
Numerically-intensive Machine Learning at Scale

Michael W. Mahoney

(RISELab, ICSI, and Department of Statistics, UC Berkeley)

November 2017

Hidden Technical Debt in Machine Learning Systems, D. Sculley, et al.

Linear Algebra in Spark for science problems
•  CX and SVD/PCA implementations and performance
•  Applications of the CX and PCA matrix decompositions
•  To mass spec imaging, climate science, etc.

The Next Step: Alchemist
•  Combining Spark and MPI

Communication-avoiding LA/ML
•  Going beyond CA-LA to CA-ML

Overview

Linear Algebra in Spark for science problems
•  CX and SVD/PCA implementations and performance
•  Applications of the CX and PCA matrix decompositions
•  To mass spec imaging, climate science, etc.

The Next Step: Alchemist
•  Combining Spark and MPI

Communication-avoiding LA/ML
•  Going beyond CA-LA to CA-ML

Overview

Where do you run your linear algebra?

Single machine
• Think about RAM, call LAPACK, etc.

• Someone else thought about numerical issues, memory hierarchies, etc.

• This is the 99%

Supercomputer
• High end, compute-intensive.

• Big emphasis on HPC (High Performance Computing)

• C+MPI, etc.

Distributed data center
• High end, data-intensive

• BIG emphasis on HPC (High Productivity Computing)

• Databases, MapReduce/Hadoop, Spark, etc.

Two related issues with eigen-analysis
Computing large SVDs: computational time
•  In commodity hardware (e.g., a 4GB RAM, dual-core laptop), using MatLab 7.0 (R14),
the computation of the SVD of the dense 2,240-by-447,143 matrix A takes ca 20 minutes.

•  Computing this SVD is not a one-liner, since we can not load the whole matrix in RAM
(runs out-of-memory in MatLab).

•  Instead, compute the SVD of AAT.

•  In a similar experiment, compute 1,200 SVDs on matrices of dimensions (approx.) 1,200-
by-450,000 (roughly, a full leave-one-out cross-validation experiment) (DLP2010)

Selecting actual columns that “capture the structure” of the top PCs
•  Combinatorial optimization problem; hard even for small matrices.

•  Often called the Column Subset Selection Problem (CSSP).

•  Not clear that such “good” columns even exist.

•  Avoid “reification” problem of “interpreting” singular vectors!

•  (Solvable in “random projection time” with CX/CUR decompositions! (PNAS, MD09))

Spark Architecture

  Data parallel programming model
  Resilient distributed datasets (RDDs) (think: distributed array type)
  RDDs can optionally be cached in memory b/w iterations
  Driver forms DAG, schedules tasks on executors

Spark Communication

  Computation operate on one RDD to produce another RDD
  Each overall job (DAG) broken into stages
  Stages broken into parallel, independent tasks
  Communication happens only between stages

Why do linear algebra in Spark?

  Classical MPI-based linear algebra algorithms are faster
and more efficient

  No way, currently, to leverage legacy parallel linear
algebra codes

  JVM matrix size restrictions, and RDD rigidity

Cons:

  Widely used
  Easier to use for non-experts
  An entire ecosystem that can be used before and after the

NLA computations
  Spark can take advantage of available single-machine

linear algebra codes (e.g. through netlib-java)
  Automatic fault-tolerance
  Transparent support for out of memory calculations

Pros:

Our Goals

  Provide implementations of low-rank factorizations (PCA,
NMF, and randomized CX) in Spark

  Apply low-rank matrix factorization methods to TB-scale
scientific datasets in Spark

  Understand Spark performance on commodity clusters vs
HPC platforms

  Quantify the scalability gaps between highly-tuned C/MPI
and current Spark-based implementations

  Provide a general-purpose interface for matrix-based
algorithms between Spark and traditional MPI codes

Motivation

  NERSC: Spark for data-centric workloads and scientific analytics
  AMPLab: characterization of linear algebra in Spark (MLlib, MLMatrix)
  Cray: customers demand for Spark; understand performance concerns

Three Science Drivers
Climate Science:
extract trends in variations of oceanic
and atmospheric variables (PCA)

Nuclear Physics:
learn useful patterns for
classification of subatomic particles
(NMF)

Mass Spectrometry:
location of chemically important ions
(CX)

Datasets

MSI — a sparse matrix from measurements of drift times and mass charge
ratios at each pixel of a sample of Peltatum; used for CX decomposition

Daya Bay — neutrino sensor array measurements; used for NMF

Ocean and Atmosphere — climate variables (ocean temperature,
atmospheric humidity) measured on a 3D grid at 3 or 6 hour intervals over
about 30 years; used for PCA

CFSR Ocean Temperature Dataset (II)!

