Newton-MR: Newton's Method Without Smoothness or Convexity

Michael W. Mahoney

ICSI and Department of Statistics University of California at Berkeley

Joint work with Fred Roosta, Yang Liu, and Peng Xu

$$\min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x})$$

Newton's Method

Classical Newton's Method

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \underbrace{\alpha_k}_{\text{step-size}} \underbrace{\left[\nabla^2 f(\mathbf{x}^{(k)}) \right]^{-1} \nabla f(\mathbf{x}^{(k)})}_{\text{Newton Direction}}$$

First Order Methods

Classical Gradient Descent

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \alpha_k \nabla f(\mathbf{x}^{(k)})$$

Machine Learning ♥ First Order Methods...

But why 1st?

Q: But Why 1st Order Methods?

Cheap Iterations

Easy To Implement

"Good" Worst-Case Complexities

Good Generalization

But why Not 2nd?

Q: But Why Not 2nd Order Methods?

• Cheap Expensive Iterations

• F/4sly Hard To Implement

• //\\$\phi\phi\phi'\ "Bad" Worst-Case Complexities

Gøøø Bad Generalization

Our Goal...

Goal: Improve 2nd Order Methods...

• Cheap Æxø/e/h/si√/e Iterations

• Easy Mard To Use

• "Good" //B/4♥// Average(?)-Case Complexities

• Good Bad Generalization

Our Goal..

Any Other Advantages?

• Effective Iterations ⇒ Less Iterations ⇒ Less Communications

Saddle Points For Non-Convex Problems

Less Sensitive to Parameter Tuning

Less Sensitive to Initialization

Intro Newton-MR: Theory Newton-MR: Experiments

Achilles' heel for most 2nd-order methods is...

Achilles' heel: Solving the Sub-problems!!!

Sub-Problems

• Trust Region:

$$\mathbf{s}^{(k)} = \arg\min_{\|\mathbf{s}\| \leq \Delta_k} \left\langle \mathbf{s}, \nabla f(\mathbf{x}^{(k)}) \right\rangle + \frac{1}{2} \left\langle \mathbf{s}, \nabla^2 f(\mathbf{x}^{(k)}) \mathbf{s} \right\rangle$$

Cubic Regularization:

$$\mathbf{s}^{(k)} = \arg\min_{\mathbf{s} \in \mathbb{R}^d} \left\langle \mathbf{s}, \nabla f(\mathbf{x}^{(k)}) \right\rangle + \frac{1}{2} \left\langle \mathbf{s}, \nabla^2 f(\mathbf{x}^{(k)}) \mathbf{s} \right\rangle + \frac{\sigma_k}{3} \|\mathbf{s}\|^3$$

Newton's Method

Recall: Classical Newton's method

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \alpha_k \underbrace{\left[\nabla^2 f(\mathbf{x}^{(k)})\right]^{-1} \nabla f(\mathbf{x}^{(k)})}_{\text{Linear System}}$$

$$\nabla^2 f(\mathbf{x}^{(k)}) \mathbf{p} = -\nabla f(\mathbf{x}^{(k)})$$

We know how to solve " $\mathbf{A}\mathbf{x} = \mathbf{b}$ " very well!

Newton-CG

 $f \colon \mathsf{Strongly} \ \mathsf{Convex} \Longrightarrow \mathsf{Newton}\text{-}\mathsf{CG} \Longrightarrow \nabla^2 f(\mathbf{x}^{(k)})\mathbf{p} pprox - \nabla f(\mathbf{x}^{(k)})$

$$\mathbf{p} \approx \operatorname*{argmin}_{\mathbf{p} \in \mathbb{R}^d} \ \left\langle \mathbf{p}, \nabla f(\mathbf{x}^{(k)} \right\rangle + \frac{1}{2} \left\langle \mathbf{p}, \nabla^2 f(\mathbf{x}^{(k)}) \mathbf{p} \right\rangle$$

Why CG?

- f is strongly convex $\Longrightarrow \nabla^2 f(\mathbf{x}^{(k)})$ is SPD
- More subtly...

