Exact expressions for double descent and implicit regularization via surrogate random design

Michael W. Mahoney ICSI and Department of Statistics, UC Berkeley

Joint work with Michał Dereziński and Feynman Liang

December 2019

Input: $\mathbf{x} \sim \mu$,Label: $y = f^*(\mathbf{x}) + \xi$, ξ - noise

Training data: $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)$

Error:
$$\operatorname{MSE}[f_{\mathbf{w}}] = \mathbb{E} \|f_{\mathbf{w}} - f^*\|^2$$

$$\label{eq:Goal:MSE} \begin{split} \text{Goal:} \qquad \mathrm{MSE}\big[f_{\textbf{w}}\big] \ll \mathrm{MSE}\big[f_{\mathrm{null}}\big], \qquad f_{\mathrm{null}} \equiv 0 \end{split}$$

Goal:
$$MSE[f_w] \ll MSE[f_{null}], \quad f_{null} \equiv 0$$

"Classical" answer (e.g., VC theory): use $n \gg d$ Models learn when there is more data than parameters.

Goal:
$$MSE[f_w] \ll MSE[f_{null}], \quad f_{null} \equiv 0$$

"Classical" answer (e.g., VC theory): use $n \gg d$ Models learn when there is more data than parameters.

"Modern" answer (e.g., deep learning): use $d \gg n$ Models learn when there is more parameters than data.

Goal:
$$MSE[f_w] \ll MSE[f_{null}], \quad f_{null} \equiv 0$$

"Classical" answer (e.g., VC theory): use $n \gg d$ Models learn when there is more data than parameters.

"Modern" answer (e.g., deep learning): use $d \gg n$ Models learn when there is more parameters than <u>data</u>.

How to reconcile the two paradigms?

Standard i.i.d. random design $\mathbf{X} \sim \mu^n$

 $\mathbf{y} = \mathbf{X}\mathbf{w} + \boldsymbol{\xi} \qquad \boldsymbol{\xi} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$

Standard i.i.d. random design $\mathbf{X} \sim \mu^n$

 $\mathbf{y} = \mathbf{X}\mathbf{w} + \boldsymbol{\xi} \qquad \boldsymbol{\xi} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$

Moore-Penrose estimator:

$$\mathbf{X}^{\dagger}\mathbf{y} = \begin{cases} \text{minimum norm solution,} & \text{for } n \leq d, \\ \text{least squares solution,} & \text{for } n > d. \end{cases}$$

Standard i.i.d. random design $\mathbf{X} \sim \mu^n$ $\mathbf{y} = \mathbf{X}\mathbf{w} + \boldsymbol{\xi}$ $\boldsymbol{\xi} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$

$$\mathbf{X}_{n} \left\{ \begin{array}{c} \mathbf{x}_{i}^{\mathsf{T}} \\ \mathbf{x}_{i}^{\mathsf{T}} \end{array} \right\}$$

Moore-Penrose estimator:

$$\mathbf{X}^{\dagger}\mathbf{y} = egin{cases} \min \ \text{minimum norm solution}, & \text{for } n \leq d, \\ \text{least squares solution}, & \text{for } n > d. \end{cases}$$

 $\label{eq:Goal:Goal:find} \begin{array}{ll} \operatorname{MSE} \left[\boldsymbol{\mathsf{X}}^{\dagger} \boldsymbol{\mathsf{y}} \right] = \mathbb{E} \, \| \boldsymbol{\mathsf{X}}^{\dagger} \boldsymbol{\mathsf{y}} - \boldsymbol{\mathsf{w}} \|^2 \end{array}$

Standard i.i.d. random design $\mathbf{X} \sim \mu^n$ $\mathbf{y} = \mathbf{X}\mathbf{w} + \boldsymbol{\xi}$ $\boldsymbol{\xi} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$

$$\mathbf{X}_{n} \left\{ \begin{array}{c} \mathbf{y} \\ \mathbf{x}_{i}^{\mathsf{T}} \end{array} \right\}$$

Moore-Penrose estimator:

$$\mathbf{X}^{\dagger}\mathbf{y} = \begin{cases} \text{minimum norm solution,} & \text{for } n \leq d, \\ \text{least squares solution,} & \text{for } n > d. \end{cases}$$

 Standard i.i.d. random design $\mathbf{X} \sim \mu^n$ $\mathbf{y} = \mathbf{X}\mathbf{w} + \boldsymbol{\xi}$ $\boldsymbol{\xi} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$

$$\mathbf{X}_{n} \left\{ \begin{array}{c} \mathbf{x}_{i}^{\mathsf{T}} \\ \mathbf{x}_{i}^{\mathsf{T}} \end{array} \right\} \mathbf{y}_{n}$$

Moore-Penrose estimator:

$$\mathbf{X}^{\dagger}\mathbf{y} = \begin{cases} \text{minimum norm solution,} & \text{for } n \leq d, \\ \text{least squares solution,} & \text{for } n > d. \end{cases}$$

Goal: find $MSE[\mathbf{X}^{\dagger}\mathbf{y}] = \mathbb{E} \|\mathbf{X}^{\dagger}\mathbf{y} - \mathbf{w}\|^2$ Prior work: asymptotics [HMRT19] and upper bounds [BLLT19] No closed form expressions, even for $\mu = \mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$!