Climate Science Results on Ocean
(CFSRO) dataset

•  First principal component of temperature field at 180 degree latitude.!
•  Clear that there is a significant vertical component to the PCs which are

lost when you do the traditional surface-only analyses

Cori’s specs:
•  1630 compute nodes,
•  128 GB/node,
•  32 2.3GHz Haswell cores/node

Running times for NMF and PCA

•  Anti-scaling! !
•  And it worsens both with concurrency and data size. !

Spark Overheads: the view of one task

task start delay = (time between stage start and when driver sends task to executor)

scheduler delay = (time between task being sent and time starts deserializing)+
(time between task result serialization and driver receiving task’s completion
message)

task overhead time = (fetch wait time) + (executor deserialize time) + (result
serialization time) + (shuffle write time)

time waiting until stage end = (time waiting for final task in stage to end)

PCA Run Times: rank 20 PCA of 2.2TB Climate

Rank 20 PCA of 16 TB Climate using 48K+ cores

Spark PCA Overheads: 16 TB Climate,1522 nodes

NMF Run Times: rank 10 NMF of 1.6TB Daya Bay

Linear Algebra in Spark for science problems
•  CX and SVD/PCA implementations and performance
•  Applications of the CX and PCA matrix decompositions
•  To mass spec imaging, climate science, etc.

The Next Step: Alchemist
•  Combining Spark and MPI

Communication-avoiding LA/ML
•  Going beyond CA-LA to CA-ML

Overview

MPI vs Spark: Lessons Learned

  Algorithm choice and data layout choices are constrained
by the bulk synchronous, data parallel programming
model of Spark and its core data structure, the RDD

  Even with favorable data (tall and skinny) and well-adapted
algorithms, Spark LA is 2x-26x slower than MPI when IO
is included

  Spark overheads are orders of magnitude higher than
the computations in PCA (time till stage end, scheduler
delay, task start delay, executor deserialize time). A more
efficient algorithm is needed

The Next Step: Alchemist

  Since Spark is 4+x slower than MPI, propose sending the
matrices to MPI codes, then receiving the results

  For efficiency, want as little overhead as possible (File I/O,
RAM, network usage, computational efficiency)

Strawman approaches:
1.  Write to HDFS: slow file I/O, manual data layout
2.  Apache Ignite (and Alluxio, etc.): requires using C/

C++ interfaces, manual data layout, extra copy in
memory, TCP/IP

Our approach:
Use in-memory transfer, and transparently provide
data relayout

Current Alchemist Architecture

  Exploit locality to reduce communication
  Allow for hybrid OpenMP/MPI

Using Alchemist

Spark:!
1) Sends the metadata for input and output matrices to

Alchemist !
2) Sends the matrix to Alchemist using sockets !
3) Waits on a matrix from the Alchemist gateway using sockets!

Alchemist:!
 1) Repartitions the matrix for MPI using Elemental!
 2) Executes the MPI codes!

 3) Repartitions the output and returns to Spark!

Spark! MPI!

Alchemist!

Example: Matrix Multiplication

Requires expensive shuffles in Spark:!
-  Matrices/RDDs are row partitioned!
-  One must be converted to be column-partitioned!
-  This requires an all-to-all shuffle that often fails even

for matrices that could fit in memory on one executor!

Example: Matrix Multiplication

A: 100K-by-10K (8 GB)!
B: 10K-by-100K (8 GB)!

C=AB: 100K-by-100K (80 GB)!

Setup: !
-15 Spark and 15 Alchemist nodes!
-128 GB RAM and 32 cores per node!

Send! Compute! Receive!
Alchemist! 7.78 s! 106s! 38s!

Spark! -! Fail after 30
min!

-!

Example: Truncated SVD

A: 100K-by-5K (4 GB)!

Setup: !
-15 Spark and 15 Alchemist nodes!
-128 GB RAM and 32 cores per node!

Send! Compute! Receive!
Alchemist! 15.7 s! 31.8s! 5.5s!

Spark! -! 636.3s! -!

≈!

Linear Algebra in Spark for science problems
•  CX and SVD/PCA implementations and performance
•  Applications of the CX and PCA matrix decompositions
•  To mass spec imaging, climate science, etc.

The Next Step: Alchemist
•  Combining Spark and MPI

Communication-avoiding LA/ML
•  Going beyond CA-LA to CA-ML

Overview

Motivation

2

Processor speed << Communication speed
Gap is growing

Need for faster optimization/ML algorithms with less communication

Trade-offs and existing approaches

3

Communication

Co
m

pu
ta

tio
n

Newton

Coordinate
Descent

Some
algorithm

Current approach:
choose an algorithm based

on computation and

communication trade-off

Trade-offs and existing approaches

4

Communication

Co
m

pu
ta

tio
n

Newton

Coordinate
Descent

Some
algorithm

What happens if there is

no algorithm with the

required trade-off?