 $\mathbf{p}^{(t)}$ is a descent direction for f for all t!

Classical Newton's Method

But...what if the Hessian is indefinite and/or singular?

- Indefinite Hessian \Longrightarrow Unbounded sub-problem
- Singular Hessian and $\nabla f(\mathbf{x}) \notin \mathsf{Range}(\nabla^2 f(\mathbf{x})) \Longrightarrow \mathsf{Unbounded}$ sub-problem
 - $\nabla^2 f(\mathbf{x})\mathbf{p} = -\nabla f(\mathbf{x})$ has no solution

strong convexity \Longrightarrow linear system sub-problems

strong convexity ⇒ linear system sub-problems

$$\min_{\mathbf{p} \in \mathbb{R}^d} \| \overbrace{\nabla^2 f(\mathbf{x}_k)}^{\mathbf{A}} \underbrace{\mathbf{p}}^{\mathbf{x}} + \overbrace{\nabla f(\mathbf{x}_k)}^{-\mathbf{b}} \|$$

The underlying matrix in OLS is

- symmetric
- (possibly) indefinite
- (possibly) singular
- (possibly) ill-conditioned

Sub-problems of MINRES:

•

$$\mathbf{p^{(t)}} = \operatorname*{argmin}_{\mathbf{p} \in \mathcal{K}_t} \frac{1}{2} \| \nabla^2 f(\mathbf{x}_k) \mathbf{p} + \nabla f(\mathbf{x}_k) \|^2$$

There is always a solution (sometimes infinitely many)

$$\mathbf{p^{(t)}} = \operatorname*{argmin}_{\mathbf{p} \in \mathcal{K}_t} \frac{1}{2} \| \nabla^2 f(\mathbf{x}_k) \mathbf{p} + \nabla f(\mathbf{x}_k) \|^2$$

$$\left\langle \mathbf{p}^{(t)}, \nabla^2 f(\mathbf{x}^{(k)}) \nabla f(\mathbf{x}^{(k)}) \right\rangle \leq -\frac{1}{2} \|\nabla^2 f(\mathbf{x}_k) \mathbf{p}^{(t)}\|^2 < 0$$

 $\mathbf{p}^{(t)}$ is a descent direction for $\|\nabla f(\mathbf{x})\|^2$ for all t!

Newton-MR vs. Newton-CG

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha_k \mathbf{p}_k$$

Newton-CG:

$$\mathbf{p}_{k} \approx \underset{\mathbf{p} \in \mathbb{R}^{d}}{\operatorname{argmin}} \langle \mathbf{g}_{k}, \mathbf{p} \rangle + \frac{1}{2} \langle \mathbf{p}, \mathbf{H}_{k} \mathbf{p} \rangle = -[\mathbf{H}_{k}]^{-1} \mathbf{g}_{k}$$
$$\alpha_{k} : f(\mathbf{x}_{k} + \alpha_{k} \mathbf{p}_{k}) \leq f(\mathbf{x}_{k}) + \alpha_{k} \beta \langle \mathbf{p}_{k}, \mathbf{g}_{k} \rangle$$

Newton-MR:

$$\begin{aligned} \mathbf{p}_k &\approx \underset{\mathbf{p} \in \mathbb{R}^d}{\operatorname{argmin}} \left\| \mathbf{H}_k \mathbf{p} + \mathbf{g}_k \right\|^2 = -[\mathbf{H}_k]^{\dagger} \mathbf{g}_k \\ \alpha_k &: \left\| \mathbf{g} (\mathbf{x}_k + \alpha_k \mathbf{p}_k) \right\|^2 \le \left\| \mathbf{g}_k \right\|^2 + 2\alpha_k \beta \left\langle \mathbf{p}_k, \mathbf{H}_k \mathbf{g}_k \right\rangle \end{aligned}$$

