (High-dimensional Equivalent)

LetMφ(X) ∈ Rp×n be a (nonlinear) random matrix model that depends on a random matrix X ∈ Rp×n and
function φ : R→ R (typically applied entrywise). Let f

(
Mφ(X)

)
be a scalar observation ofMφ(X) for some

f : Rp×n → R. We say that M̃φ(X) (random or deterministic) is a High-dimensional Equivalent ofMφ(X)
with respect to f (·) if

f (Mφ(X))− f (M̃φ(X))→ 0, (2)

in probability or almost surely as n, p→ ∞ with p/n→ c ∈ (0, ∞). We denote this relation as

Mφ(X)
f↔ M̃φ(X) or simplyMφ(X)↔ M̃φ(X), (3)

when f is clear from context.

I without (entrywise) nonlinearities, f (X) concentrates around expectation f (X) ' E[f (X)], and can be
assessed through Deterministic Equivalent f (X̄);

I for scalar eigenspectral functionals, Deterministic Equivalent for Resolvent framework provides a unified
approach to eigenspectral functionals of random matrices;

I for nonlinear models in two different scaling regimes (LLN versus CLT), φ(X) can be linearized to yield a
Linear Equivalent.
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Concentration versus non-concentration behavior

“Concentration” versus “non-concentration” around the mean

Consider two independent random vectors x = [x1, . . . , xn]> and y = [y1, . . . , yn]> ∈ Rn, with i.i.d. entries of
zero mean and unit variance. We have the following observations.

1 In the one-dimensional case with n = 1, we have Pr(|x− 0| > t) ≤ t−2 and Pr(|y− 0| > t) ≤ t−2 by
Markov’s inequality, so that one-dimensional random variables “concentrate” around their means.

2 In the multi-dimensional case with n ≥ 1, we have E[‖x− 0‖2
2] = E[x>x] = tr(E[xx>]) = n and

E[‖x− y‖2
2] = E[x>x + y>y] = 2n. Thus, for n� 1, the expected Euclidean distance between x and its

mean 0 is large: high-dimensional random vectors do not “concentrate” around their means.

−3 0 3

0

0.2

0.4

H
is

to
gr

am

(a) “Concentration” around the mean

x
y

E[x] = E[y] = 0n

≈ ‖x‖ ≈
√

n

‖y‖ ≈
√

n

(b) “Non-concentration” around the mean
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High-dimensional concentration of scalar observation

I while large random vectors do not “concentrate” round their means, their scalar functionals (often) do
I for a scalar observation map f : Rn → R and random vector x ∈ Rn, we typically have

f (x)−E[f (x)]→ 0, (4)

with high probability for n large.
I a basic example is the linear function f (x) = 1>n x/n = 1

n ∑n
i=1 xi: By the Large of Large Numbers (LLN)

and the Central Limit Theorem (CLT), we have f (x) = E[f (x)] + O(n−1/2) with high probability
I For a random matrix X ∈ Rp×n in the proportional regime with n, p both large, similar holds:
1 just as for vectors, X does not concentrate, e.g., in a spectral norm sense; e.g., ‖X−E[X]‖ 6→ 0 as n, p→ ∞.
2 at the same time, scalar (e.g., eigenspectral) functionals f : Rp×n → R of the random matrix X do

concentrate; i.e., f (X)−E[f (X)]→ 0 as n, p→ ∞. This is the key idea of Deterministic Equivalent.

Definition (Deterministic Equivalent)

A Deterministic Equivalent is a special case of the High-Dimensional Equivalent, applied to a linear model
Mφ(X) = X. We denote

f (X)− f (X̃)→ 0 as n, p→ ∞ ⇔ X
f↔ X̃ or simply X↔ X̃. (5)
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Nonlinear objects in two different scaling regimes

Definition (Two scaling regimes)

Consider a scalar functional f (x) of x ∈ Rn, via an observation map f : Rn → R:
1 LLN regime: this holds when f (x) exhibits a LLN-type concentration, strongly concentrating around its

mean E[f (x)], and its distribution function becomes degenerate; that is, it holds when f (x)−E[f (x)]→ 0
in probability or almost surely, as n→ ∞.

2 CLT regime: this holds when f (x) exhibits a CLT-type concentration, remaining random and maintaining
a non-degenerate distribution function; that is, it holds when

√
n (f (x)−E[f (x)])→ N (0, 1) in

distribution, as n→ ∞.

Nonlinear objects in two scaling regimes

Let x ∈ Rn be a random vector such that
√

nx has i.i.d. Gaussian entries N (0, 1) (the
√

n scaling ensures
E[‖x‖2] = 1). Let y ∈ Rn be a deterministic vector of unit norm ‖y‖ = 1. Consider two nonlinear objects:

1 LLN regime: random variables fLLN(x) = ‖x‖2
2 or fLLN(x) = x>y that both exhibit LLN-type

concentration (i.e., nearly deterministic for n large), and we are interested in φ(fLLN(x)); and
2 CLT regime: random variables fCLT(x) =

√
n(‖x‖2

2 − 1) or fCLT(x) =
√

n · x>y that both exhibit CLT-type
concentration (they remain inherently random and have non-degenerate distributions for n large), and
we are interested in φ(fCLT(x)).
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Linearization in the two scaling regimes

Theorem (Taylor’s theorem)

Let φ : R→ R be a function that is at least k times continuously differentiable in a neighborhood of some point τ ∈ R.
Then, there exists hk : R→ R such that

φ(x) = φ(τ) + φ′(τ)(x− τ) +
φ′′(τ)

2 (x− τ)2 + . . . + φ(k)(τ)
k! (x− τ)k + hk(x)(x− τ)k, with limx→τ hk(x) = 0.

Consequently, hk(x)(x− τ)k = o(|x− τ|k) as x→ τ.

Theorem (Hermite polynomial expansion)

The ith normalized Hermite polynomial, Hei(t), is given by He0(t) = 1, Hei(t) =
(−1)i
√

i!
e

t2
2 di

dti

(
e−

t2
2

)
, i ≥ 1. The

normalized Hermite polynomials

1 are orthogonal with respect to Gaussian measure, i.e.,
∫

Hem(t)Hen(t)µ(dt) = δmn for µ(dt) = 1√
2π

e−
t2
2 dt; and

2 can be used to formally expand any square-integrable function φ ∈ L2(µ) as
φ(ξ) ∼ ∑∞

i=0 aφ;iHei(ξ), aφ;i =
∫

φ(t)Hei(t)µ(dt) = E[φ(ξ)Hei(ξ)], for ξ ∼ N (0, 1). The coefficients aφ;is
are the Hermite coefficients of φ:

aφ;0 = E[φ(ξ)], aφ;1 = E[ξφ(ξ)],
√

2aφ;2 = E[ξ2φ(ξ)]− aφ;0, νφ = E[φ2(ξ)] = ∑
i=0

a2
φ;i. (6)
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Linearization in the two scaling regimes: an example

Example (Distinct linearizations of tanh in two scaling regimes)

Consider φ(t) = tanh(t). By Taylor and Hermite polynomial expansion, this nonlinear function is “close” to
different quadratic functions, depending on the scaling regime.
Consider x ∈ Rn be a random vector such that

√
nx has i.i.d. standard Gaussian entries, and let y ∈ Rn be a

deterministic vector of unit norm (‖y‖ = 1). Then:
1 In the LLN regime, we have for fLLN(x) = x>y that

tanh(fLLN(x))− ψLLN(fLLN(x))→ 0, (7)

as n→ ∞, with ψLLN(t) = t2/4. This is as a consequence of tanh(t = 0) = ψLLN(t = 0) = 0. In particular,
we also have E[tanh(fLLN(x))] ' E[ψ(fLLN(x))] as a result.