We need to wait until a

mathematician comes up

with a solution

Our approach

5

Communication

Co
m

pu
ta

tio
n

Take existing algorithms

and make them

communication avoidingSome
algorithm

Coordinate
Descent

Newton

Outline of the approach and results

Choose your favorite algorithm

Scalability to 1000+ of processors or more

6

Re-organize it to make it communication avoiding

Load balanced processors

minimize �g(x) +
1

2
kAx� bk22

• Sparse
regression

• Elastic net

• Group lasso

• Sparse group lasso

g(x) = kxk1
g(x) =

⌘

2
kxk22 + (1� ⌘)kxk1

Optimization/ML

g(x) =
JX

j=1

kxjkKj

For what problems?

minimize kAx� bk22

Linear
Regression

7

An example: coordinate descent

8

Pseudo-code
1 communication per

iteration Sample a column of data

 Compute partial derivative

 Update solution new old

 Repeat

An example: communication avoiding coordinate descent

9

Pseudo-code

 Compute in parallel anticipated computations
 for the next “s” iterations

s
s

 Redundantly store the result
 in all processors P1 P2 P

 Each processor independently computes the next “s” iterations

1 communication
round per s iterations

 Repeat

More details about the results

Decrease communication by a factor of s

No free lunch: increase message size and flops by a factor of s

Flops are distributed
across processors

Logarithmic
dependence of

communication cost on
number of processors

10

Scalable results for all data layouts

AA

2D Block Partition

Data Layout

1D Column Partition1D Row Partition

A

* Best performance depends on dataset and algorithm
11

Other examples

12

 Block coordinate descent

 Accelerated block coordinate descent

 Gradient descent

 Any proximal method

Datasets

13

Summary of (LIBSVM) datasets

Name #Features #Data points Density of non-
zeros

url 3,231,961 2,396,130 0.0036%

epsilon 2,000 400,000 100%

news20 62,021 15,935 0.13%

covtype 54 581,012 22%

C++ using the Message Passing Interface (MPI). Intel MKL library for sparse and
dense BLAS routines. All methods were tested on a Cray XC30.

0 100 200 300
Iterations

0.5

1

1.5
O

bj
ec

tiv
e

fu
nc

tio
n

106

Baseline
Ours

Convergence of re-organized algorithms

Convergence rate remains the same in exact arithmetic
Empirically stable convergence: no divergence between methods

14

3072 6144 12288
Processors (P)

1.1

2

3
3.7

6.4

R
un

ni
ng

 T
im

e
(s

ec
)

Performance scaling: epsilon
Baseline
Ours

3072 6144 12288
Processors (P)

39

70

111

173

R
un

ni
ng

 T
im

e
(s

ec
)

Performance scaling: url
Baseline
Ours

Scalability performance

The more processors the better
The gap between CA and non-CA increases w.r.t. #processors

15

768 1536 3072
Processors (P)

0.23

0.33

0.9
1.07

1.5

R
un

ni
ng

 T
im

e
(s

ec
)

Performance scaling: covtype
Baseline
Ours

192 384 768
Processors (P)

9.6

12.8

22.2

30.7
36.6

R
un

ni
ng

 T
im

e
(s

ec
)

Performance scaling: news20
Baseline
Ours

Scalability performance

The more processors the better
The gap between CA and non-CA increases w.r.t. #processors

16

2 4 8 16

32

64

12

8
25

6

Recurrence unrolling parameter (s)

1
2.03

3.89

5.89
6.72
8.33

10.94

Sp
ee

du
p

Speedup: epsilon
total
communication
computation
speedup = 1
Best s = 64

1 2 4 8 16

32

64

12
8

25
6

51
2

Recurrence unrolling parameter (s)

1
1.65
3.16

4.95 4.96

8.99
9.67

10.56

Sp
ee

du
p

Speedup: url
total
communication
computation
speedup = 1
Best s = 64

Speed up breakdown

Large communication speedup until bandwidth takes a hit
Computation is maintained due to local cache-efficient (BLAS-3)

computations

17

2 4 8 16 32 64
Recurrence unrolling parameter (s)

1
1.66
2.56
3.2

5.87
6.53
6.94

Sp
ee

du
p

Speedup: covtype
total
communication
computation
speedup = 1
Best s = 32

2 4 8 16

32

64

12

8

Recurrence unrolling parameter (s)

1

1.75

2.74

3.45

4.2

Sp
ee

du
p

Speedup: news20
total
communication
computation
speedup = 1
Best s = 16

Speed up breakdown

Large communication speedup until bandwidth takes a hit
Computation is maintained due to local cache-efficient (BLAS-3)

computations

18

Summary

Generalize from linear algebra to optimization/ML

19

Provably avoid communication

Scalability to 10,000+ processors

Applies to many algorithms

Linear Algebra in Spark for science problems
•  CX and SVD/PCA implementations and performance
•  Applications of the CX and PCA matrix decompositions
•  To mass spec imaging, climate science, etc.

The Next Step: Alchemist
•  Combining Spark and MPI

Communication-avoiding LA/ML
•  Going beyond CA-LA to CA-ML

Overview