Newton-MR vs. Newton-CG

	Newton-CG	Newton-MR
Sub-problems	$\min_{\mathbf{p} \in \mathcal{K}_t} \ \frac{1}{2} \left\langle \mathbf{p}, \mathbf{H} \mathbf{p} ight angle + \left\langle \mathbf{p}, \mathbf{g} ight angle$	$\min_{\mathbf{p} \in \mathcal{K}_t} \ \ \mathbf{H}\mathbf{p} + \mathbf{g}\ ^2$
Line Search	$f(\mathbf{x}_{k+1}) \leq f(\mathbf{x}_k) + \alpha \rho \langle \mathbf{p}_k, \mathbf{g}_k \rangle$	$\ \mathbf{g}_{k+1}\ ^2 \le \ \mathbf{g}_k\ ^2 + 2\alpha\rho \langle \mathbf{p}_k, \mathbf{H}_k \mathbf{g}_k \rangle$

Invexity

Invexity

$$f(\mathbf{y}) - f(\mathbf{x}) \ge \langle \phi(\mathbf{y}, \mathbf{x}), \nabla f(\mathbf{x}) \rangle$$

- Necessary and sufficient for optimality: $\nabla f(\mathbf{x}) = 0$
- E.g.: Convex $\Longrightarrow \phi(\mathbf{y}, \mathbf{x}) = \mathbf{y} \mathbf{x}$

•

$$g:\mathbb{R}^p o\mathbb{R}$$
 is differentiable and convex $\mathbf{h}:\mathbb{R}^d o\mathbb{R}^p$ has full-rank Jacobian $(p\le d)$ $brace$ $\Rightarrow g\circ\mathbf{h}$ is invex

 "Global optimality" of stationary points in deep residual networks [Bartlett et al., 2018]

Strong Convexity ⊊ Invexity

Newton-MR vs. Newton-CG

	Newton-CG	Newton-MR
Sub-problems	$\min_{\mathbf{p} \in \mathcal{K}_t} \ rac{1}{2} \left\langle \mathbf{p}, \mathbf{H} \mathbf{p} ight angle + \left\langle \mathbf{p}, \mathbf{g} ight angle$	$\min_{\mathbf{p} \in \mathcal{K}_t} \ \ \mathbf{H}\mathbf{p} + \mathbf{g}\ ^2$
Line Search	$f(\mathbf{x}_{k+1}) \leq f(\mathbf{x}_k) + \alpha \rho \langle \mathbf{p}_k, \mathbf{g}_k \rangle$	$\ \mathbf{g}_{k+1}\ ^2 \le \ \mathbf{g}_k\ ^2 + 2\alpha\rho \langle \mathbf{p}_k, \mathbf{H}_k \mathbf{g}_k \rangle$
Problem class	Strongly Convex	Invex

Moral Smoothness

(Recall) Typical Smoothness Assumptions:

Lipschitz Gradient:
$$\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\| \le L_{\mathbf{g}} \|\mathbf{x} - \mathbf{y}\|$$

Lipschitz Hessian:
$$\|\nabla^2 f(\mathbf{x}) - \nabla^2 f(\mathbf{y})\| \le L_{\mathsf{H}} \|\mathbf{x} - \mathbf{y}\|$$

These smoothness assumptions are *stronger* than what is required for first-order methods.

Moral Smoothness

Moral-Smoothness

Let $\mathcal{X}_0 \triangleq \left\{ \mathbf{x} \in \mathbb{R}^d \mid \|\nabla f(\mathbf{x})\| \leq \|\nabla f(\mathbf{x}_0)\| \right\}$. For any $\mathbf{x}_0 \in \mathbb{R}^d$, there is a constant $0 < L(\mathbf{x}_0) < \infty$, such that $\forall (\mathbf{x}, \mathbf{y}) \in \mathcal{X}_0 \times \mathbb{R}^d$, we have

$$\|\nabla^2 f(\mathbf{y}) \nabla f(\mathbf{y}) - \nabla^2 f(\mathbf{x}) \nabla f(\mathbf{x})\| \le L(\mathbf{x}_0) \|\mathbf{y} - \mathbf{x}\|.$$

Smoothness

Moral Smoothness

Moral Smoothness

Hessian of the quadratically smoothed hinge-loss is not continuous.

$$f(\mathbf{x}) = \frac{1}{2} \max \left\{ 0, b \langle \mathbf{a}, \mathbf{x} \rangle \right\}^2$$

But it satisfies moral-smoothness with $L = b^4 \|\mathbf{a}\|^4$.

