
Introduction Randomized BLAS Least squares and optimization Low-rank approximation Conclusion Extra slides

Putting Randomized Matrix Algorithms in LAPACK,
and Connections with Second-order Stochastic Optimization

Michael W. Mahoney

ICSI and Department of Statistics, UC Berkeley

November 2021

Michael W. Mahoney 1



Introduction Randomized BLAS Least squares and optimization Low-rank approximation Conclusion Extra slides

This work

It’s part of the larger BALLISTIC collaboration, with

Jim Demmel, Jack Dongarra, Mark Gates, Julie Langou, Julien Langou, Piotr
Luszczek, and Riley Murray.

Recent contributors to the randomized linear algebra aspects of BALLISTIC include

Riley Murray, Jim Demmel, Laura Grigori, Ben Erichson, Micha l Dereziński,
Vivek Bharadwaj, Max Melnichenko, Hengrui Luo, Younghyun Cho, Haoyun
Li, and me.

Beyond this talk, we’ll soon be sharing

a much more detailed design document.

a Python library, to illustrate design principles and facilitate experimentation.
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What is LAPACK?

LAPACK (Linear Algebra PACKage)

standard software library for numerical linear algebra
routines for systems of linear equations and linear least squares, eigenvalue
problems, and SVD
also routines to implement associated matrix factorizations, LU, QR, Cholesky
and Schur, etc.

“If you call a linear algebra routine in python, R, etc. . . . then you probably call
something that calls something that calls LAPACK.”

BLAS (Basic Linear Algebra Subprograms)

a specification that prescribes a set of low-level routines for common linear
algebra operations
vector addition, scalar multiplication, dot products, linear combinations, and
matrix multiplication
the de facto standard low-level routines for linear algebra libraries
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What is randomized numerical linear algebra?

early work from TCS achieved weak additive-error bounds for low-rank
approximation [1, 2, 3, 4]

relative-error guarantees for least-squares, low-rank using “subspace information”
[5, 6, 7, 8]

use as a preconditioner for iterative algorithms for least-squares [9, 10, 11]

use two-step procedure for good low-rank approximation [12, 13]

. . .

use (SubSampled Newton, Iterative Hessian sketch, etc.) for convex optimization
[14, 15]

. . .

stochastic second-order optimizers can beat first-order variants optimized for CV,
NLP, RecSys AI/ML [16]

. . .

time to put these methods into LAPACK!
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Randomized numerical linear algebra (RNLA)

Using randomized algorithms to solve deterministic problems.

For example: min
x
‖Ax− b‖22

The algorithms use randomness internally

Rely on a black-box random number generator.

The generator needn’t be very high-quality.

The algorithms gamble with solution quality and/or computational cost

Quality and cost vary from one run to another.

Many RNLA algorithms have extremely small variations in performance.

Reviews from different perspectives: [17, 12, 18, 19, 20, 21, 22, 13, 23]
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What does randomization buy us?

Efficient algorithms for computing approximate solutions

Whole areas. E.g., low-rank approximation [12], convex optimization [24].

Efficient algorithms for computing machine-precision solutions

Specific problems. E.g., strongly overdetermined least squares [9, 10, 11],
block column-pivoted QR [25, 26].

Robust algorithms for intractable problems

E.g., nonnegative matrix factorization [27], interpolative decomposition [28]

Solving problems under data-privacy constraints [29, 30, 31, 32]

Reviews from different perspectives: [17, 12, 18, 19, 20, 21, 22, 13, 23]
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Two ingredients of RNLA algorithms

Random sketching

For overdetermined least squares with
data (A, b), obtain sketched data

ASÂ

and b̂ = Sb.

High-level deterministic NLA

Next, solve the sketched problem

min
x
‖S (Ax− b) ‖22.

For example, by SVD

Â = UΣV T,

⇒ x̂ = V Σ†UTb̂.
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An architecture in two parts

Randomized LAPACK will be written in C++ and build on LAPACK++.

Configurable object-oriented API and simplified procedural API

Data model to focus on dense matrices in shared-memory.

Accommodate sparse/abstract matrices with “linear operator” objects.

The Randomized BLAS will handle sketching dense data matrices.

Procedural API only

Hide all details of the random number generator (but preserve reproducibility)

Support sketching operators drawn from a variety of distributions

Opportunities to reorganize computation for big performance gains
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Two regimes for sketching

Sketching can look like embedding or like sampling.

ASÂ

Y A S

Distinguished by relative sizes of (S,A).
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A selection of sketching operators

Let’s say the operator is d×m.