2 In the CLT regime, we have for fCLT(x) =
√

n · x>y that

E[tanh(fCLT(x))] = E[ψCLT(fCLT(x))], (8)

in expectation, where the corresponding quadratic function is ψCLT(t) = t2 − 1. This follows from the fact
that both functions have the same zeroth-order Hermite coefficient, atanh;0 = aψ;0 = 0.
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−1

0

1

2

3
fLLN(x) ≡ x>y

φ(t) = tanh(t)

ψLLN(t) = t2/4

ψLLN(t) = α · t2

(a) LLN regime

−3 0 3
−1

0

1

2

3
fCLT(x) ≡

√
n · x>y

φ(t) = tanh(t)

ψCLT(t) = t2 − 1

ψCLT(t) = α(x2 − 1)

(b) CLT regime

Figure: Different behavior of nonlinear φ(fLLN(x)) and φ(fCLT(x)) for φ(t) = tanh(t) (in blue) in the LLN and CLT regime,
with n = 500. We have φ(fLLN(x)) ' ψLLN(fLLN(x)) in the LLN regime (as a consequence of φ(0) = ψLLN(0) = 0) and
E[φ(fCLT(x))] = E[ψCLT(fCLT(x))] in the CLT regime (as a consequence of aφ;0 = aψCLT ;0 = 0), with different quadratic
functions ψLLN(t) = t2/4 and ψCLT(t) = t2 − 1 =

√
2He2(t) in red. Note that the these linearizations (in the two different

regimes respectively) are not unique and all functions in dashed green are also valid linearizations.
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Four ways to characterize sample covariance matrices

Definition (Sample Covariance Matrix, SCM)

The SCM Ĉ ∈ Rp×p of data matrix X = [x1, . . . , xn] ∈ Rp×n composed of n independent data samples xi ∈ Rp

of zero mean is given by

Ĉ =
1
n

n

∑
i=1

xix
T
i =

1
n

XXT. (9)

Definition (Classical versus proportional regimes)

For SCM Ĉ ∈ Rp×p from n samples of dimension p, consider the following two regimes.
1 Classical regime with n� p, this includes both asymptotic (n→ ∞ with p fixed) and non-asymptotic

characterizations (n� p for large but finite n).
2 Proportional regime with n ∼ p, this includes both asymptotic (n, p→ ∞ with p/n→ c ∈ (0, ∞), also

known as thermodynamic limit in the statistical physics literature) and non-asymptotic characterizations
(n ∼ p� 1 both large but finite).
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Classical
Regime

Proportional
Regime

Non-asymptotic Characterizations

Asymptotic Characterizations

Law of Large
Numbers

in Theorem 9

Sample Covariance
Concentration
in Theorem 10

Asymptotic Deterministic
Equivalent in Theorem 12

Marc̆enko-Pastur law
in Theorem 11

Non-asymptotic
Deterministic

Equivalent
in Theorem 13

Figure: Taxonomy of four different ways to characterize the sample covariance matrix Ĉ = 1
n XXT.
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Asymptotic behavior of SCM in the classical regime via law of large numbers

Theorem (Asymptotic Law of Large Numbers for SCM)

Let p be fixed, and let X ∈ Rp×n be a random matrix with independent sub-gaussian columns xi ∈ Rp such that
E[xi] = 0 and E[xixT

i ] = Ip. Then one has,
‖Ĉ− Ip‖2 → 0, (10)

almost surely, as n→ ∞.

I LLN is “parameterized” to hold only in the classical limit, not the proportional limit
I many variants and extensions of the LLN exist, but become vacuous when applied to the proportional

regime n, p→ ∞ and p/n→ c ∈ (0, ∞), see below for an example
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Non-asymptotic behavior of SCM in the classical regime via matrix concentration

Theorem (Non-asymptotic matrix concentration for SCM, [Ver18, Theorem 4.6.1])

Let X ∈ Rp×n be a random matrix with independent sub-gaussian columns xi ∈ Rp such that E[xi] = 0 and
E[xixT

i ] = Ip. Then, one has, with probability at least 1− 2 exp(−t2), for any t ≥ 0, that

‖Ĉ− Ip‖2 ≤ C1 max(δ, δ2), δ = C2(
√

p/n + t/
√

n), (11)

for some constants C1, C2 > 0, independent of n, p.

Proof: combines Bernstein’s concentration inequality with ε-net argument, see [Ver18] for details.
1 can reproduce the LLN asymptotic result by taking n→ ∞ with Borel–Cantelli lemma
2 Classical regime. Here, n� p, say that n ∼ p2. Then with high probability, that ‖Ĉ− Ip‖2 = O(n−1/4)

and conveys a similar intuition to the asymptotic LLN result
3 Proportional regime. Here, n, p are both large and n ∼ p. Then, with high probability, that
‖Ĉ− Ip‖2 = O(

√
p/n) = O(1), and qualitatively different LLN with a vacuous ∼ 100% relative error,

e.g., as n, p→ ∞ with p/n→ c ∈ (0, ∞).
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Proportional regime: eigenvalues via traditional RMT and the Marc̆enko-Pastur law

Theorem (Limiting spectral distribution for SCM: Marc̆enko-Pastur law, [MP67])

Let X ∈ Rp×n be a random matrix with i.i.d. sub-gaussian columns xi ∈ Rp such that E[xi] = 0 and E[xixT
i ] = Ip.

Then, as n, p→ ∞ with p/n→ c ∈ (0, ∞), with probability one, the empirical spectral measure (ESD) µ 1
n XXT of 1

n XXT

converges weakly to a probability measure µ given explicitly by

µ(dx) = (1− c−1)+δ0(x) +
1

2πcx

√
(x− E−)+ (E+ − x)+ dx, (12)

where E± = (1±
√

c)2 and (x)+ = max(0, x), which is known as the Marc̆enko-Pastur distribution.

I provides a more refined characterization of the eigenspectrum of Ĉ (than, e.g., matrix concentration):
(i) Classical regime. Here, n� p so that c = p/n→ 0, the Marc̆enko-Pastur law in Equation (12) shrinks to

a Dirac mass, in agreement with ‖Ĉ− Ip‖2 ∼ 0
(ii) Proportional regime. Here, n ∼ p� 1, and by the (true but vacuous) matrix concentration result
‖Ĉ− Ip‖2 = O(p/n) = O(1), and, depending on the ratio c = p/n, the eigenvalues of Ĉ can be very
different from one, and takes the form of the Marc̆enko-Pastur law

I we have in fact ‖Ĉ− Ip‖2 ' c + 2
√

c as n, p→ ∞ with p/n→ c ∈ (0, ∞)

M. W. Mahoney RMT4DNN June 15, 2025 19 / 38



0 1 2 3 4 5 6
0

1

2

3

x

µ

c = 0.01

c = 0.1
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c = 4

I averaged amount of eigenvalues of Ĉ lying within the interval [1− δ, 1 + δ], for δ� 1, as

µ([1− δ, 1 + δ]) =
∫ 1+δ

1−δ

1
2πcx

√(
x− (1−

√
c)2
)+ (

(1 +
√

c)2 − x
)+ dx

=
1

2πc

∫ δ

−δ

(√
4c− c2 + O(ε)

)
dε =

√
4c−1 − 1

π
δ + O(δ2).