Newton-MR vs. Newton-CG

	Newton-CG	Newton-MR
Sub-problems	$\min_{\mathbf{p} \in \mathcal{K}_t} \ \frac{1}{2} \left\langle \mathbf{p}, \mathbf{H} \mathbf{p} ight angle + \left\langle \mathbf{p}, \mathbf{g} ight angle$	$\min_{\mathbf{p} \in \mathcal{K}_t} \ \ \mathbf{H}\mathbf{p} + \mathbf{g}\ ^2$
Line Search	$f(\mathbf{x}_{k+1}) \leq f(\mathbf{x}_k) + \alpha \rho \langle \mathbf{p}_k, \mathbf{g}_k \rangle$	$\ \mathbf{g}_{k+1}\ ^2 \le \ \mathbf{g}_k\ ^2 + 2\alpha\rho \langle \mathbf{p}_k, \mathbf{H}_k \mathbf{g}_k \rangle$
Problem class	Strongly Convex	Invex
Smoothness	H & g	Hg

Null-Space Property

For any $\mathbf{x} \in \mathbb{R}^d$, let

- $\mathbf{U}_{\mathbf{x}}$ be an orthogonal basis for $\mathsf{Range}(\nabla^2 f(\mathbf{x}))$
- $\mathbf{U}_{\mathbf{x}}^{\perp}$ be its orthogonal complement

Gradient-Hessian Null-Space Property

$$\left\| \left(\mathbf{U}_{\mathbf{x}}^{\perp} \right)^T \nabla f(\mathbf{x}) \right\|^2 \leq \left(\frac{1-\nu}{\nu} \right) \left\| \mathbf{U}_{\mathbf{x}}^T \nabla f(\mathbf{x}) \right\|^2, \ \forall \mathbf{x} \in \mathbb{R}^d, \ 0 < \nu \leq 1$$

- Strictly convex $f(\mathbf{x})$: $\nu = 1$
- Non-convex $f(\mathbf{x}) = \sum_{i=1}^n f_i(\mathbf{a}_i^T \mathbf{x})$: $\nu = 1$
- Some fractional programming: $\nu = 8/9$
- Some non-linear composition of functions $f(\mathbf{x}) = g(\mathbf{h}(\mathbf{x}))$

Inexactness

• Newton-CG [Roosta and Mahoney, Mathematical Programming, 2018]

$$\|\mathbf{H}_{k}\mathbf{p}_{k} + \mathbf{g}_{k}\| \le \theta \|\mathbf{g}_{k}\| \implies \theta \le 1/\sqrt{\kappa}$$

Newton-MR [Roosta, Liu, Xu and Mahoney, arXiv, 2019]

$$\langle \mathbf{H}_k \mathbf{p}_k, \mathbf{g}_k \rangle \le -(1-\theta) \|\mathbf{g}_k\|^2 \implies 1-\nu \le \theta < 1$$

Examples of Convergence Results

Global Linear Rate in "||g||"

$$\left\|\mathbf{g}^{(k+1)}\right\|^2 \leq \left(1 - \frac{4\rho(1-\rho)\gamma^2(1-\theta)^2}{L(\mathbf{x}_0)}\right) \left\|\mathbf{g}_k\right\|^2.$$