Idea: replace standard i.i.d. design with a surrogate design

Idea: replace standard i.i.d. design with a surrogate design

Theorem

Let
$$\bar{\mathbf{X}} \sim S_{\mu}^{n}$$
, $\bar{y}_{i} = \bar{\mathbf{x}}_{i}^{\top}\mathbf{w} + \xi$ and $\mathbf{\Sigma}_{\mu} = \mathbb{E}_{\mu}[\mathbf{x}\mathbf{x}^{\top}]$. Then,

Idea: replace standard i.i.d. design with a surrogate design

Theorem

Let
$$\bar{\mathbf{X}} \sim S_{\mu}^{n}$$
, $\bar{y}_{i} = \bar{\mathbf{x}}_{i}^{\top}\mathbf{w} + \xi$ and $\mathbf{\Sigma}_{\mu} = \mathbb{E}_{\mu}[\mathbf{x}\mathbf{x}^{\top}]$. Then,

$$\begin{split} \operatorname{MSE}\left[\bar{\mathbf{X}}^{\dagger}\bar{\mathbf{y}}\right] &= \\ \begin{cases} \sigma^{2}\operatorname{tr}\left((\boldsymbol{\Sigma}_{\mu} + \lambda_{n}\mathbf{I})^{-1}\right)\frac{1-\alpha_{n}}{d-n} + \frac{\mathbf{w}^{\top}(\boldsymbol{\Sigma}_{\mu} + \lambda_{n}\mathbf{I})^{-1}\mathbf{w}}{\operatorname{tr}((\boldsymbol{\Sigma}_{\mu} + \lambda_{n}\mathbf{I})^{-1})}(d-n), & (n < d), \\ \sigma^{2}\operatorname{tr}(\boldsymbol{\Sigma}_{\mu}^{-1}), & (n = d), \\ \sigma^{2}\operatorname{tr}(\boldsymbol{\Sigma}_{\mu}^{-1})\frac{1-\beta_{n}}{n-d}, & (n > d), \end{cases} \end{split}$$

Idea: replace standard i.i.d. design with a surrogate design

Theorem

Let
$$\bar{\mathbf{X}} \sim S_{\mu}^{n}$$
, $\bar{y}_{i} = \bar{\mathbf{x}}_{i}^{\top}\mathbf{w} + \xi$ and $\mathbf{\Sigma}_{\mu} = \mathbb{E}_{\mu}[\mathbf{x}\mathbf{x}^{\top}]$. Then,

$$\begin{split} \operatorname{MSE}\left[\bar{\mathbf{X}}^{\dagger}\bar{\mathbf{y}}\right] &= \\ \begin{cases} \sigma^{2}\operatorname{tr}\left((\boldsymbol{\Sigma}_{\mu} + \lambda_{n}\mathbf{I})^{-1}\right)\frac{1-\alpha_{n}}{d-n} + \frac{\mathbf{w}^{\top}(\boldsymbol{\Sigma}_{\mu} + \lambda_{n}\mathbf{I})^{-1}\mathbf{w}}{\operatorname{tr}((\boldsymbol{\Sigma}_{\mu} + \lambda_{n}\mathbf{I})^{-1})}(d-n), & (n < d), \\ \sigma^{2}\operatorname{tr}(\boldsymbol{\Sigma}_{\mu}^{-1}), & (n = d), \\ \sigma^{2}\operatorname{tr}(\boldsymbol{\Sigma}_{\mu}^{-1})\frac{1-\beta_{n}}{n-d}, & (n > d), \end{cases} \end{split}$$

where $n = \operatorname{tr}((\boldsymbol{\Sigma}_{\mu} + \lambda_n \mathbf{I})^{-1} \boldsymbol{\Sigma}_{\mu}), \ \alpha_n = \frac{\operatorname{det}(\boldsymbol{\Sigma}_{\mu})}{\operatorname{det}(\boldsymbol{\Sigma}_{\mu} + \lambda_n \mathbf{I})}, \ \beta_n = e^{d-n}.$

Isotropic features: double descent curve

 $\mathbf{X} \sim \mu^n$ - standard Gaussian design, $\mu = \mathcal{N}(\mathbf{0}, \mathbf{I}), \ d = 100$

Isotropic features: double descent curve

$$\begin{split} \mathbf{X} &\sim \mu^n \quad \text{standard Gaussian design, } \mu = \mathcal{N}(\mathbf{0}, \mathbf{I}), \ d = 100 \\ \text{MSE}\big[\mathbf{X}^{\dagger}\mathbf{y}\big] &= \begin{cases} \frac{\sigma^2 n}{d - n - 1} + \|\mathbf{w}\|^2 \frac{d - n}{d}, & (n < d - 1) \\ \frac{\sigma^2 d}{n - d - 1}, & (n > d + 1) \end{cases} \quad (\text{let } \|\mathbf{w}\| = 1) \end{split}$$

