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Networks and networked data

Lots of “networked” data!!

I technological networks (AS,
power-grid, road networks)

I biological networks (food-web,
protein networks)

I social networks (collaboration
networks, friendships)

I information networks
(co-citation, blog cross-postings,
advertiser-bidded phrase graphs
...)

I language networks (semantic
networks ...)

I . . .

Interaction graph model of networks:

I Nodes represent “entities”

I Edges represent “interaction”
between pairs of entities

4 / 37



Possible ways a graph might look

1.1 Low-dimensional structure 1.2 Core-periphery structure

1.3 Expander or complete graph 1.4 Bipartite structure
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Three different types of real networks
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Information propagates local-to-glocal in different networks
in different ways

Figure: Top: CA-GrQc; Middle: FB-Johns55; Bottom: US-Senate.
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Obvious and non-obvious challenges

I Small-scale structure and large-scale noise
I Ubiquitous property in realistic large social/information graphs
I Problematic for algorithms, e.g., recursive partitioning
I Problematic for statistics, e.g., control of inference
I Problematic for qualitative insight, e.g. what data “look like”

I Are graphs constructed in ML any nicer
I Yes, if they are small and idealized
I Not much, in many cases, if they are large and non-toy
I E.g., Lapacian-based manifold methods are very non-robust

and overly homogenized in the presence of realistic noise

I Typical objective functions ML people like are very global
I Sum over all nodes/points of a penalty
I Acceptable to be wrong on small clusters
I Cross-validate with “your favorite objective” to construct

graphs leads to homogenized graphs
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I Given an RBF kernel function K : Rd → R, and data xi ∈ Rd

(i = 1 . . . , n), what decides the rank of the kernel matrix K?

Kij = K(xi , xj)

Data Matrix

I bandwidth h (exp(−(r/h)2)), data distribution, cluster radius,
number of points, etc.
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There are two parts that people in different fields are interested:

I Given the data and label / target: how to choose h for a more
accurate model (machine learning people)

I Given the data and h: how to approximate the corresponding
kernel matrix for a faster matrix-vector multiplication (linear
algebra people)

Let’s consider these two parts, and connect them by what
approximation methods to use for different datasets (hence
different h).
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Solutions to matrix approximation

I Problem: given data and h, how to approximate the kernel
matrix with minimal memory cost 1 while achieving high
accuracy?

I Common solutions
I low-rank matrices: low-rank methods

Data Matrix

I high-rank matrices from 2D/3D data: Fast Multipole Method
(FMM), and other H matrix based methods.

I What about high dimensional data + high-rank (relative
high)?

1memory cost is a close approximation of the running time for a
matrix-vector multiplication.
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Intuition of our solution

I Instead of considering global interaction (low-rank methods),
let’s consider local interaction.

I We cluster the data into distinct groups.

Data Matrix

I If you have two clusters, the rank of the interaction matrix is
related to the one with smaller radius. Therefore

rank(K (Ci , :)) ≤ rank(K )

14 / 37



Block Basis Factorization (BBF)
I Given a matrix M ∈ Rn×n, partitioned into k by k blocks.

Then the Block Basis Factorization (BBF) of M is defined as:

M = Ũ C̃ Ṽ T

approximation memory cost

BBF special rank-(rk) O(nr + (rk)2)
LR rank-r O(nr)

I r is the rank used for each block.
I The factorization time of BBF is linear.
I BBF is a strict generalization of low-rank methods.
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Structure advantage of BBF
I We show that BBF structure is a strict generalization of

low-rank structure, regardless of the sampling method used.
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Figure: Sampled covertype data. Kernel approximation error vs
memory for BBF and low-rank structure with different sampling
methods. BBF (solid lines) means the BBF structure, and LR (dash
lines) means the low-rank structure. Different symbols represent
different sampling methods used in the schemes.
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Intuition of kernel bandwidth and our interest

A general intuition for the role of h in kernel methods:
I A larger h:

I consider local and far away points (smooth)
I lead to a lower-rank matrix

I A smaller h:
I consider local points (less smooth)
I lead to a higher-rank matrix

A general idea of what values of h that we are interested in:
Less interesting:

I a very low-rank case: a mature low-rank method is more than
enough.