Global Linear Rate in " $f(x) - f^*$ " Under Polyak-Łojasiewicz

$$f(\mathbf{x}_k) - f^* \leq C\zeta^k, \ \zeta < 1.$$

Error Recursion with $\alpha_k = 1$ Under Error Bound

$$\min_{\mathbf{y} \in \mathcal{X}^{\star}} \|\mathbf{x}_{k+1} - \mathbf{y}\| \leq c_1 \min_{\mathbf{y} \in \mathcal{X}^{\star}} \|\mathbf{x}_k - \mathbf{y}\|^2 + \sqrt{(1-\nu)}c_2 \min_{\mathbf{y} \in \mathcal{X}^{\star}} \|\mathbf{x}_k - \mathbf{y}\|.$$

Newton-MR vs. Newton-CG

	Newton-CG	Newton-MR
Sub-problems	$\min_{\mathbf{p} \in \mathcal{K}_t} \ rac{1}{2} \left\langle \mathbf{p}, \mathbf{H} \mathbf{p} ight angle + \left\langle \mathbf{p}, \mathbf{g} ight angle$	$\min_{\mathbf{p} \in \mathcal{K}_t} \ \ \mathbf{H} \mathbf{p} + \mathbf{g} \ ^2$
Line Search	$f(\mathbf{x}_{k+1}) \leq f(\mathbf{x}_k) + \alpha \rho \langle \mathbf{p}_k, \mathbf{g}_k \rangle$	$\ \mathbf{g}_{k+1}\ ^2 \le \ \mathbf{g}_k\ ^2 + 2\alpha\rho \langle \mathbf{p}_k, \mathbf{H}_k \mathbf{g}_k \rangle$
Problem class	Strongly Convex	Invex
Smoothness	H & g	Hg
Inexactness	$\ Hp+g\ \leq heta\ g\ $ $ heta<1/\sqrt{\kappa}$	$\langle p,Hg angle \leq -(1- heta)\ g\ $ $ heta < 1$
Metric / Rate	$\ \mathbf{g}\ $: R-linear $f(\mathbf{x}) - f^{\star}$: Q-Linear	$\ \mathbf{g}\ $: Q-linear $f(\mathbf{x}) - f^{\star}$: R-Linear (GPL)

Newton-MR vs. Newton-CG for min f(x)

&

MINRES vs. CG for $\mathbf{A}\mathbf{x} = \mathbf{b}$

Newton-MR vs. Newton-CG

	$\min f(\mathbf{x})$	
	Newton-CG	Newton-MR
Sub-problems	$\min_{\mathbf{p} \in \mathcal{K}_t} \ rac{1}{2} \left\langle \mathbf{p}, \mathbf{H} \mathbf{p} ight angle + \left\langle \mathbf{p}, \mathbf{g} ight angle$	$\min_{\mathbf{p} \in \mathcal{K}_t} \ \mathbf{H}\mathbf{p} + \mathbf{g}\ ^2$
Problem class	Strongly Convex	Invex
Metric / Rate	$\ \mathbf{g}\ $: R-linear $f(\mathbf{x}) - f^{\star}$: Q-Linear	$\ \mathbf{g}\ $: Q-linear $f(\mathbf{x}) - f^{\star}$: R-Linear (GPL)

MINRES vs. CG

	$\mathbf{A}\mathbf{x} = \mathbf{b}$	
	CG	MINRES
Sub-problems	$\min_{\mathbf{x} \in \mathcal{K}_t} \frac{1}{2} \langle \mathbf{x}, \mathbf{A} \mathbf{x} \rangle + \langle \mathbf{x}, \mathbf{b} \rangle$	$\min_{\mathbf{x} \in \mathcal{K}_t} \ \mathbf{A}\mathbf{x} - \mathbf{b}\ ^2$
Problem class	Symmetric Positive Definite	Symmetric
Metric / Rate	$ Ax - b $: R-linear $ x - x^* _A$: Q-Linear	$ Ax - b $: Q-linear $ x - x^* _{A}$: R-Linear (SPD)

Weakly-Convex (n = 50,000, d = 27,648): Softmax-Cross Entropy

Non-Convex: GMM

Weakly-Convex (n = 50,000, d = 7,056): Softmax-Cross Entropy

Weakly-Convex (n = 50,000, d = 7,056): Softmax-Cross Entropy

THANK YOU!