Dense iid Gaussian

Haar matrices: uniform over d×m matrices with orthonormal cols (or rows)

SRTTs: subsampled randomized trig transforms. For d ≤ m

S = (subsampling)︸ ︷︷ ︸
d×m

(fast trig transform)︸ ︷︷ ︸
e.g., DFT or DCT

(diag(uniform ±1))︸ ︷︷ ︸
m×m

Row sampling / column sampling

SJLTs: sparse Johnson-Lindenstrauss transforms.

Example: k independent uniform ±1’s per column (all others zero).
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Two ways to structure an API for basic sketching

The straightforward approach:

1 Generate all random numbers which define S.

2 Invoke a deterministic algorithm to compute SA or AS.

A more sophisticated approach:

Generate pieces of S on-the-fly while computing SA or AS.

Let ourselves store pieces of S in cache, but not main memory.

Discard / regenerate pieces of S as needed.

To what extent will the Randomized BLAS support each approach?
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Multi-sketching

1 Row-streaming sketch: [33, 34]

Y1 = AS and Y2 = ATY1

2 Double-sketch: [12, 33, 35]

Y1 = AS1 and Y2 = S2A

3 Triple-sketch (four operators): [35, 36]

Y1 = AS1, Y2 = S2A, and Y3 = S3AS4.

What combinations of sketching operator distributions should the
Randomized BLAS support for multi-sketching?
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Levels in the Randomized BLAS

Levels 1 – 3 produce sketches. Possible organizations:

One sketch at Level 1, two at Level 2, three or more at Level 3.

One sketching operator at Level 1, two at Level 2, three or more at Level 3.

Special examples (AS,ATAS) (SA,Sb) S1AS2

Level by # sketches 2 2 1
Level by # operators 1 1 2

Level 0: generate defining data for a sketching operator.
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Least squares problems . . . and optimization

Data matrix A is m× n and tall (m� n).

Overdetermined least squares

min
x∈Rn

‖Ax− b‖22

Underdetermined least squares

min
y∈Rm

‖y‖22 subject to ATy = c.

Randomized LAPACK:

take a “primal-dual” perspective on these problems.

include methods for solving to any desired accuracy.

facilitate more general second-order optimization algorithms.
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A saddle point perspective

Consider a simple saddle point system[
I A
AT 0−H

] [
y
x

]
=

[
b
c

]
. (1)

Equation 1 (with H = 0) characterizes optimal solutions to the primal-dual pair

min
x∈Rn

‖Ax− b‖22 + 2cTx

min
y∈Rm

‖y − b‖22 subject to ATy = c.

Encounter sequences of saddle point systems in ...

`p regression for p ∈ (1, 2)

minimizing a composite convex function via Newton’s method

Interior-point methods for quadratic linear programming when H is psd
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A framework for saddle point systems

Problem data A ∈ Rm×n, b ∈ Rm, and c ∈ Rn.

1 If m & n (as opposed to m� n), call LAPACK instead. # tuning problem

2 Decide the distribution for S ∈ Rd×m # tuning problem

3 Sketch [Â, b̂] = S[A, b]

4 Factor U ,Σ,V T = svd(Â)

5 sketch-and-solve: construct a solution to the sketched problem [8, 37].

6 Optional sketch-and-precondition:

Form the preconditioned linear operator A← A
(
V Σ†

)
Apply an iterative solver to Equation 1, with sketch-and-solve initialization

Previously used for least squares [10, 11] and linear programming [38].
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Overdetermined least-squares example

Fixed data matrix:

A ∈ R100,000×2,000

cond(A) = 100, 000

Fixed target vector:

‖AA†b‖2 = 0.95‖b‖2

LAPACK time in seconds:

GELSD: 26.3

GELSS: 45.6

Laptop w/ Core i7-1065G7

Battery power

Normal equation error vs time in seconds

Ten trials with SRCT S ∈ R6,000×100,000
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Low-rank approximation

Produce a suitably factored representation of a low-rank matrix Â, which
stands in as an approximation for a target matrix A.

How to measure the quality of an approximation?

Distance from the target ‖A− Â‖

Distance from an “optimal” approximation ‖A? − Â‖.

Algorithms in Randomized LAPACK

can accept parameter k, produce Â where rank Â = min{k, rankA}.

can (in some cases!) accept ε and ensure ‖A− Â‖ ≤ ε.

come with theoretical guarantees for bounding ‖A− Â‖ and/or ‖A? − Â‖.
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Some representations for the approximation matrix

Singular value decomposition

Â =
∑k

i=1 σiuiv
T
i

Symmetric / Hermitian eigenvalue decomposition

Â =
∑k

i=1 λiviv
T
i

Interpolative decompositions (row ID, column ID, two-sided ID)

Â = CX, for C = k columns of A, suitable X

CUR decompositions

Â = CUR, for R = k rows of A, C as above, any k × k matrix U

Nonnegative factorization

Â = WH for W ∈ Rm×k
+ and H ∈ Rk×n

+
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A standard algorithm for randomized SVD

From [12]:

1 Q = orth(AS)

2 B = QTA # Implicitly, Â = QB = QQTA.

3 U ,Σ,V T = svd(B)

4 U = QU # Implicitly, Â = UΣV T.

5 return (U ,Σ,V T)

Many variations!

