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Where do you run your linear algebra? 

Single machine 
• Think about RAM, call LAPACK, etc.  

• Someone else thought about numerical issues, memory hierarchies, etc. 

• This is the 99% 
 

Supercomputer 
• High end, compute-intensive. 

• Big emphasis on HPC (High Performance Computing) 

• C+MPI, etc. 
 

Distributed data center 
• High end, data-intensive 

• BIG emphasis on HPC (High Productivity Computing) 

• Databases, MapReduce/Hadoop, Spark, etc. 

 



  
 

Two related issues with eigen-analysis 
Computing large SVDs: computational time 
•   In commodity hardware (e.g., a 4GB RAM, dual-core laptop), using MatLab 7.0 (R14), 
the computation of the SVD of the dense 2,240-by-447,143 matrix A takes ca 20 minutes. 

•   Computing this SVD is not a one-liner, since we can not load the whole matrix in RAM 
(runs out-of-memory in MatLab). 

•   Instead, compute the SVD of AAT. 

•   In a similar experiment, compute 1,200 SVDs on matrices of dimensions (approx.) 1,200-
by-450,000 (roughly, a full leave-one-out cross-validation experiment) (DLP2010) 

 

Selecting actual columns that “capture the structure” of the top PCs 
•   Combinatorial optimization problem; hard even for small matrices.  

•   Often called the Column Subset Selection Problem (CSSP). 

•   Not clear that such “good” columns even exist. 

•   Avoid “reification” problem of “interpreting” singular vectors! 

•  (Solvable in “random projection time” with CX/CUR decompositions! (PNAS, MD09)) 



Spark Architecture 

  Data parallel programming model 
  Resilient distributed datasets (RDDs) (think: distributed array type) 
  RDDs can optionally be cached in memory b/w iterations 
  Driver forms DAG, schedules tasks on executors 



Spark Communication 

  Computation operate on one RDD to produce another RDD 
  Each overall job (DAG) broken into stages 
  Stages broken into parallel, independent tasks 
  Communication happens only between stages 



Why do linear algebra in Spark? 

  Classical MPI-based linear algebra algorithms are faster 
and more efficient 

  No way, currently, to leverage legacy parallel linear 
algebra codes 

  JVM matrix size restrictions, and RDD rigidity 

Cons:

 
  Widely used 
  Easier to use for non-experts 
  An entire ecosystem that can be used before and after the 

NLA computations 
  Spark can take advantage of available single-machine 

linear algebra codes (e.g. through netlib-java) 
  Automatic fault-tolerance 
  Transparent support for out of memory calculations 

Pros:



Our Goals 

  Provide implementations of low-rank factorizations (PCA, 
NMF, and randomized CX) in Spark 

  Apply low-rank matrix factorization methods to TB-scale 
scientific datasets in Spark 

  Understand Spark performance on commodity clusters vs 
HPC platforms

  Quantify the scalability gaps between highly-tuned C/MPI 
and current Spark-based implementations 

  Provide a general-purpose interface for matrix-based 
algorithms between Spark and traditional MPI codes 



Motivation 

  NERSC: Spark for data-centric workloads and scientific analytics 
  AMPLab: characterization of linear algebra in Spark (MLlib, MLMatrix) 
  Cray: customers demand for Spark; understand performance concerns 



Three Science Drivers 
Climate Science:  
extract trends in variations of oceanic 
and atmospheric variables (PCA) 

Nuclear Physics:  
learn useful patterns for 
classification of subatomic particles 
(NMF) 

Mass Spectrometry:
location of chemically important ions 
(CX) 



Datasets 

MSI — a sparse matrix from measurements of drift times and mass charge 
ratios at each pixel of a sample of Peltatum; used for CX decomposition 
 
Daya Bay — neutrino sensor array measurements; used for NMF 
 
Ocean and Atmosphere — climate variables (ocean temperature, 
atmospheric humidity) measured on a 3D grid at 3 or 6 hour intervals over 
about 30 years; used for PCA 



CFSR Ocean Temperature Dataset (II)!



Climate Science Results on Ocean 
(CFSRO) dataset 

•  First principal component of temperature field at 180 degree latitude.!
•  Clear that there is a significant vertical component to the PCs which are 

lost when you do the traditional surface-only analyses 



Cori’s specs:  
•  1630 compute nodes,  
•  128 GB/node,  
•  32 2.3GHz Haswell cores/node  

Running times for NMF and PCA 

•  Anti-scaling! !
•  And it worsens both with concurrency and data size. !



Spark Overheads: the view of one task 

task start delay = (time between stage start and when driver sends task to executor) 

scheduler delay = (time between task being sent and time starts deserializing)+ 
(time between task result serialization and driver receiving task’s completion 
message)

task overhead time = (fetch wait time) + (executor deserialize time) +  (result 
serialization time) + (shuffle write time) 
 
time waiting until stage end = (time waiting for final task in stage to end) 



PCA Run Times: rank 20 PCA of 2.2TB Climate 



Rank 20 PCA of 16 TB Climate using 48K+ cores 



Spark PCA Overheads: 16 TB Climate,1522 nodes 



NMF Run Times: rank 10 NMF of 1.6TB Daya Bay 
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MPI vs Spark: Lessons Learned 

  Algorithm choice and data layout choices are constrained 
by the bulk synchronous, data parallel programming 
model of Spark and its core data structure, the RDD

  Even with favorable data (tall and skinny) and well-adapted 
algorithms, Spark LA is 2x-26x slower than MPI when IO 
is included

