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Intro
Newton's Method

Classical Newton's Method

x(kH1) = (k) _ & [V2F(xUN)] 1w F(x(F)

. TV
step-size Newton Direction




First Order Methods

Classical Gradient Descent

x(k+1) — (k) _ aka(x(k))




Intro

Machine Learning & First Order Methods. ..
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Q: But Why 1st Order Methods?

@ Cheap lterations
o Easy To Implement
@ “Good" Worst-Case Complexities

@ Good Generalization



Intro

But why

Q: But Why Not 2nd Order Methods?

o (UW&dp Expensive lterations

e Fdgy Hard To Implement

o /B0 “Bad" Worst-Case Complexities

o Good Bad Generalization



Intro
Our Goal...

Goal: Improve 2nd Order Methods...

o Cheap HxpéNsIé Iterations
e Easy Hayd To Use
e "Good" //Bdd// Average(?)-Case Complexities

e Good BAd Generalization



Intro

Our Goal..

Any Other Advantages?

o Effective lterations = Less lterations = Less Communications

@ Saddle Points For Non-Convex Problems

@ Less Sensitive to Parameter Tuning

@ Less Sensitive to Initialization



Intro

Achilles’ heel for most 2nd-order methods is...

Achilles’ heel: Solving the Sub-problems!!!



Sub-Problems

@ Trust Region:

sk) = arg min <s, Vf(x(k))> + % <s, sz(x(k))s>

lIsll<Ax

@ Cubic Regularization:

S0 = arg min (5, VF(<M) ) + 2 (s, P F(x)s) + %]

scRd



Intro
Newton's Method

Recall: Classical Newton's method

x(FD) = x(K) _ ) [V2F (x| 1w £ (x(K)

/

Linear System

l

V2£(x)p = —vF(x(K)

We know how to solve “Ax = b" very well!



Intro
Newton-CG

f: Strongly Convex => Newton-CG = V2f(x(M)p ~ —Vf(x(¥)

p~ a;gerﬂ’gdin <p, Vf(x(k)> + % <p, v2f(x(k))p>



Why CG?

o fis strongly convex = V2f(x(K)) is SPD
@ More subtly...

p(Y) = argmin <p, Vf(x(k)> + % <p, sz(x(k))p>

peL:

<p,Vf(x(k)> < f% <p,V2f(x(k))p> <0

|

p(t) is a descent direction for f for all t!



Intro
Classical Newton's Method

But...what if the Hessian is indefinite and/or singular?

@ Indefinite Hessian = Unbounded sub-problem

e Singular Hessian and Vf(x)#Range(V?2f(x)) = Unbounded
sub-problem

o V2f(x)p = —V£(x) has no solution



Newton-MR: Theory

strong convexity = linear system sub-problems



Newton-MR: Theory

strong-convexity —> linear-system sub-problems



Newton-MR: Theory

Ax=b — |Ax—b]|
S—— —_———

Linear System Least Squares



Newton-MR: Theory

A —b
—— X —_——
. ~ =~
min || V2f(xk) P+ VI(x) ||

peR?

The underlying matrix in OLS is
@ symmetric
@ (possibly) indefinite
@ (possibly) singular

@ (possibly) ill-conditioned

MINRES-type OLS Solvers => MINRES-QLP [Choi et al., 2011]



Newton-MR: Theory

Sub-problems of MINRES:

.1
plt) = argmlnaHvzf(Xk)P + VF(xi)|?
pEX:

@ There is always a solution (sometimes infinitely many)

o

1
p'Y) = argmin EHVZf(Xk)P + V(%)

pGICt

1
(P, V(x0T F(x9)) < —|[V2F(xi)p]? < 0

|

p(!) is a descent direction for ||V£(x)||? for all ¢!



Newton-MR: Theory

Newton-MR vs. Newton-CG

Newton-CG:

. 1 -
Pk ~ argmin (g, p) + = (p, Hkp) = —[Hi] gk
peRd 2

ap s F(xp + oupr) < F(xk) + B Pk, 8k)

Newton-MR:

pr ~ argmin [|Hep + gilI> = —[Hi] gk
peRd

ar  |lgxk 4+ axpi)ll? < llgll® + 2.8 (pr, Higk)



Newton-MR: Theory

Newton-MR vs. Newton-CG

Newton-CG

Newton-MR

Sub-problems

1
in = (p,H
[min 2<p, p) +(p,8)

min ||H 2
[min [Hp +gl|

Line Search

f(xk+1) < f(xk) + p Pk 8k)

lgks1ll” < llgkll® +20p (pi, Hiex)




Newton-MR: Theory
Invexity

Fy) — f(x) = (&(y, x), VF(x))

@ Necessary and sufficient for optimality: V£f(x) =0

e E.g.: Convex = ¢(y,x) =y —x

°
g : RP — R is differentiable and convex
= goh is invex
h: RY — RP has full-rank Jacobian (p < d)
@ "Global optimality” of stationary points in deep residual

networks [Bartlett et al., 2018]



Newton-MR: Theory

Strong Convexity C Invexity

D
<
2. Strongly
[}
S Convex
2
% Convex
Pseudo-convex
.
;
Klnvex /
General Non-convex




Newton-MR: Theory

Newton-MR vs. Newton-CG

Newton-CG Newton-MR
1 . 2
: in (p.H min [Hp+g
Sub-problems [min 5 (p,Hp) + (p,g) Join I I
Line Search f(xk+1) < f(xk) + ap (Pk, 8k) llgxs1ll® < llgxl® +20p (px, Hegi)
Problem class Strongly Convex Invex




Newton-MR: Theory
Moral Smoothness

(Recall) Typical Smoothness Assumptions:

Lipschitz Gradient: ||Vf(x) — Vf(y)| < Lg|x —y]|

Lipschitz Hessian: || V?f(x) — V2f(y)| < Lu[lx —y]|

These smoothness assumptions
are stronger than
what is required for first-order methods.



