
Overview of RandNLA:
Randomized Numerical Linear Algebra

Michael W. Mahoney

ICSI and Dept of Statistics, UC Berkeley

(For more info, see:
http://www.stat.berkeley.edu/∼mmahoney/

or Google on “Michael Mahoney”)

February 2015

Mahoney (UC Berkeley) RandNLA February 2015 1 / 26

Outline

1 Overview and Background

2 Basic RandNLA Principles

3 Applications of Basic RandNLA Principles

4 Conclusions

RandNLA: Randomized Numerical Linear Algebra

Matrices provide a natural structure with which to model data.

A ∈ Rm×n can encode information about m objects, each of which is
described by n features; etc.

A positive definite A ∈ Rn×n can encode the correlations/similarities
between all pairs of n objects; etc.

Motivated by data problems, recent years have witnessed many exciting
developments in the theory and practice of matrix algorithms.

Particularly remarkable is the use of randomization.

Typically, it is assumed to be a property of the input data due (e.g., to noise
in the data generation mechanisms).

Here, it is used as an algorithmic or computational resource.

Mahoney (UC Berkeley) RandNLA February 2015 3 / 26

RandNLA: Randomized Numerical Linear Algebra

RandNLA: an interdisciplinary research area that exploits randomization
as a computational resource to develop improved algorithms for large-scale
linear algebra problems.

Foundational perspective: roots in theoretical computer science (TCS); deep
connections with convex analysis, probability theory, and metric embedding
theory, etc.; and strong connections with scientific computing, signal
processing, and numerical linear algebra (NLA).

Implementational perspective: well-engineered RandNLA algorithms beat
highly-optimized software libraries for problems such as very over-determined
least-squares and scale well to parallel/distributed environments.

Data analysis perspective: strong connections with machine learning and
statistics and many “non-methodological” applications of data analysis.

Moreover, there is a growing interest in providing an algorithmic and
statistical foundation for modern large-scale data analysis.

Mahoney (UC Berkeley) RandNLA February 2015 4 / 26

An historical perspective

Linear algebra has had a long history in large-scale (by the standards of
the day) statistical data analysis.

Method of least-squares (LS): due to Gauss, Legendre, and others; and used
in early 1800s for fitting linear equations to determine planetary orbits.

Principal Component Analysis (PCA) and low-rank approximations: due to
Pearson, Hotelling, and others, and used in early 1900s for exploratory data
analysis and predictive analytics.

These and related methods are of interest since, e.g., if there is noise or
randomness in the data then the leading principle components tend to
capture the signal and remove the noise.

Mahoney (UC Berkeley) RandNLA February 2015 5 / 26

An historical perspective

Advent of the digital computer in the 1950s:

Proto computer science and early applications of linear algebra focused on
scientific computing problems (where computation was an essential tool)

Even for “well-posed” problems, many algorithms perormed very poorly in
the presence of the finite precision.

Work by Turing, von Neumann, and others laid much of the foundations for
scientific computing and NLA: this led to problem-specific complexity
measures (e.g., the condition number) that characterize the behavior of an
input for a specific class of algorithms (e.g., iterative algorithms).

But . . . (for various technical and nontechnical reasons), there then
occured a split in the nascent field of computer science:

Continuous linear algebra became the domain of applied mathematics.

Computer science theory and practice became discrete and combinatorial.

Mahoney (UC Berkeley) RandNLA February 2015 6 / 26

An historical perspective

Linear algebra became the domain of continuous applied mathematics;
and it focused on scientific applications.

Nearly all work in scientific computing and NLA has been deterministic; this
led to high-quality codes in the 1980s/1990s, e.g., LAPACK.

Most work focused on optimizing FLOPS—matrix-vector multiplies on dense
matrices—in shared memory environments on matrices that arise in
structured scientific computing applications.

This code is now widely-used in NLA and scientific computing as well as in
machine learning, statistics, data analysis, etc.

Mahoney (UC Berkeley) RandNLA February 2015 7 / 26

An historical perspective

Computer science became discrete and combinatorial; and it focused on
business and commerce applications.

Turing, Church, and other studied computation per se.

Seemingly-different approaches (recursion theory, the λ-calculus, and Turing
machines) defined the same class of functions

Belief arose that the concept of computability is formally captured in a
qualitative and robust way by these three equivalent processes, independent
of the input data.

Randomization (where the randomness is inside the algorithm, and the
algorithm is applied to arbitrary or worst-case data) was introduced and
exploited as a powerful computational resource.

Mahoney (UC Berkeley) RandNLA February 2015 8 / 26

An historical perspective: now and going forward . . .

Recently, a convergence of these two very different perspectives.

Motivated by scientific, Internet, social media, financial, etc. applications.

Computation per se is necessary but very insufficient.