I for p ≈ 4n there is asymptotically no eigenvalue of Ĉ close to one!
I in accordance with the shape of the limiting Marc̆enko-Pastur law with c = 4 above
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Figure: Varying n and c = p/n for fixed p. Histogram of the eigenvalues of Ĉ versus the limiting Marc̆enko-Pastur law in
Theorem 11, for X having standard Gaussian entries with p = 20 and different n = 1 000p, 100p, 10p from left to right.
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Figure: Varying n and p for fixed c = p/n. Histogram of the eigenvalues of Ĉ versus the Marc̆enko-Pastur law, for X having
standard Gaussian entries with n = 100p and different p = 20, 100, 500 from left to right.
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An asymptotic Deterministic Equivalent for resolvent

Theorem (An asymptotic Deterministic Equivalent for resolvent, [CL22, Theorem 2.4])

Let X ∈ Rp×n be a random matrix having i.i.d. sub-gaussian entries of zero mean and unit variance, and denote
Q(z) = ( 1

n XXT − zIp)−1 the resolvent of 1
n XXT for z ∈ C not an eigenvalue of 1

n XXT. Then, as n, p→ ∞ with
p/n→ c ∈ (0, ∞), the deterministic matrix Q̄(z) is a Deterministic Equivalent of the random resolvent matrix Q(z)
with

Q(z)↔ Q̄(z), Q̄(z) = m(z)Ip, (13)

with m(z) the unique valid Stieltjes transform as solution to

czm2(z)− (1− c− z)m(z) + 1 = 0. (14)

I The equation of m(z) is quadratic and has two solutions defined via the complex square root
I only one satisfies =[z] · =[m(z)] > 0 as a “valid” Stieltjes transform, and leads to the Marc̆enko-Pastur

law

µ(dx) = (1− c−1)+δ0(x) +
1

2πcx

√
(x− E−)+ (E+ − x)+ dx, (15)

for E± = (1±
√

c)2 and (x)+ = max(0, x).
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A non-asymptotic Deterministic Equivalent for resolvent

Theorem (A non-asymptotic Deterministic Equivalent for resolvent)

Let X ∈ Rp×n be a random matrix having i.i.d. sub-gaussian entries with zero mean and unit variance, and denote
Q(z) = ( 1

n XXT− zIp)−1 the resolvent of 1
n XXT for z < 0. Then, there exists universal constants C1, C2 > 0 depending

only on the sub-gaussian norm of the entries of X and |z|, such that for any ε ∈ (0, 1), if n ≥ (C1 + ε)p, one has

‖E[Q(z)]− Q̄(z)‖2 ≤
C2
ε
· n−

1
2 , Q̄(z) = m(z)Ip, (16)

for m(z) the unique positive solution to the Marc̆enko-Pastur equation czm2(z)− (1− c− z)m(z) + 1 = 0, c = p/n.

I this is a deterministic characterization of the expected resolvent
I to get DE, it remains to show concentration results for trace and bilinear forms: more or less standard
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Remark: as extensions to results in the classical regime

(i) In the “easy” classical regime, with n� p (and thus p/n→ c = 0), one has that Ĉ ≡ 1
n XXT → E[Ĉ] = Ip

as n→ ∞, so that
(Ĉ− zIp)

−1 ' (E[Ĉ]− zIp)
−1 = (1− z)−1Ip = Q̄(z). (17)

(ii) In the “harder” and more general proportional regime, for n ∼ p with p/n→ c ∈ (0, ∞), one has instead

Q̄(z) ' E[Q(z)] ≡ E[(Ĉ− zIp)
−1] 6' (E[Ĉ]− zIp)

−1. (18)

In this case, a Deterministic Equivalent Q̄(z) can be very different from (E[Ĉ]− zIp)−1.
I this is not surprising, consider the scalar case where E[1/x] 6= 1/E[x] in general, unless x ' C for some

constant C
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Remark: Deterministic Equivalents for Gaussian inverse SCM

I consider the sample covariance matrix Ĉ = 1
n XXT for X = C

1
2 Z and positive definite C ∈ Rp×p and

Z ∈ Rp×n having i.i.d. standard Gaussian entries
I the inverse Ĉ−1 is known to follow the inverse-Wishart distribution [MKB79] with p degrees of freedom

and scale matrix C−1, such that
E[Ĉ−1] =

n
n− p− 1

C−1 (19)

for n ≥ p + 2.
I On the other hand, it follows from our non-asymptotic result above by taking z = 0 that

E[Q(z)]↔ Q̄(z) = m(z)Ip =
n

n− p
Ip (20)

with m(z) = 1
1−c = n

n−p .

I note: Deterministic Equivalents are not unique: could replace the “−1” in denominator by any constant
C′ � n, p to propose another equally correct Deterministic Equivalent.

1Kanti Mardia, J. Kent, and J. Bibby. Multivariate Analysis. 1st ed. Probability and Mathematical Statistics. Academic Press, Dec. 1979
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Figure: Overview of [LM25], summarizing major concepts and results and where to find them.
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Two-layer network with random first layer

xi ∈ Rp

φ
φ
φ
φ
φ

hidden-layer of d neurons

W ∈ Rd×pφ(Wxi) ∈ Rd

Definition (Single-hidden-layer NN model)

Consider a single-hidden-layer NN model with first-layer weights W ∈ Rd×p and second-layer weights
β ∈ Rd. For an input vector x ∈ Rp, the network output is given by ŷ(x) = β>φ(Wx), where φ(·) is an
entrywise activation function. We are interested in the NN performance measured by

1 its training MSE Etrain = 1
n ∑n

i=1(yi − ŷ(xi))
2 = 1

n‖y−Φ>β‖2 with Φ ≡ φ(WX) for a training set (X, y)
of size n, X = [x1, . . . , xn] ∈ Rp×n, y = [y1, . . . , yn]> ∈ Rn; and

2 its test MSE Etest =
1
n ∑n′

i=1(y
′
i − ŷ(x′i))

2 = 1
n′ ‖y

′ − φ(WX′)>β‖2 on a test set (X′, y′) of size n′, with
X′ = [x′1, . . . , x′n′ ] ∈ Rp×n′ and y′ = [y′1, . . . , y′n′ ]

> ∈ Rn′ .
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Single-hidden-layer NN model and a Deterministic Equivalent for nonlinear resolvent

I Given first-layer W and training data X ∈ Rp×n, consider the random feature matrix Φ ≡ φ(WX) ∈ Rd×n

and regress against the target y by minimizing the following ridge-regularized MSE

L(β) =
1

2n

n

∑
i=1

(yi − ŷ(xi))
2 +

γ

2
‖β‖2

2 =
1

2n
‖y−Φ>β‖2

2 +
γ

2
‖β‖2

2, γ ≥ 0, (21)

I solution is uniquely given by βγ = 1
n Φ

(
1
n Φ>Φ + γIn

)−1
y =

(
1
n ΦΦ> + γId

)−1 1
n Φy, for γ > 0.

I Training MSE is Etrain = 1
n‖y−Φ>βγ‖2

2 = γ2

n
∂y>Q2(−γ)y

∂γ , with resolvent of nonlinear Gram Φ>Φ.

Q(−γ) ≡
(

1
n

Φ>Φ + γIn

)−1
, Φ>Φ = φ(X>W>)φ(WX). (22)

Theorem (Deterministic Equivalent for nonlinear resolvent, [LLC18, Theorem 1])

Let W ∈ Rd×p be a random matrix with i.i.d. sub-gaussian entries of zero mean and unit variance, and let X ∈ Rp×n be
independent of W with ‖X‖2 ≤ 1. Then, as n, p, d→ ∞ together and for Lipschitz φ : R→ R,

Q(z)↔ Q̄(z), Q̄(z) =
(

d
n

K
1 + δ(z)

− zIn

)−1
, δ(z) =

1
n

tr KQ̄(z), K ≡ Ew[φ(X>w)φ(w>X)], (23)

where δ(z) is the unique Stieltjes transform solution, and K the kernel matrix.
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Implications of the Deterministic Equivalent

Scaling law of training MSE

Consider the ridgeless setting with γ = 0 and the under-parameterized regime with n, p, d all large but d < n

I δ diverges as γ→ 0, however, γδ = 1
n tr K

(
d
n

K
γ+γδ + In

)−1 γ→0−−→ θ = 1
n tr K

(
d
n

K
θ + In

)−1

I explicit scaling laws for the training MSEs that depend on the eigenspectrum of K

1 exponential eigendecay (e.g., RBF kernel related to cosine activation [RW05]) yields an error decay rate
of log(n)/n (which is slightly slower than the n−1 rate of linear models);

2 polynomial decay (e.g., Matérn kernel associated with to ReLU activation [Gei+20]) yields an error decay
rate of n−1−β (with β > 0), which is faster than the linear case.