Newton-MR: Theory
Moral Smoothness

Moral-Smoothness

Let Xy £ {x € R? | |[VF(x)[| < ||[Vf(x0)||}. For any xo € R,
there is a constant 0 < L(xg) < oo, such that V(x,y) € Xy x R¢,
we have

|V2£(y)VF(y) = VZF(x)VFX)|| < L(xo) ly — x|| -

Smoothness C Moral Smoothness



Newton-MR: Theory

Moral Smoothness

Hessian of the quadratically smoothed hinge-loss is not continuous.

f(x)= % max {0, b (a,x) }2

But it satisfies moral-smoothness with L = b* ||a||*.



Newton-MR vs.

Newton-MR: Theory

Newton-CG

Newton-CG

Newton-MR

Sub-problems

1
in = (p,H
[min 2<p, p) +(p,8)

min ||H 2
[min [Hp +gl|

Line Search

f(xk+1) < f(xk) + p Pk 8k)

lgks1ll” < llgkll® +20p (pi, Hiex)

Problem class

Strongly Convex

Invex

Smoothness

H&g

Hg




Newton-MR: Theory
Null-Space Property

For any x € RY, let
@ U, be an orthogonal basis for Range(V?f(x))

o U be its orthogonal complement

Gradient-Hessian Null-Space Property

T 2 1— 2
H(UXL) vie| < ( ) [urvee|, vers, 0<v <1
v
@ Strictly convex f(x): v =1
o Non-convex f(x) = >""_, fi(a/ x): v =1
@ Some fractional programming: v = 8/9
@ Some non-linear composition of functions f(x) = g(h(x))



Newton-MR: Theory

Inexactness

@ Newton-CG [Roosta and Mahoney, Mathematical Programming, 2018]

[Hkpk + gkl < Ollgkll = 0<1/Vk

@ Newton-MR [Roosta, Liu, Xu and Mahoney, arXiv, 2019]

(Hiprog) < —(1—-0) lgk]®> = 1-v<b<1



Newton-MR: Theory
Examples of Convergence Results

Global Linear Rate in “||g||"

Hg(k+1))H2 . <1 41— p)?(1 - 0)2) el

L(xo)

Global Linear Rate in “f(x) — f*" Under Polyak-tojasiewicz

f(xi) — F* < CCk, ¢ < 1.

A\

Error Recursion with ooy = 1 Under Error Bound

. . 2 .
_ < _ _ _ .
Join [l =yl < e min flxe —y[" + /(1 = v)ez min f[xic —y

v




Newton-MR: Theory

Newton-MR vs. Newton-CG

Newton-CG Newton-MR
1 . 2
in = min |[Hp +
Sub-problems min > (p,Hp) + (p,8) [min [[Hp + gl
Line Search f(xkr1) < F(x) + ap (Pk 8k) g1l < ligwll®+2ap (pi, Higx)
Problem class Strongly Convex Invex
Smoothness H&g Hg
[Hp + gl < 0lgll (p,Hg) < —(1-0)llgll
Inexactness
0 <1/\k 0<1
|lg]l: R-linear llgll: Q-linear
Metric / Rate
f(x) — f*: Q-Linear f(x) — f*: R-Linear (GPL)




Newton-MR: Theory

Newton-MR vs. Newton-CG for min f(x)
&

MINRES vs. CG for Ax =Db



Newton-MR: Theory

Newton-MR vs. Newton-CG

min £(x)
Newton-CG Newton-MR
1 f 2
. N = min ||Hp +
Sub-problems prg;gr 5 (p,Hp) + (p,8) R [Hp + gl
Problem class Strongly Convex Invex
|lgll: R-linear |lgll: Q-linear
Metric / Rate
f(x) — f*: Q-Linear f(x) — f*: R-Linear (GPL)




MINRES vs. CG

Newton-MR: Theory

CG

MINRES

Sub-problems

.1
min > (x,Ax) + (x,b)

xel¢

min ||Ax — b]|?
xEK:

Problem class

Symmetric Positive Definite

Symmetric

Metric / Rate

[|[Ax — b||: R-linear

[[x = x*||a: Q-Linear

[|Ax — b||: Q-linear
[[x —x*||a: R-Linear (SPD)




Newton-MR: Experiments
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Newton-MR: Experiments

Non-Convex: GMM
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(c) fx«) (d) Estimation error



Newton-MR: Experiments

Weakly-Convex (n = 50,000, d = 7,056): Softmax-Cross

Entropy
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(e) Fxx) (F) f(x)



Newton-MR: Experiments

Weakly-Convex (n = 50,000, d = 7,056): Softmax-Cross

Entropy
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Newton-MR: Experiments

Should you ask a Question
during Seminar?

D Do you actually HAVE ”"){

00 a question?

Are you
trying to
show off2

v Go for it.

Are you sure it’s not a dumb
question or that the speaker
already answered it?

Yes

1 don't
think so...

THANK YOU!

Do you really need to ask the
question in public or could you
follow up with him/her later?

Doesn’t
matter.

Are you the Seminar organizer Thank God.
asking a question because no one Please ask the
else is and the awkward silence is [~ question and let’s
making everyone uncomfortable? get out of here!

Ok, you have a legitimate

question. Do you actually
care about the answer? | | Notredlly.|

Just vant to
Show off.

FINE, ASK YOUR QUESTION.
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