Most people want to obtain insight and/or make predictions from the data
they generate to make downstream claims about the world.

Central to these developments RandNLA, including:

Randomness in the data versus randomness in the algorithm.

Continuous (mathematics) versus discrete (computer science).

Worst-case algorithms versus problem-specific complexity measures.

Scientific versus business/commerce applications.

Good “hydrogen atom” to consider algorithmic and statistical foundations
of modern large-scale data analysis.

Mahoney (UC Berkeley) RandNLA February 2015 9 / 26

Outline

1 Overview and Background

2 Basic RandNLA Principles

3 Applications of Basic RandNLA Principles

4 Conclusions

Basic RandNLA Principles

Basic RandNLA method: given an input matrix:

Construct a “sketch” (a smaller or sparser matrix matrix that represents the
essential information in the original matrix) by random sampling.

Use that sketch as a surrogate to compute quantities of interest.

Basic design principles∗ underlying RandNLA:

Randomly sample (in a careful data-dependent manner) a small number of
elements to create a much sparser sketch of the original matrix.

Randomly sample (in a careful data-dependent manner) a small number of
columns and/or rows to create a much smaller sketch of the original matrix.

Preprocess an input matrix with a random-projection-type matrix and then
do uniform sampling of rows/columns/elements in order to create a sketch.

∗
The first two principles deal with identifying nonuniformity structure. The third principle deals with

preconditioning the input (i.e., uniformizing nonuniformity structure) s.t. uniform random sampling performs well.

Mahoney (UC Berkeley) RandNLA February 2015 11 / 26

Element-wise Sampling

An m × n matrix A is an array of numbers, Aij , ∀i ∈ [m],∀j ∈ [n].

Randomly sample a small number of entries, each w.r.t. importance
sampling probability distribution pij .

Return a sparse matrix Ã that contains precisely the (rescaled) entries.

Uniform sampling easily leads to poor results; but non-uniform sampling
w.r.t. magnitudes or element-wise leverage scores gives nontrivial results.

Thm [AM01/AM07/DZ11]: If sample s elements with pij =
A2
ij∑

i,j A
2
ij

, then

‖A− Ã‖2 ≤ O

(√
(m + n) ln (m + n)

s

)
‖A‖F .

This gives “additive-error” bounds for low-rank matrix approximation.

Proof method: A− Ã is a random matrix; use random matrix theory,
combinatorial moment methods, matrix measure concentration bounds.

Mahoney (UC Berkeley) RandNLA February 2015 12 / 26

Row/column Sampling

An m × n matrix A is a linear operator, with column/row spaces.

Randomly sample a small number of rows, each w.r.t. importance sampling
probability distribution {pi}mi=1.

Return s × n matrix Ã, an approximation to A, containing s (rescaled) rows.

Uniform sampling easily leads to poor results; but non-uniform sampling
w.r.t. magnitudes or leverage scores gives nontrivial results.

Thm [FVK97/DKM05/RV06]: If sample s rows with pi =
‖A(i)‖2∑

i,j A
2
ij

, then

‖ATA− ÃT Ã‖F ≤
1√
s
‖A‖2

F .

This gives “additive-error” bounds for low-rank matrix approximation.

Proof method: expectations and variances for ‖ · ‖F ; Khintchine inequality
or matrix-Bernstein inequalities for ‖ · ‖2 extension.

Mahoney (UC Berkeley) RandNLA February 2015 13 / 26

Row/column Sampling

Norm-squared sampling does only comparable to element-wise sampling.

Leverage score sampling does better: say m� n, then let

pi =
1

n
(PA)ii =

1

n
‖U(i)‖2

2,

where U is any m × n orthogonal matrix spanning the column space of A.

These statistical leverage scores

I are useful in regression diagnostics to identify outliers
I approximatable without computing U in “random projection time”
I give “relative-error” bounds for least-squares & low-rank approximation
I provide data-aware subspace embedding: fix ε ∈ (0, 1), s & n log(n)

ε then

‖UTU − (SU)T SU‖2 = ‖I − (SU)T SU‖ ≤ ε.

(For NLA, this is an acute perturbation; for TCS this is a subspace JL.)

Mahoney (UC Berkeley) RandNLA February 2015 14 / 26

Random Projections as Preconditioners†

Main challenge for uniform sampling: relevant information could be
localized on a small number of rows/columns/elements.

Main challenge for non-uniform sampling: construct sampling probabilities.

One solution: spread out this information, so uniform sampling does well.

Bicriteria:

I Preprocessed matrix should be similar to the original matrix.
I Preprocessing should be computationally efficient to perform.

Do this preconditioning with random projections:

I Pre-/post-multiply by appropriately-scaled random matrix (i.i.d.
Gaussians, i.i.d. Rademacher, Hadamard-based constructions, etc.)