Double descent behavior for test MSE
I it can be checked that both θ and δ diverge as γ→ 0 at n/d = 1.
I thus, the test risk likewise exhibits a singularity at d/n = 1.
I mirrors the double descent phenomenon for linear models, but applies here to nonlinear NN model,

regardless of the activation function or the training/test data.
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Numerical results
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Figure: Empirical and theoretical training and test MSEs of single-hidden-layer NN model, as a function of d/n, for
γ = 10−1 and γ = 10−5, with Gaussian W and ReLU activation φ(t) = max(t, 0), n = 1 024 training samples and n′ = 1 024
test samples from the MNIST dataset (number 1 and 2).Figure 7a: log-log plot of training MSEs averaged over 30 runs.
Figure 7b: test MSEs averaged over 30 runs on independent test sets of size n̂ = 2 048.
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High-dimensional linearization of single-hidden-layer NN

Theorem (High-dimensional linearization of kernel matrix)

Let w ∼ Rp be standard Gaussian w ∼ N (0, Ip) and let x1, . . . , xn ∈ Rp be independently drawn from the unit sphere
Sp−1 ⊂ Rp. Then, as n, p→ ∞ with p/n ∈ (0, ∞), the kernel matrix K = Ew[φ(X>w)φ(w>X)] admits the following
Linear Equivalent:

K↔ K̃φ, K̃φ = a2
φ;01n1>n + a2

φ;1X>X + a2
φ;2 ·

1
p

1n1>n +
(

νφ − a2
φ;0 − a2

φ;1

)
In, (24)

with high probability, up to a spectral norm error ‖K− K̃‖2 = O(n−1/2), where aφ;0, aφ;1, aφ;2, νφ are the Hermite
coefficients of φ.

I a striking (and perhaps counterintuitive) consequence is that, in the proportional regime with n, p both
large and comparable, the eigenvalue distribution of K becomes independent of the activation function φ,
up to a scaling and shift

I the eigenspectrum of K coincides with that of X>X (which approximates the Marc̆enko-Pastur law), and
depends only on the dimension ratio p/n—provided the data are unstructured and uniformly distributed
on the unit sphere.
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CK of fully-connected random deep neural networks

I everyone cares more about deep neural networks
I with some additional efforts, extension to fully-connected deep neural networks of depth L,

1√
dL

wTφL

(
1√

dL−1
WLφL−1

(
. . .

1√
d2

φ2

(
1√
d1

W2φ1(W1x)
)))

, (25)

again for random W1, . . . , WL and activations φ1(·), . . . , φL(·).

Theorem (Asymptotic approximation for conjugate kernels, informal)

Under the same condition, define output features of layer ` ∈ {1, . . . , L}, as

Σ` =
1√
d`

φ`

(
1√
d`−1

W`φ`−1

(
. . .

1√
d2

φ2

(
1√
d1

W2φ1(W1X)
)))

. (26)

we have for the Conjugate Kernel KCK,` at layer ` defined as

KCK,` = E[ΣT
` Σ`] ∈ Rn×n, (27)

that ‖KCK,` − K̃CK,`‖ → 0, some random matrix K̃CK,` dependent of data, of activation φ` but only via a few
parameters, and independent of the distribution of W, as long as of normalized to have zero mean and unit variance.
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Theorem (High-dimensional linearization of CK matrices for DNN)

Consider a DNN as in Equation (26), with weights W` ∈ Rd`×d`−1 having i.i.d. N (0, 1/d`−1) entries for ` = 1, . . . , L.
Assume each activation φ` has Hermite coefficients satisfying aφ` ;0 = 0 and νφ`

= 1. Let x1, . . . , xn ∈ Rp be
independently drawn from the unit sphere Sp−1 ⊂ Rp. Then, as n, p→ ∞ with p/n ∈ (0, ∞), the CK matrix
KCK,` = E[Φ>` Φ`] defined in (27) admits the following Linear Equivalent:

KCK,`
f↔ K̃φ,`, K̃φ = α2

`,1X>X + α2
`,2 ·

1
p

1n1>n +
(

1− α2
`,1

)
In, (28)

for Lipschitz function f : Rn×n → R of bounded Lipschitz constant with respect to matrix spectral norm, i.e.,
|f (A)− f (B)| ≤ C‖A− B‖2, ∀A, B ∈ Rn×n and some C ∈ (0, ∞), for α`,1, α`,2 satisfying

α`,1 = aφ` ;1 · α`−1,1, α`,2 =
√

a2
φ` ;1
· α2

`−1,2 + a2
φ` ;2
· α2

`−1,1, (29)

where aφ` ;1, aφ` ;2 are the Hermite coefficients of φ` at layer `.
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Implications

I Comparing the result for DNNs to that for single-hidden-layer NNs, observe a “curse of depth” for
random, untrained DNNs.

I Specifically, since νφ`
= ∑∞

i=0 a2
φ` ;i

= 1, we have max(aφ` ;1, aφ` ;2) ≤ 1 for each ` ∈ {1, . . . , L}: both α`,1 and
α`,2 tend to decrease with growing depth `.

I In particular, if aφ` ;1 < 1, ∀` ∈ {1, . . . , L}, then in the limit of L→ ∞, we obtain a degenerate DNN with
KL → In. This negative “curse of depth” result arises from:

1 the unstructured input xs (uniformly distributed on the high-dimensional unit sphere); and
2 the “normalization” of all activations (aφ` ;0 = 0 and νφ` = 1, ∀` ∈ {1, . . . , L}); and
3 the random untrained weights.

I In contrast with this, [Gu+22] showed that for structured Gaussian mixture inputs (which contain richer
statistical information than the unstructured inputs considered above), deeper (but only infinitely so as
considered in [Gu+22]) NNs with appropriately chosen activation functions can more effectively separate
the input mixture, thereby outperforming their shallow counterparts.
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Fully-connected deep nets: CK, NTK, and beyond

I happy with the study of (limiting) CK for random DNN models
I extension to NTK via intrinsic connection between CK and neural tangent kernel (NTK) [JGH18]

KNTK,`(X) = KCK,`(X) + KNTK,`−1(X) ◦K′CK,`(X), KNTK,0(X) = KCK,0(X) = XTX, (30)

and some additional efforts
I convergence and generalization theory via NTK [JGH18]: for

1 sufficiently wide nets
2 trained with gradient descent of sufficiently small step size

I NTK is determined at random initialization and remains unchanged during training, and applies to
explicitly characterize DNN convergence and generalization properties

2Arthur Jacot, Franck Gabriel, and Clément Hongler. “Neural Tangent Kernel: Convergence and Generalization in Neural Networks”. In: Advances in Neural
Information Processing Systems. Vol. 31. NIPS’18. Curran Associates, Inc., 2018, pp. 8571–8580
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Motivation and Introduction
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Motivation: Heavy-Tailed Phenomena in Modern Models

Gradient norms (Simsekli et al., 2019) and loss curves (Hestness et al.,
2017; Kaplan et al., 2020; Hoffmann et al., 2022).

Eigenvalues of Gram matrices in neural nets: data covariance (Sorscher
et al., 2022; Zhang et al., 2023), activation (conjugate kernel)
(Pillaud-Vivien et al., 2018; Agrawal et al., 2022; Wang et al., 2023),
Hessian (Xie et al., 2023), Jacobian (Wang et al., 2023).

Strong correlation between heavy-tailed trained weight matrices & model
performance: Heavy-Tailed Self-Regularization (HT-SR) Theory (Martin and
Mahoney, 2021b) and Layer-wise Diagnostics (Zhou et al., 2023; Lu et al.,
2024).

Power law appears in neural scaling laws (Kaplan et al., 2020; Wei et al.,
2022; Defilippis et al., 2024; Paquette et al., 2024; Lin et al., 2024).

Need new RMT for Heavy-Tailed Mechanistic Universality (HT-MU).
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Open Questions:

Why do spectral densities of trained feature and weight matrices
exhibit heavy-tailed behavior?

How do data structure, training dynamics, and implicit model bias
interplay to produce heavy tails?
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Heavy-Tailed Mechanistic Universality

What might constitute “universality” in neural network weights?

In RMT:

it denotes the emergence of system-independent properties derivable
from a few global parameters defining an ensemble.