  Spark overheads are orders of magnitude higher than 
the computations in PCA (time till stage end, scheduler 
delay, task start delay, executor deserialize time). A more 
efficient algorithm is needed 



The Next Step: Alchemist 

  Since Spark is 4+x slower than MPI, propose sending the 
matrices to MPI codes, then receiving the results 

  For efficiency, want as little overhead as possible (File I/O, 
RAM, network usage, computational efficiency) 

Strawman approaches: 
1.  Write to HDFS: slow file I/O, manual data layout 
2.  Apache Ignite (and Alluxio, etc.): requires using C/

C++ interfaces, manual data layout, extra copy in 
memory, TCP/IP 

Our approach: 
Use in-memory transfer, and transparently provide 
data relayout 



Current Alchemist Architecture 

  Exploit locality to reduce communication 
  Allow for hybrid OpenMP/MPI 



Using Alchemist 

Spark:!
1) Sends the metadata for input and output matrices to 

Alchemist !
2) Sends the matrix to Alchemist using sockets !
3) Waits on a matrix from the Alchemist gateway using sockets!

Alchemist:!
     1) Repartitions the matrix for MPI using Elemental!
     2) Executes the MPI codes!

 3) Repartitions the output and returns to Spark!

Spark! MPI!

Alchemist!



Example: Matrix Multiplication 

Requires expensive shuffles in Spark:!
-  Matrices/RDDs are row partitioned!
-  One must be converted to be column-partitioned!
-  This requires an all-to-all shuffle that often fails even 

for matrices that could fit in memory on one executor!



Example: Matrix Multiplication 

A: 100K-by-10K (8 GB)!
B: 10K-by-100K (8 GB)!

C=AB: 100K-by-100K (80 GB)!

Setup: !
-15 Spark and 15 Alchemist nodes!
-128 GB RAM and 32 cores per node!

Send! Compute! Receive!
Alchemist! 7.78 s! 106s! 38s!

Spark! -! Fail after 30 
min!

-!



Example: Truncated SVD 

A: 100K-by-5K (4 GB)!

Setup: !
-15 Spark and 15 Alchemist nodes!
-128 GB RAM and 32 cores per node!

Send! Compute! Receive!
Alchemist! 15.7 s! 31.8s! 5.5s!

Spark! -! 636.3s! -!

≈!



 
 
Linear Algebra in Spark for science problems 
•  CX and SVD/PCA implementations and performance 
•  Applications of the CX and PCA matrix decompositions 
•  To mass spec imaging, climate science, etc. 
 
The Next Step: Alchemist 
•  Combining Spark and MPI 
 
Communication-avoiding LA/ML 
•  Going beyond CA-LA to CA-ML 
 

Overview 



Motivation

2

Processor speed <<  Communication speed
Gap is growing

Need for faster optimization/ML algorithms with less communication



Trade-offs and existing approaches
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Communication

Co
m

pu
ta

tio
n

Newton

Coordinate
Descent

Some 
algorithm

Current approach: 
choose an algorithm based 

on computation and 

communication trade-off



Trade-offs and existing approaches
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Communication

Co
m

pu
ta

tio
n

Newton

Coordinate
Descent

Some 
algorithm

What happens if there is 

no algorithm with the 

required trade-off?

We need to wait until a 

mathematician comes up 

with a solution



Our approach
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Communication

Co
m

pu
ta

tio
n

Take existing algorithms 

and make them 

communication avoidingSome 
algorithm

Coordinate
Descent

Newton



Outline of the approach and results

Choose your favorite algorithm

Scalability to 1000+ of processors or more
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Re-organize it to make it communication avoiding

Load balanced processors



minimize �g(x) +
1

2
kAx� bk22

• Sparse 
regression

•  Elastic net

•  Group lasso

•  Sparse group lasso

g(x) = kxk1
g(x) =

⌘

2
kxk22 + (1� ⌘)kxk1

Optimization/ML 

g(x) =
JX

j=1

kxjkKj

For what problems?

minimize kAx� bk22

Linear
Regression
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An example: coordinate descent
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Pseudo-code
1 communication per 

iteration  Sample a column of data

 Compute partial derivative

 Update solution new old

 Repeat



An example: communication avoiding coordinate descent
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Pseudo-code

 Compute in parallel anticipated computations
       for the next “s” iterations

s
s

 Redundantly store the result 
    in all processors P1 P2 P

 Each processor independently computes the next “s” iterations

1 communication 
round per s iterations

 Repeat



More details about the results

Decrease communication by a factor of s

No free lunch: increase message size and flops by a factor of s

Flops are distributed 
across processors

Logarithmic 
dependence of 

communication cost on 
number of processors

10



Scalable results for all data layouts

AA

2D Block Partition

Data Layout

1D Column Partition1D Row Partition

A

* Best performance depends on dataset and algorithm
11



Other examples
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 Block coordinate descent

 Accelerated block coordinate descent

 Gradient descent

 Any proximal method



Datasets
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Summary of (LIBSVM) datasets

Name #Features #Data points Density of non-
zeros

url 3,231,961 2,396,130 0.0036%

epsilon 2,000 400,000 100%

news20 62,021 15,935 0.13%

covtype 54 581,012 22%

C++ using the Message Passing Interface (MPI). Intel MKL library for sparse and 
dense BLAS routines. All methods were tested on a Cray XC30.
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Empirically stable convergence: no divergence between methods
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Computation is maintained due to local cache-efficient (BLAS-3) 

computations
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Summary

Generalize from linear algebra to optimization/ML

19

Provably avoid communication

Scalability to 10,000+ processors

Applies to many algorithms
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