I a very high-rank case: 1). kernel matrix becomes diagonal
dominant, and 2). often results in overfitting of your model.

More interesting: the rank ranges in [low+, median]
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Redefine the problem

Now let’s consider the first part:

I Problem: given data and label / targets, what h shall we
choose?

This is often being done via cross-validation. But more than
often, a large h is chosen, which usually leads to a low-rank
matrix where a mature low-rank method is more than enough.

Let’s consider this problem from a different angle:

I Problem: what kind of data would prefer a relative small
h?

Note here when we say h, we refer to the largest h ( denote
here as h∗) that gives the optimal accuracy, because a
larger h usually results in low-rank matrix that is easy to
approximate.
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Main factor that h∗ depends on

We consider the task of classification with kernel SVM in this talk.
What is the main property of data that h∗ depends on? We
think it is the least radius of curvature of the correct decision
boundary.

large least radius of curvature small least radius of curvature

Figure: Left: smooth decision boundary; Right: curved decision boundary

The case on the left would prefer a larger h∗, while the case on the
right would prefer a smaller h∗. (here h∗ is the largest optimal h)
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Conclusions from 2D synthetic data

We first study the main dependent factor of h∗ in a clean and neat
setting: 2D synthetic dataset. Some main conclusions:

I The least radius of curvature for the correct decision boundary
is indeed a main factor that h∗ depends on.

I Other factors, e.g., number of points in each cluster, radius of
each cluster, do not directly affect h∗.

I When a small cluster is surrounded by a larger one, a smaller
h is preferred to detect it.

I When two clusters are easy to separate, there will be a large
range of optimal h’s, and h∗ will be very large.

We hope this will shed some lights when we analyze real high
dimensional datasets that are often complicated: each cluster can
have a different sizes, shapes, densities, etc. And often combined
with noises and outliers.
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Two clusters easy to separate

I a cluster with small radius 6⇒ h∗ will be small;

I two clusters are easy to separate ⇒ ∃ large range of optimal h.
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Figure: Case where two clusters are easy to separte via a hyper plane, it
degenerates to a linear case. The largest optimal h is therefore very large:
h∗ = 64.

22 / 37



Smaller cluster surrounded by a larger one
I a smaller h is preferred to detect the small cluster (to achieve

a high f1 score)
I In the contrast, if a larger h is used, then either few of them

are predicted right (a low recall), or the classifier predicts a lot
of points from the other cluster to be them (a low precision).
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Figure: h∗ = 0.2500 (optimal region: test accuracy ≥ 0.9977).
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Compared to the previous case, the radius of smaller cluster is 4
times larger, and h∗ is also 4 times larger.
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Figure: h∗ = 1 (optimal region: test accuracy ≥ 0.99).
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Real 2D datasets

The followings are two real datasets that not perfectly match, but
share similar property as our test cases.

7.1 Mean pdsi standardized units of
relative dry and wet, Dec 2010

7.2 land & ocean temp departure
from avg

Figure: Several real datasets with an underlying geomerty
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Clusters overlap a little bit on the edge
I it has a larger h∗ than the surrounded case;
I the edge of larger cluster has a low density, therefore even a

smooth curve will not misclassify many points;
I half of the small cluster is by itself, so a smooth curve on the

outside part does not affect the results.
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subcaptions represent (h, test accuracy)
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EMG Physical Action Data Set.

I 10 normal and 10 aggressive physical actions that measure the
human activity.

I We randomly sample the same portion from each class, and
each class still have the same number of points.