In statistical physics:

it arises in systems with very strong correlations, at or near a critical
point or phase transition;
it is characterized by measuring experimentally “observables” that
display heavy-tailed behavior, with (universal) power law exponents.

Although trained weight matrices are not random, but rather strongly
correlated through training, RMT provides a useful descriptive framework.
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NTK Spectra at Initialization vs. Post-Training

(a) VGG11 Init (b) ResNet9 Init (c) ResNet18 Init

(d) VGG11 Trained (e) ResNet9 Trained (f) ResNet18 Trained

Figure: NTK eigenvalue histograms and inverse-Gamma fits near zero.
Initialization: mild inverse-Gamma behavior. Post-Training: pronounced heavy-tail
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Heavy-Tailed Mechanistic Universality

Definition

Heavy-tailed distributions (informally): densities decaying slower than
exponential, often exhibiting power-law tails

f (x) ∼ c x−α, x → ∞,

or inverse-Gamma behavior near zero f (x) ∼ c xαe−β/x , x → 0+.

Possible Approaches for Describing HT-MU:

iid Heavy-Tailed Elements: (Arous and Guionnet, 2008) Elements of

feature matrices are not independent and heavy-tailed.

Kesten Phenomenon: (Hodgkinson and Mahoney, 2021; Vladimirova
et al., 2018; Hanin and Nica, 2020) a mechanism discovered by Kesten
(1973) for recursive systems.

Population Covariance: power-law in, power-law out (PIPO) principle.
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Comparison of Possible Mechanisms

Power Law Inverse
Mechanism Elements Spectrum Gamma

iid Heavy-Tailed Elements ✓ ✓ ×
Kesten Phenomenon ✓ ✓ ✓/×
Population Covariance ✓/× ✓ ✓/×
Structured Matrices (Ours) × ✓ ✓

Empirical Observations (Features) × ✓ ✓
Empirical Observations (Weights) × ✓ ×

Table: Comparison of various mechanisms: capacity to yield power laws, in
feature matrix elements and feature matrix spectral densities; capacity to yield
an inverse Gamma law for the spectral density in a neighborhood of zero.
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Modeling Framework
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Entropic Regularization Setup

Stochastic Minimization Operator

πΘ,τ

smin
Θ

f (Θ) := min
q∈P

[
Eq(Θ)[f (Θ)] + τ KL(q ∥πΘ)

]
,

where P is the set of probability densities on the support of πΘ, and

πΘ is the initial prior (Θ = model coefficients).
τ > 0 is the “temperature” (controls early stopping).

Stochastic optimization models (Mandt et al., 2016; Chaudhari and Soatto,
2018) have strong links to Bayesian inference (Germain et al., 2016) and
statistical physics of generalization (Mezard and Montanari, 2009).

Applying to the training loss optimizes a PAC-Bayes bound on the test error
(Xie et al., 2023). As τ decreases during training, optimizer smoothly
interpolates between πΘ and the final optimal density.
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Entropic Regularization Setup

Feature Learning Setup: Stochastic minimization in two stages

πΘ,τ

smin
Θ

L(Θ,Φ) and q(Φ) =
πΦ,η

argsmin
Φ

[ πΘ,τ

smin
Θ

L(Θ,Φ)
]
.

πΘ, πΦ: initial densities of model coefficients Θ and features Φ.

τ, η > 0: “temperatures” control coefficient vs. feature learning rates.

Proposition (Optimal Feature Density)

q(Φ) ∝
[
Zτ (Φ)

]τ/η
πΦ(Φ), Zτ (Φ) = EΘ∼πΘ

exp
(
−L(Θ,Φ)/τ

)
.

Of particular interest: late stage of training, τ, η → 0+ with τ/η → ρ > 0.
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Examples of Feature Matrices: Activation Matrix

Activation Matrix (Last Layer).
Neural Network with m output f (x) = W⊤φ(x), with Φij = φj(xi ), W ∈ Rd×m

trained by ridge regression

L(W ,Φ) = ∥ΦW − Y ∥2F + µ ∥W ∥2F .

where µ > 0, Φij = φj(xi ) and Y = (yi )
n
i=1 ∈ Rn×m. For πW = N (0, σ2I ) and

σ̃2 = σ2

1+ 2µσ2

τ

, the marginal likelihood for optimal feature density:

Zτ (Φ) ∝
exp

(
− 1

2 tr(Y
⊤(σ̃2ΦΦ⊤ + τ

2 I )
−1Y )

)
det(σ̃2ΦΦ⊤ + τ

2 I )
m/2

.

Σ = YY⊤ and M = (1 + 2µσ2

τ )−1ΦΦ⊤ + τ
2σ2 I . Applying Proposition,

q(M) ∝ (detM)−ρm/2 exp(− 1
2ρσ

2tr(ΣM−1))π(M)
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Examples of Feature Matrices: NTK & Hessian

Neural Tangent Kernel (NTK) J(Φ) ∈ Rmn×mn.
Consider J(Φ)ij = DfΘ,Φ(xi )

⊤ DfΘ,Φ(xj). Use linearization approximation
(Jacot et al., 2018; Rudner et al., 2023; Wilson et al., 2025) to get
f (Θ) ≈ f (Θ∗) + Df (Θ∗)(Θ−Θ∗) with square loss. Then

Zτ (Φ) ∝
exp(− 1

2 tr(Ȳ
⊤(σ2J(Φ) + τ

2 I )
−1Ȳ ))

det(σ2J(Φ) + τ
2 I )

.

Applying Proposition for M = J(Φ),

q(M) ∝ (detM)−ρ/2 exp

(
− ρσ2

2 tr(ΣM−1)

)
π(M)

Hessian Matrix H(Θ,Φ) = ∇2
ΘL(Θ,Φ).

∇2
ΘL(Θ

∗,Φ) =
∑n

i=1 Df (xi )Df (xi )
⊤, when L(Θ,Φ) = 0, and so the

spectrum of the Hessian is equivalent (up to zeros) to that of the NTK.
Thus, the same q(M) applies for the Hessian for small training loss.
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Master Model Ansatz

Ansatz: for trained feature matrices, with parameters α, β > 0 and
initial density π:

q(M) ∝ (detM)−α exp
(
−β tr(ΣM−1)

)
π(M)

α, β > 0 depend on model/optimizer hyperparameters.
Σ is label/covariance-related (e.g., Y Y⊤).
π(M) is the prior “initialization” density of the feature matrix.

Key Observation: The trained feature matrix M generally follows an
inverse-Wishart-type density (Mardia et al., 2024).

1 First consider Σ = I to remove the effect of Σ, the density π of feature
matrices M at initialization completely determines the density q(M).
Change of variables M 7→ QΛQ⊤ for orthogonal Q and diagonal Λ; so
we only need to study the spectral distribution Λ.

2 Second, we will consider a general Σ to get spectral densities of trained
feature/weight matrices.
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RMT for Heavy-Tailed Spectral Behavior
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Eigenvector Structure and Beta-Ensembles

To derive a spectral density from the Master Model Ansatz,
diagonalize M = Q diag(λ)Q⊤ and set Σ = I .

Key Assumption: Distribution of eigenvectors Q is not uniform!
(non-Haar) due to implicit model biases.

Use Beta-Ensemble (Dumitriu and Edelman, 2002; Forrester, 2010)
with parameter κ ∈ [0,∞] to capture the Master Model Ansatz:

qκ(λ1, . . . , λN) ∝
∏N

i=1 V (λi )
∏

i<j |λi − λj |κ/N

■ Take V (λ) = λ−α exp(−β λ−1) to match Master Model Ansatz.

■ The 1/N “high temperature” scaling has also been examined
(Forrester and Mazzuca, 2021), but with a different application.

■ Although π(M) could be complicated, we argue that much of the
behavior of π is captured by the extent of the eigenvalue repulsions.
κ controls eigenvalue repulsion.
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Interpreting κ: Structured Feature Matrices

We consider π is uniform over different structured matrix classes with
different block Structures (N × N matrix comprised of n × n blocks, each
of size m ×m):

1 Diagonal: κ = 0 (no eigenvector randomness).

2 Commuting Block-Diagonal: κ ∼ m
n .

3 Symmetric Block-Diagonal: κ ∼ (m − 1) mn
mn−1 .

4 Kronecker-Like Q1 ⊗ Q2, where Q1 ∈ Rm×m and Q2 ∈ Rn×n:
κ ∼ n

m + m
n .