1 The sketching operator S can be “data-aware.” (Leverage power iteration.)

2 Alternative constructions of (Q,B)

Use only a single pass over A
Construct in blocks: add columns to Q and rows to B.
Monitor ‖A−QB‖ (typically Frobenius norm) as a stopping criterion.
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Algorithms for low-rank approximation

Singular value decomposition

QB algorithms, single-pass triple-sketch, row-extraction algorithms.

Symmetric / Hermitian eigenvalue decomposition

QB algorithms, Nyström for psd matrices, row-extraction algorithms

Interpolative decompositions

“Carry over” algorithm, skeleton + pseudo-inverse algorithm.

CUR decompositions

Convert any two-sided ID.

Nonnegative factorization

QB-backed hierarchical alternating least-squares
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Feedback is welcome!

Many big-picture questions surround the Randomized BLAS.

One possible organization of development priorities for Randomized LAPACK:

Least squares and optimization

Phase 1: saddle point solvers with H = δI.
Later: facilitate sequences of saddle point solves, support more general H.

Low-rank approximation

Phase 1: QB and QB-backed algorithms.
Phase 2: Interpolative and CUR decompositions, Nyström approximations.
Later: algorithms focused almost exclusively on speed.

Full-rank factorizations. (“Phase” uncertain.)

Stay tuned for a design document on the Randomized BLAS / Randomized LAPACK,
and an associated Python package.
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.
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Full-rank factorizations in Randomized LAPACK

Overparameterized interpolative decomposition. E.g., A = ZR where
R ∈ Rd×n has d rows of A and m� d > n.

UTV (aka URV and QLP) [39, 40]

QR with column pivoting [25, 41].

LU [42] and [43].

Symmetric indefinite systems (superset of saddle point systems) [44]
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A framework for saddle point systems (detailed)

Problem data A ∈ Rm×n, b ∈ Rm, and c ∈ Rn.

1 Decide the distribution for S ∈ Rd×m # tuning problem

2 Sketch [Â, b̂] = S[A, b] # e.g., O(mn log n) with SRTTs

3 Factor Q,R = qr(Â) # O(dn2).

4 sketch-and-solve: construct a solution to the sketched problem.

When c = 0, set x̂ = R−1QTb̂ [8]
We’re working on c 6= 0; one option in [37]

5 Optional sketch-and-precondition:

Form the preconditioned linear operator A← AR−1

Apply an iterative solver to Equation 1, with sketch-and-solve initialization

Conjugate gradients, LSQR, Chebyshev semi-iterative method
Run for a constant number of iterations (e.g., 60 iterations).

Previously used for least squares [10, 11] and linear programming [38].
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Overdetermined least-squares example (wall power)

Fixed data matrix:

A ∈ R100,000×2,000

cond(A) = 100, 000

Fixed target vector:

‖AA†b‖2 = 0.95‖b‖2

LAPACK time in seconds:

GELSD: 17.3

GELSS: 34.1

Core i7-1065G7 (Wall power)

Normal equation error vs time in seconds

Ten trials with SRCT S ∈ R6,000×100,000
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Big questions for the Randomized BLAS

1 What pairs of functions will we offer for separately generating a sketching
operator and applying such an operator?

Makes testing and initial development easier.
Probably be expected by many users.
Requires exposing a larger API (particularly for sparse sketching operators)
Will miss out on some opportunities for more efficient algorithms.

2 What individual functions will we offer that compute a sketch without accepting
a sketching operator as input or returning one as output?

Gives us space to concoct extremely efficient non-obvious implementations.
Exposes a smaller API.
Makes testing harder.
Creates problems for algorithms that need the same operator several times.
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Big questions for the Randomized BLAS

3 What combinations of sketching operators will be allowed with multi-sketching?

Multi-sketching is critical for single-pass / streaming algorithms.
Not practical to make optimized algorithms for all combinations.
Multi-sketching has to be exposed through a purely procedural API!

4 How exactly will we support coordinate subsampling as a type of sketching?

Applying such an operator is nominally trivial, but what about memory layout?
Yet another type of sketch for consideration in multi-sketching API.
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