I Can get data-oblivious subspace embedding: fix ε ∈ (0, 1), then

‖UTU − (ΠU)T ΠU‖2 = ‖I − (ΠU)T ΠU‖ ≤ ε.

(For NLA, this is an acute perturbation; for TCS this is a subspace JL.)

†
Preconditioners: a transformation that converts a problem instance into another instance that is more-easily

solved by a given class of algorithms.

Mahoney (UC Berkeley) RandNLA February 2015 15 / 26

Outline

1 Overview and Background

2 Basic RandNLA Principles

3 Applications of Basic RandNLA Principles

4 Conclusions

Least-squares approximation

Least-squares (LS) : given m × n matrix A and m-dimensional vector b, solve

xopt = arg min
x∈Rn
‖Ax − b‖2.

If m� n, it is overdetermined/overconstrained.

Compute solution in O(mn2) time (in RAM model) with one of several
methods: computing the normal equations; QR decompositions; or SVD.

RandNLA provides faster algorithms for this ubiquitous problem.

I TCS: faster in terms of low-precision asymptotic worst-case theory.
I NLA: faster in terms of high-precision wall-clock time.
I Implementations: (in Spark) can compute low, medium, and high

precision solutions on up to terabyte-sized data.

The basic RandNLA approach extends to many other matrix problems.

Mahoney (UC Berkeley) RandNLA February 2015 17 / 26

Least-squares approximation: leverage and condition

Statistical leverage. (Think: eigenvectors. Important for low-precision.)
I The statistical leverage scores of A (assume m� n) are the diagonal

elements of the projection matrix onto the column span of A.
I They equal the `2-norm-squared of any orthogonal basis spanning A.
I They measure:

F how well-correlated the singular vectors are with the canonical basis
F which constraints have largest “influence” on the LS fit
F a notion of “coherence” or “outlierness”

I Computing them exactly is as hard as solving the LS problem.

Condition number. (Think: eigenvalues. Important for high-precision.)
I The `2-norm condition number of A is κ(A) = σmax(A)/σ+

min(A).
I κ(A) bounds the number of iterations; for ill-conditioned problems

(e.g., κ(A) ≈ 106 � 1), the convergence speed is very slow.
I Computing κ(A) is generally as hard as solving the LS problem.

Mahoney (UC Berkeley) RandNLA February 2015 18 / 26

Least-squares approximation: Meta-algorithm (1 of 2)

1: Using the `2 statistical leverage scores of A, construct an importance
sampling distribution {pi}mi=1.

2: Randomly sample a small number of constraints according to {pi}mi=1

to construct a subproblem.
3: Solve the `2-regression problem on the subproblem.

A näıve version of this meta-algorithm gives a 1 + ε relative-error
approximation—on both the objective function and the certificate/vector
achieving the optimum—in roughly O(mn2/ε) time. (Ugh.)

Mahoney (UC Berkeley) RandNLA February 2015 19 / 26

Least-squares approximation: Meta-algorithm (2 of 2)
(Drineas, Mahoney, etc., 2006, 2008, etc., starting with SODA 2006; Mahoney FnTML, 2011.¶)

But, we can make this meta-algorithm “fast” in RAM:‡

This meta-algorithm runs in O(mn log n/ε) time in RAM if:
I we perform a Hadamard-based random random projection and sample

uniformly sampling in the randomly rotated basis, or
I we quickly computing approximations to the statistical leverage scores

and using those as an importance sampling distribution.

Can be improved to run in almost O(nnz(A)) time.

And, we can make this meta-algorithm “high precision” in RAM:§

This meta-algorithm runs in O(mn log n log(1/ε)) time in RAM if:
I we use the random projection/sampling basis to construct a

preconditioner and couple with a traditional iterative algorithm.

See Blendenpik/LSRN for NLA-style wall-clock time comparisons.

Can also be improved to run in almost O(nnz(A)) time.
‡

(Sarlós 2006; Drineas, Mahoney, Muthu, Sarlós 2010; Drineas, Magdon-Ismail, Mahoney, Woodruff 2011.)
§

(Rokhlin & Tygert 2008; Avron, Maymounkov, & Toledo 2010; Meng, Saunders, & Mahoney 2011.)
¶

(Mahoney, “Randomized Algorithms for Matrices and Data,” FnTML, 2011.)

Mahoney (UC Berkeley) RandNLA February 2015 20 / 26

Extensions to Low-rank Matrix Approximation

What is your objective?

In NLA: deterministic algorithms & greedy pivot rule decisions; choose
exactly k columns; strong connections with QR/RRQR; focus on ‖ · ‖2.
In TCS: randomized algorithms, that might fail; select more than k columns,
e.g., Θ (k log(k)) columns; focus on ‖ · ‖F .
In ML/data applications: low-rank approximations an intermediate step.