5 Fully Symmetric (no structure): κ = mn (Haar eigenvectors).

As model architecture induces more structure (fewer free eigenvector
degrees of freedom), κ decreases ⇒ heavier tail in spectrum.

We provide a numerical algorithm to efficiently estimate κ.
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Main Theorem: HTMP Distribution

Theorem (Generalized Marchenko–Pastur)

Let MN follow qκ(λ1, . . . , λN) ∝
∏N

i=1 λ
−α
i e−β λ−1

i
∏

i<j |λi − λj |
κ(N)
N

with parameter κ(N). Define

γ(N) =
κ(N)/2

α− κ(N)/2− 1
→ γ ∈ (0, 1) as N → ∞.

Then the empirical spectral distribution of 2 γ(N)β
κ(N) M−1

N converges to:

1 MPγ (Marchenko-Pastur distribution) if κ(N) → ∞;

2 HTMPγ,κ (High-Temperature MP) if κ(N) → κ ∈ (0,∞).

This beta-ensemble result is derived from a sequence of random matrix
theory from Dumitriu and Edelman (2006); Dung and Duy (2021).
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MP v.s. HTMP

The Marchenko-Pastur distribution MPγ with parameter γ ∈ (0, 1) is
absolutely continuous on (0,∞) with finite support only on the
interval Iγ = [γ−, γ+] where γ± = (1±√

γ)1/2. The corresponding
probability density function is given by

ργ(x) =
1

2π

√
(γ+ − x)(x − γ−)

γx
, x ∈ Iγ .

The high-temperature Marchenko-Pastur distribution HTMPγ,κ is a
probability distribution on (0,∞) with a probability density function

ργ,κ(x) =
κ

2γ

1

Γ(κ/2 + 1)Γ(κ/2γ)

(
κx
2γ

) κ
2γ

−1−κ
2 e−

κx
2γ

|U(κ/2,− κ
2γ + 1 + κ

2 ;−κx/2γ)|2

where U(a, b; z) denote the Tricomi confluent hypergeometric
function.
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Main Theorem: Tail Behavior for Trained Features

Theorem (Spectral Density of Trained Feature Matrix)

Let ρN be the ESD of a trained feature matrix MN , and µΣ the spectral
measure of label covariance Σ. Then

ρN(λ) −−−−⇀
N→∞

(
µΣ ⊠ ρ

)
(λ),

where ⊠ is multiplicative free convolution, ρ is either λ−2 ρMP(λ
−1) (if

κ = ∞) or λ−2 ρHTMP(λ
−1) (if κ < ∞). Additionally,

Bounded vs. Heavy-Tailed: κ = ∞ =⇒ bounded support;
κ < ∞ =⇒ power-law tail.

Inverse-Gamma near zero: If κ < ∞, density

ρ(x) ∼ x−
κ
2γ

−1−κ
2 exp

(
−β−

x

)
as x → 0+.

Power-law Tail: ρ(x) ∼ x−
κ
2γ

−1+κ
2 for x → ∞.
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Remarks

The power law for the limiting density ρ contains a tail exponent that
gets heavier as κ decreases: i.e., as the structure of the underlying
matrix becomes more rigid.

Decreasing κ increases implicit model bias, consistent with Martin
and Mahoney (2021b) and Simsekli et al. (2019), who claim heavier
tails imply stronger model biases and better model quality and
generalization ability.1

HTMP model represents the first RMT ensemble that captures key
empirical properties of (strongly-correlated) modern state-of-the-art
neural networks (Martin and Mahoney, 2020, 2021a,b; Yang et al.,
2023).

1Very important: these models’ elements need not have heavy-tailed behavior.
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Applications
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Application 1: Neural Scaling Laws

Setup: Ridge regression on activation matrix Φ ∈ Rn×d , m = 1:

ŵ = argmin
w

L(w) =
1

n
∥Φw − Y ∥2 + µ

n
∥w∥2.

Assume yi = w⊤
∗ φ(xi ), and Ex [φ(x)φ(x)

⊤] = I .

Spectral Assumption: ΦΦ⊤ follows HTMPγ,κ (Master Model).

Data-Free Scaling Law: Predicts test loss decay solely from spectral tail; no
access to held-out data required. Previous scaling law works focus on power
laws in the dataset (e.g., Wei et al., 2022; Defilippis et al., 2024; Paquette
et al., 2024; Lin et al., 2024)

Proposition

Let µ = n−ℓ with ℓ ∈ (0, 1). Then, the Generalization Error satisfies

L := Ex,w∗ [(φ(x)
⊤ŵ − y)2] ≍ n

−ℓ
(
2+

κ
2γ−κ

2

)
, n → ∞

with high probability.
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Application 2: Optimizer Trajectories

Empirical observation (Mandt et al., 2016; Simsekli et al., 2019; Hodgkinson
et al., 2022): Lower and Upper power-law tails in the distribution of

stochastic gradient norms ∥∇̂LN∥ during training:

Pr(∥∇̂LN∥ ≤ x) ∼ C− xα, x → 0+,

Pr(∥∇̂LN∥ > x) ∼ C+ x−β , x → ∞.

Model: Assume residuals Ȳ are Gaussian, NTK matrix J ∼ inverse-Wishart
(or HTMP) independent of Ȳ .

Application: Under these assumptions, ∥∇̂LN∥ exhibits both lower and
upper power-law tails.

There has been significant theoretical justification for the upper power law in
terms of the Kesten mechanism (Hodgkinson and Mahoney, 2021;
Gurbuzbalaban et al., 2021, 2022), but there has been little justification for
the lower power law before.
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Application 3: 5+1 Phases of Trained Weight Matrices

Empirical Observation (Martin and Mahoney, 2019, 2020, 2021b; Yang
et al., 2023; Zhou et al., 2023): Trained weight matrices can exhibit 5+1
Phases of Training:

1 Random-Like (MP bulk, no outliers).
2 Bleeding-Out (MP bulk with emerging spikes).
3 Bulk+Spikes (distinct spikes outside bulk).
4 Bulk-Decay (bulk extends, no finite support).
5 Heavy-Tailed (power-law tail).
6 Rank-Collapse (mass at zero eigenvalue).

Application: Consider A = W⊤W with trained weight W , then β
α−κ/2−1 A

converges to HTMPγ,κ.

Decreasing κ across training ⇒ transition from bounded support to heavy
tail. Power law exponents in the spectrum of weight matrices are strongly
predictive of model performance.
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5+1 Phases for Trained Weight: HTMP Fits

Figure: Weight spectral densities for MiniAlexNet trained on CIFAR-10 with batch
sizes 1000, 800, 250, 100, 50, 5 (top to bottom). Fitted MP/HTMP curves
shown in red dashed with different κ.

As batch size decreases, κ decreases ⇒ heavier tail.
(a)–(c): κ = ∞ for MP or MP+spike behavior.
(d)–(f): Finite κ for heavy tail plus eventual rank collapse.
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Summary of Simulations

Initialization: NTK spectra show mild inverse-Gamma edge, no
heavy-tail (κ ≈ ∞).

During Training:

NTK spectra develop a mixture: initial and trained components
diverge.
Weight matrices transition MP ⇒ MP+spike ⇒ heavy tail.

Post-Training:

NTK and Hessian spectra exhibit clear power-law tails at both edges
(κ < ∞).
Final-layer weight spectra match HTMPγ,κ fits.

Takeaway: HTMP family {HTMPγ,κ} successfully interpolates from
MP-like to heavy-tailed regimes by tuning κ.
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Conclusions

Master Model: A unified RMT framework (Master Model Ansatz) that
captures heavy-tailed spectral behavior of trained feature matrices from a
Bayesian perspective.