I Interesting observations:

Class 1 2 3 4 5 6 7 8 9

r2i 1e-4 3e-4 1.2e-3 2.8e-3 2.6e-2 2.7e-2 3.6e-2 4.6e-1 1.0

d2i 3e-4 2.3e-3 9,9e-3 1.7e-2 1.9e-1 2.3e-1 1.4e-1 1.4 2.1

Class 10 11 12 13 14 15 16 17 18 19

r2i 1.0 1.6 1.9 2.2 2.2 2.6 2.8 2.9 3.0 3.1

d2i 2.0 3.4 4.4 4.2 4.3 5.3 5.4 5.4 5.7 5.9

Table: Median of pair-wise distance (di ), and median of distance to
the center (ri ) for each class
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I each class has the same number of points.

I quantify its property (shape, density) is hard.

I ri varies by orders of magnitude (interesting)

I ri vaguely describe how spread out each class is.

We order the classes by ri (we use “size” in the following to
represent this), and group them in the following manner:

g1 = smallest class, g2 = union(smallest class, 2nd smallest class),

..., g20 = all the data

Note: using ri does not mean it has anything to do with h∗. It just
gives us a convenient way to show the results.

28 / 37



h

10
-2

10
0

a
c
c
 a

n
d
 m

c
r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

acc test

acc train

mcr test

mcr train

9.1 acc and mcr

h

10
-2

10
0

te
s
t 
re

c
a
ll

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1200

2400

3600

4800

6000

7200

8400

9600

10800

12000

13200

14400

15600

16800

18000

19200

20400

21600

22800

9.2 recall test

h
10

-2
10

0

te
s
t 
p
re

c
is

io
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1200
2400
3600
4800
6000
7200
8400
9600
10800
12000
13200
14400
15600
16800
18000
19200
20400
21600
22800

9.3 precision test

h

10
-2

10
0

te
s
t 
f1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1200

2400

3600

4800

6000

7200

8400

9600

10800

12000

13200

14400

15600

16800

18000

19200

20400

21600

22800

9.4 f1 test
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An interesting trend: as we combine more classes with larger ri
together, the optimal h for that group also gets larger.
Conclusions:

I different classes requires different optimal h;

I classes with smaller “size” tend to prefer a smaller h;

I classes with smaller “size” in this datasets are probably
surrounded by other clusters;

I for this dataset, only by using a smaller h can we obtain
higher f 1 score on smaller class.
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We use experiments to illustrate the behavior of BBF, and show
that BBF achieves higher reconstruction accuracy than low-rank
method with the same memory footprint.
We show this on selected synthetic dataset (above) and some real
datasets. The h used will be either the largest optimal h, or chosen
from cross-validation.
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For smaller cluster surrounded by a larger one

Even though h∗ = 0.25 results in a low-rank matrix, our method
(BBF) still outperforms other low-rank methods.
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Figure: Matrix ranks and comparisons of BBF with low-rank methods.
The matrix comes from our test case (smaller cluster surrounded by a
larger one) with h∗ = 0.2500
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Sensorless Drive Diagnosis Data Set

SVD is ignored here because n is too large.
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chosen via cross-validation.
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Yeast dataset
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Figure: Yeast dataset (classes with 5 points and 20 points are excluded).
Matrix ranks and comparisons of BBF and low-rank methods. h = 0.25 is
chosen from cross-validation
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Satimage dataset
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Conclusions

I Many data graphs are not well-described by low-rank matrices

I Many data graphs have small-scale clusters & large-scale noise

I We consider details of sensitivity of constructed graphs to
choice of r.b.f. parameter

I We have BBF (Block Basis Factorization), using ideas from
scientific computing

I BBF is good on memory vs. error tradeoff

I BBF allows us to explore parameter sensitivity for small versus
large clusters

37 / 37


	Motivation: Social and information networks
	Introduction of two problems
	Block Basis Factorization
	On the kernel bandwidth h
	Numerical results for classification datasets 