Best algorithms: exploit the following structural condition underlying
randomized low-rank algorithms: If V T

k Z has full rank, then

||A− PAZA||2ξ ≤ ||A− Ak ||2ξ +
∣∣∣∣∣∣Σk,⊥

(
V T
k,⊥Z

) (
V T
k Z
)†∣∣∣∣∣∣2

ξ
.

This structural condition
was introduced to solve the “column subset selection problem,”
can be used to get o(k log(k)) columns in TCS theory,
is easy to parameterize RandNLA algorithms to choose k + p columns,
is easy to couple with various NLA iterative algorithms, and
often leads to less variance in downstream data applications.

Mahoney (UC Berkeley) RandNLA February 2015 21 / 26

Matrix Completion
Given arbitrary m × n matrix A, reconstruct A by sampling O

(
(m + n)poly(1

εα)
)

entries (α small, e.g., 2, log(mn
ε) factors ok, but not all mn entries) s.t.

‖A− Ã‖ ≤ (1 + ε)‖A− Ak‖F . (1)

One approach from TCS: above element-wise sampling algorithm. In two
“passes,” sample entries with based on their squared magnitude:

‖A− Ã‖ ≤ ‖A− Ak |F + ε‖A‖F .

Entire matrix is observed; works for worst-case input matrices.
Additive error bound is too large to satisfy Eqn. (1).

Another approach‖ from signal processing and applied mathematics: under
incoherence assumptions, give a uniform sample of O ((m + n) k ln (m + n))
entries of A to form Ã, then A is the solution to:

min
Ã∈Rm×n

‖Ã‖1 s.t. Ãij = Aij , ∀ sampled entries Aij .

Don’t even observe all of A; but strong assumptions on A are allowed.
If A is exactly low-rank and incoherent, then Eqn. (1) is satisfied.

‖
Very different problem parameterizations: either assume worst-case input and must identify nonuniformity

strucutre; or make “niceness” assumptions about input, where the worst nonuniformity structure is not present.

Mahoney (UC Berkeley) RandNLA February 2015 22 / 26

Solving Systems of Laplacian-based Linear Equations
Consider the problem of solving the system of linear equations Ax = b.

xopt = arg min
x∈Rn
‖Ax − b‖2. (2)

Solvable “exactly” in O
(
n3
)

time for worst-case dense input A

Iterative techniques (e.g., CG) used if A is positive definite (PD); then,
running time is O(nnz(A)) time, times κ(A) factor.

Important special case: A is the Laplacian matrix of an graph G = (V ,E).
(Arises in scientific computing, machine learning, etc.)

Then, there exist randomized, relative-error algorithms that run in
O (nnz(A)polylog(n)) time.

First step: randomized graph sparsification to create sparser Laplacian L̃.

I sample edges of G according to leverage scores of weighted
edge-incidence matrix

I but must approximate them graph theoretically

Second step: use L̃ (recursively) as a preconditioner to solve Eqn. (2).

Mahoney (UC Berkeley) RandNLA February 2015 23 / 26

Statistics, Machine Learning, and Data Applications
Many examples:

Kernel-based machine learning: fast low-rank approximations via projections
and Nyström method.

CX/CUR decompositions provide scalable and interpretable low-rank
approximations in genetics, astronomy, etc.

More scalable scientific computing for classes of pdes.

Divide-and-conquer matrix completion algorithms use similar analysis.

Statistical aspects of this “algorithmic leveraging” approach.

Main challenges:

Most people who use low-rank approximations use them for something else.

Many statistics and machine learning formluations of these problems render
the problem trivial (for important algorithmic-statistical reasons).

Sometimes the methods do “better” than they “should” (implicit
regularization), but sometimes they don’t.

Mahoney (UC Berkeley) RandNLA February 2015 24 / 26

Outline

1 Overview and Background

2 Basic RandNLA Principles

3 Applications of Basic RandNLA Principles

4 Conclusions

Conclusions

RandNLA has had several big successes already:
I The best works-case algorithms (TCS-style) for very overdetermined

least-squares problems.
I Implementations (NLA-style) are competative with and can beat the

best high-quality NLA libraries.
I Implementations (in Spark) can compute low, medium, and high

precision solutions on up to terabyte-sized data.
I Several big wins in statistics, machine learning, and data applications.

Are these just “one off” successes, or just the tip of the iceberg?

This reading group:
I Go through several papers central to RandNLA and RandNLA
I Learn a bit about RandNLA
I Identify particularly promising directions to strengthen the NLA

foundations of RandNLA

Mahoney (UC Berkeley) RandNLA February 2015 26 / 26

	Overview and Background
	Basic RandNLA Principles
	Applications of Basic RandNLA Principles
	Conclusions