HTMP Ensemble: High-temperature MP (HTMPγ,κ) arises when
eigenvector entropy ∝ κ is finite; interpolates between MP (κ → ∞) and
heavy-tailed regimes (κ → 0+).

Key Insights

1 Data Contribution: Heavy-tailed population covariance Σ =⇒
heavy-tailed trained spectra (PIPO).

2 Eigenvector Structure: More architectural bias (smaller κ) =⇒
heavier tails.

3 Training Dynamics: As τ, η → 0, HTMP hyperparameters α, β, κ
evolve, explaining transitions (5+1 phases).

Applications

Neural scaling laws (ridge regression) predicted by HTMP exponents.
Lower/upper power-law tails in SGD trajectories explained.
5+1 training phases fit by tuning κ for HTMP.
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Thank You!

Liam Hodgkinson, Zhichao Wang, Michael W. Mahoney.
“Models of Heavy-Tailed Mechanistic Universality”
https://arxiv.org/abs/2506.03470.
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Computing Eigenvalues of Large Matrices

➢ Eigenvalues encode essential matrix information; empirical spectral distribution 
is useful for diagnostics, e.g. is the spectrum heavy-tailed?

➢ Particularly useful for computing spectral functions, including

➢ These quantities are important e.g. for Gaussian processes, but need the entire 
range of eigenvalues, not just largest/smallest

➢ Standard eigenvalue solvers are          complexity; expensive for large matrices!



Tiers of Matrix Difficulty

Explicit: the whole matrix fits in memory

Implicit: can make use of matrix-vector products (e.g. CG, SLQ)

Out-of-core: parts of the matrix can be loaded into memory a piece at a time

Impalpable: most matrix 
entries are inaccessible, 
matrix-vector products are 
unavailable (e.g. distributed or 
enormous datasets)



Extrapolating Matrices

Suppose our matrix of interest is embedded in an infinite sequence of nested matrices

so that

Objective: Find eigenspectrum of        using 
eigenspectrum of          for



Free Probability
How do we ensure the eigenvalues of submatrices represent the whole matrix?

An important topic in random matrix theory involving random matrices with 
uniformly random eigenvectors, so that probability distributions of matrix 
dependents (including submatrices) depend only on the eigenspectra. 

Theorem (Nica, 1993): Any sequence of matrices can be turned into an 
(asymptotically) free sequence of random matrices by applying random permutations 
σ to the rows and columns:



Stieltjes Transform

The spectral density of a matrix A is encoded in its Stieltjes transform: 

In the large matrix limit, when the eigenvalues are drawn from a density   , there is 
a one-to-one correspondence between    and the Stieltjes transform     .



Free Decompression
Let              be the Stieltjes transform of the enlargement of A by a factor of     
Under the large matrix limit,             satisfies the partial differential equation:

Proof: Random matrix theory arguments involving the R-transform and the 
celebrated theorem of (Nica & Speicher, 1996).

To our knowledge, this operation has always been considered in reverse (free 
compression), finding eigenspectra of submatrices, given the eigenspectrum of the 
full matrix. We are the first to attempt free decompression.





This is a very difficult equation to solve!

Solve the PDE using method of characteristics in the complex plane. But…

Proposition: All characteristic curves pass through the (discontinuous) branch cut 
for the principal branch of the Stieltjes transform. 

➢ To solve the characteristic equations, a new secondary branch is required.
➢ Tantamount to (ill-posed) numerical analytic continuation.
➢ Naively solving the PDE fails: we need to directly tackle the analytic 

continuation problem.

An Engineering Challenge



Analytic Continuation of Stieltjes Transform



An Engineering Challenge

This is a very difficult equation to solve!

Theorem: The error grows at most polynomially in the matrix size.

Requires significantly more engineering than first glance:

➢ Multiple layers of polynomial approximation from eigenvalues (Lanczos iteration 
and Kernel Polynomial Method are not accurate enough)

➢ Construct a particular Padé approximant
➢ Solve characteristic curves using Newton iterations

Performed properly, in practice, error grows at most logarithmically in the matrix size.



Random Matrix Ensembles



Random Matrix Ensembles



Random Matrix Ensembles

For Meixner family, the Jacobi 
matrix of orthogonal polynomial 
recursion is periodic.

Stieltjes transform, as continued 
fraction of Jacobi coefficients, 
becomes periodic.

Stieltjes transform can be 
solved by quadratic equation:



Random Matrix Ensembles



Experiments with Random Matrix Ensembles

These are convenient baselines, since we know the expected shape of the 
eigenspectrum in advance for any matrix size (computing eigenvalues is expensive!)

Under normally-distributed synthetic data, we expand

free decompression



Matrices with iid Entries (Wigner Semicircle Law)

Histogram of eigenvalues of small 
matrix & density estimate

Densities under free 
decompression

Expected density & solution from 
free decompression



Wishart Matrices (Marchenko-Pastur Law)

Histogram of eigenvalues of small 
matrix & density estimate

Densities under free 
decompression

Expected density & solution from 
free decompression



Random Projections (Kesten-McKay Law)

Histogram of eigenvalues of small 
matrix & density estimate

Densities under free 
decompression

Expected density & solution from 
free decompression



Generalized Eigenvalue Problems (Wachter Law)

Histogram of eigenvalues of small 
matrix & density estimate

Densities under free 
decompression

Expected density & solution from 
free decompression



General Family of Meixner Law

Histogram of eigenvalues of small 
matrix & density estimate

Densities under free 
decompression

Expected density & solution from 
free decompression



Experiments with Real Data
Large covariance and kernel matrices involving real data typically exhibit 
disconnected spectral densities with support over multiple orders of magnitude. 

Density estimation remains a significant challenge here

We consider two examples of real data matrices to demonstrate efficacy of our 
current procedure:

1. Facebook SNAP Graph Dataset (22,470 x 22,470 adjacency matrix) perturbed 
by an Erdős-Rényi graph to reduce leaf nodes.

2. Log-neural tangent kernel Gram matrix from ResNet50 trained on CIFAR-10 
with low-rank components removed (50,000 x 50,000 dense matrix).



Experiments with Real Data

Symmetrically normalized Laplacian matrix of
the SNAP Facebook dataset

log-NTK matrix computed from the CIFAR-10 dataset 
using a ResNet-50 model

Empirical spectral density (solid) vs. free decompression estimate from                   (dashed)



Experiments with Real Data

Table: Comparison of runtime of direct computation of spectral density versus the 
free decompression of the NTK dataset, and accuracy in terms of statistical distance 
and moments. 



freealg is our Python 
package that implements 
free decompression for 
estimating eigenspectra.

pip install freealg

Siavash Ameli, Chris van der Heide, Liam Hodgkinson, Michael W. Mahoney. (2025) 
Spectral Estimation with Free Decompression. arxiv: 2506.11994

(work in progress!)

https://arxiv.org/pdf/2506.11994
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Overview

Log-determinant is widely encountered in linear algebra and statistics:
Gaussian process (kernel methods)
Determinantal point process
Volume form (Bayesian computation)

Challenges
It is often the most difficult term to compute in these applications.
Memory-wall (time complexity isn’t the only bottleneck)

Outline

I. Large Matrices
Neural Tangent Kernels
Arithmetic Precision

II. MEMDET
Compute exact log-det
Out-of-core

III. FLODANCE
Approximate log-det
Utilize scale law

IIII. Results
NTK matrices
Matérn kernel
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I. Large Matrices
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Example of Extremely Challenging Matrices

Neural Tangent Kernel (NTK)
Neural network fθ : X → Rd

θ: parameters
Jθ(fθ(x)): Jacobian of fθ
NTK is Gramian of Jθ :

κθ(x, x
′
) := Jθ

(
fθ(x)

)
Jθ

(
fθ(x

′
)
)ᵀ

Compute time of NTK (using NVIDIA H100 GPU)

Compute Time (hrs)
Dataset Model float16 float32 float64
MNIST MobileNet 6 25 50
CIFAR-10 ResNet9 6 24 70

ResNet18 14 63 65
ResNet50 37 177 297
ResNet101 107 442 1178

Challenges

Challenge I. Forming NTK
Takes days/months to compute on H100 GPU
Need large storage (from Terabytes to Exabytes)
Precision loss when forming Gram matrix
double precision to retain positive-definiteness

Challenge II. Computing LogDet
Cubic complexity O(m3

)

NTK is nearly singular
CIFAR-10: 10% of eigenvalues near zero
Cannot load on memory

4 / 19



Neural Tangent Kernel Sizes

Matrix Size
Dataset Training Set Classes float16 float32 float64
CIFAR-10 50,000 10 0.5 TB 1.0 TB 2.0 TB

MNIST 60,000 10 0.72 TB 1.5 TB 2.9 TB

SVHN 73,257 10 1.1 TB 2.2 TB 4.2 TB

ImageNet-1k 1,281,167 1000 3,282,778 TB 6,565,556 TB 13,131,111 TB*

* 13.1 exabytes is an order of magnitude larger than CERN’s current data storage capacity.
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II. MEMDET
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Memory-Constrained LogDet Computation

MEMDET
Out-of-core algorithm
Can process matrix of any scale
Eliminates memory wall

Block decompositions:
LU decomposition: generic matrices

M =

[
M11 M12
M21 M22

]
=

[
L11 0
L21 I

] [
U11 U12
0 S

]

Repeat decomposition on block S.
LDL: for symmetric matrices
Cholesky: for symmetric PD matrices

A B

C S

1

k

i

nb

1 k j nb

1

23456
A BC

S

1

k

i

nb

1 k i j nb

MEMDET Algorithm

Only four blocks A,B,C,S on memory
Blue blocks are written to disk (scratch space)
Efficient order of processing of blocks
Figure: LU (left) and LDL/Cholesky decompositions (right).
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Optimal Block Ordering

e1 e2 e3 e4

e5 e6 e7

e8 e9

e10

A

1

k

1 k k+
1

v1

k + 1

k+
2

v2

k + 2

k+
3

v3

k + 3

k+
4

v4

k + 4

v1 v2

v3v4

e2

e3
e4 e6e 7

e9

e1 e5

e8e10

Left: Processing order of blocks for a symmetric matrix at the k-th hierarchical step.
Two memory blocks are selected from the set V = {v1, v2, v3, v4}.
Middle: Complete graph G(V ,E).
Right: Line graph L(G), with one possible Hamiltonian path highlighted in red.
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Complexity and Data Transfer
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Left: Complexity of MEMDET by the increasing number of blocks nb.
The total complexity (black) remains constant.
Workload transitions from decompositions (green) to solving linear system (orange) & matvec (red).
Right: Data transfer between disk/memory increases with nb.
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Performance
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Breakdown of MEMDET runtime into computation (ochre) and data transfer times (rea/write).
At large matrix sizes, data transfer time becomes negligible compared to compute time.
Compute time is consistent across varying number of blocks.
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Scale Law

det (Kn)

det
(
Kn−1

) ∼ nν

n: num dataset
d: num classes
m = nd: matrix size

Lemma

Let f : X → Rd be a zero-mean vector-valued
m-dimensional Gaussian process with
covariance kernel κ. For each n ≥ 2, let

E(n) := E[d−
1
2 ‖f (xn)‖

2 | f (xi) = 0
denote the mean-squared error of fitting the f to
the zero function using x1, . . . , xn−1. Then

pdet(Kn)

pdet(Kn−1)
≤ E(n)d

, ∀n > 1,

with equality if d = 1.
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ResNet50 — CIFAR-10

∼ cn−95.3

NTK of ResNet50 on CIFAR-10
Number of classes: d = 10
Dataset images: n = 50K
Matrix size: m = 500K.
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LogDet as Stochastic Process

Proposition

Let Ln := 1
n logdet(Kn). Then

L̂n ≈ L1 +

(
1− 1

n

)
c0 − ν

log(n!)
n

Law of large numbers (LLN):

Ln = L̂n + op(1).

Central limit theorem (CLT):
n√

n− 1
(Ln − L̂n)

D→ N (0, σ2
).

Algorithm:
Fit L̂n on submatrices n = 1, . . . , ns � n
(Linear regression on parameters c0, ν)
Extrapolate to larger n� ns
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Stochastic process:
det (Kn) /det

(
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)
cnν

Stationary logarithmic process
Ergodic process
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Estimating Log-Det — NTK Matrix
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Full CIFAR-10 data with all n = 50K images
Matrix size m = 500,000 dense matrix, double precision, 2TB size.
Fit: on 10% of total matrix size (shaded gray region, yellow curve)
Extrapolation: in much larger interval (red curve)
Error compared to MEMDET: (blue curve right axis in each panel), 0.2% (left), 0.02% (right).
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Comparison of Methods

Method Rel.
Error

Est.
Cost

Wall
TimeName Settings TFLOPs

SLQ l = 100, s = 104 5203 55% $83 1.8 days

MEMDET LDL, nb = 32 41,667 0% $601 13.8 days

FLODANCE ns = 500, q = 0 0.04 4% $0.04 1 min
FLODANCE ns = 5000, q = 4 41.7 0.02% $4 1.5 hr

Largest NTK formation and exact logdet computation to our knowledge
ResNet50, full CIFAR-10 with all n = 50K images
Matrix size m = 500,000 dense matrix, double precision, 2TB size.
MEMDET computes the exact log-determinant, serves as benchmark.
Costs and wall time are based on an NVIDIA H100 GPU ($2/hour).
Wall time include NTK formation.
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Estimating Log-Det — Matérn Kernel
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Gaussian process with a 10-dimensional output using Matérn kernel
Data points n = 10K
Covariance matrix of size m = 100,000
Fit: on 10% of total matrix size (shaded gray region, yellow curve)
Extrapolation: in much larger interval (red curve)
Error compared to MEMDET: (blue curve right axis) 0.4%
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Comparison of Methods

Method Approach
MEMDET Direct factorization
FLODANCE Submatrix extrapolation
SLQ Stochastic trace estimation
Pseudo NTK Cross-class block reduction
Block Diagonal Class-wise block approx.

Experiment:
ResNet9 with CIFAR-10
Smaller matrices to compare with other methods
Uncertainty quantification: submatrix samples
Shaded region: standard deviation
Benchamrk: MEMDET in double precision
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FLODANCE (n0 = 1, ns = 50)

FLODANCE (n0 = 1, ns = 100)

FLODANCE (n0 = 300, ns = 500)

Results:
FLODANCE out performs other methods
FLODANCE comparable to 32-bit exact method
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Resources

Reference

Ameli, S., van der Heide, C., Hodgkinson, L., Roosta, F., Mahoney, M.W., (2025).
Determinant Estimation under Memory Constraints and Neural Scaling Laws,
The 42nd International Conference on Machine Learning.

Related Work

Ameli, S., van der Heide, C., Hodgkinson, L., Mahoney, M.W., (2025). Spectral
Estimation with Free Decompression. arXiv: 2506.11994

Software

Package Documentation Install Implements
detkit ameli.github.io/detkit pip install detkit MEMDET

FLODANCE

imate ameli.github.io/imate pip install imate SLQ

freealg ameli.github.io/freealg pip install freealg (Related work)
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Motivations:
•  WeightWatcher, Weight Diagnostics for Analyzing ML Models
 (with Charles H. Martin)
•  Randomized Numerical Linear Algebra for Modern ML
 (with Michal Derezinski)

Some Theory:
• RMT for NNs: Linear to Nonlinear; Shallow to Deep; etc.
 (with Zhenyu Liao)

Applications:
• Models of Heavy-Tailed Mechanistic Universality
 (with Zhichao Wang and Liam Hodgkinson)
• Spectral Estimation with Free Decompression
 (with Siavash Ameli, Chris van der Heide, and Liam Hodgkinson)
• Determinant Estimation under Memory Constraints and Neural Scaling Laws
 (with S. Ameli, C. van der Heide, L. Hodgkinson, and F. Roosta)

Overview
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