Isotropic features: double descent curve

$$\begin{split} \mathbf{X} &\sim \mu^n \quad \text{standard Gaussian design, } \mu = \mathcal{N}(\mathbf{0}, \mathbf{I}), \ d = 100 \\ \text{MSE}\big[\mathbf{X}^{\dagger}\mathbf{y}\big] &= \begin{cases} \frac{\sigma^2 n}{d-n-1} + \|\mathbf{w}\|^2 \frac{d-n}{d}, & (n < d-1) \\ \frac{\sigma^2 d}{n-d-1}, & (n > d+1) \end{cases} \quad (\text{let } \|\mathbf{w}\| = 1) \end{split}$$

Gaussian features: effect of spectral decay

 $\mathbf{X} \sim \mu^n$ - multivariate Gaussian design, $\mu = \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}), d = 100$

 $\pmb{\Sigma}\;$ - exponentially decaying eigenvalues, condition number κ

Gaussian features: effect of spectral decay

 $\mathbf{X} \sim \mu^n$ - multivariate Gaussian design, $\mu = \mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$, d = 100 $\mathbf{\Sigma}$ - exponentially decaying eigenvalues, condition number κ

$$MSE[\mathbf{X}^{\dagger}\mathbf{y}] = ?$$

Gaussian features: effect of spectral decay

 $\mathbf{X} \sim \mu^n$ - multivariate Gaussian design, $\mu = \mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$, d = 100 $\mathbf{\Sigma}$ - exponentially decaying eigenvalues, condition number κ

$$MSE[\mathbf{X}^{\dagger}\mathbf{y}] = ?$$

Gaussian features: effect of model complexity

 $\mathbf{X} \sim \mu^n$ - multivariate Gaussian design, $\mu = \mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$, n = 100 $\mathbf{\Sigma}$ - exponentially decaying eigenvalues, condition number κ

$$MSE[\mathbf{X}^{\dagger}\mathbf{y}] = ?$$

Why does this *unregularized* model learn when n < d?

Why does this *unregularized* model learn when n < d? Because taking minimum norm induces ℓ_2 -regularization.

Why does this unregularized model learn when n < d? Because taking minimum norm induces ℓ_2 -regularization.

Theorem

Let
$$\bar{\mathbf{X}} \sim S_{\mu}^{n}$$
, $\bar{y}_{i} = y(\mathbf{x})$ and $\mathbf{\Sigma}_{\mu} = \mathbb{E}_{\mu}[\mathbf{x}\mathbf{x}^{\top}]$. Then,

Why does this *unregularized* model learn when n < d? Because taking minimum norm induces ℓ_2 -regularization.

Theorem

Let
$$\bar{\mathbf{X}} \sim S_{\mu}^{n}$$
, $\bar{y}_{i} = y(\mathbf{x})$ and $\mathbf{\Sigma}_{\mu} = \mathbb{E}_{\mu}[\mathbf{x}\mathbf{x}^{\top}]$. Then,

$$\mathbb{E}\big[\mathbf{\bar{X}}^{\dagger}\mathbf{\bar{y}}\big] = \begin{cases} (\mathbf{\Sigma}_{\mu} + \lambda_{n}\mathbf{I})^{-1}\mathbf{v}_{\mu,y} & \text{for } n < d, \\ \mathbf{\Sigma}_{\mu}^{-1}\mathbf{v}_{\mu,y} & \text{for } n \geq d, \end{cases}$$

where $n = \operatorname{tr}((\boldsymbol{\Sigma}_{\mu} + \lambda_n \mathbf{I})^{-1} \boldsymbol{\Sigma}_{\mu})$ and $\mathbf{v}_{\mu,y} = \mathbb{E}_{\mu}[y(\mathbf{x}) \mathbf{x}].$

Why does this *unregularized* model learn when n < d? Because taking minimum norm induces ℓ_2 -regularization.

Theorem

Let
$$\bar{\mathbf{X}} \sim S_{\mu}^{n}$$
, $\bar{y}_{i} = y(\mathbf{x})$ and $\mathbf{\Sigma}_{\mu} = \mathbb{E}_{\mu}[\mathbf{x}\mathbf{x}^{\top}]$. Then,

$$\mathbb{E}\big[\bar{\mathbf{X}}^{\dagger}\bar{\mathbf{y}}\big] = \begin{cases} (\mathbf{\Sigma}_{\mu} + \lambda_{n}\mathbf{I})^{-1}\mathbf{v}_{\mu,y} & \text{for } n < d, \\ \mathbf{\Sigma}_{\mu}^{-1}\mathbf{v}_{\mu,y} & \text{for } n \geq d, \end{cases}$$

where $n = \operatorname{tr}((\boldsymbol{\Sigma}_{\mu} + \lambda_n \mathbf{I})^{-1} \boldsymbol{\Sigma}_{\mu})$ and $\mathbf{v}_{\mu,y} = \mathbb{E}_{\mu}[y(\mathbf{x}) \mathbf{x}].$

$$(\boldsymbol{\Sigma}_{\mu} + \lambda_{n} \mathbf{I})^{-1} \mathbf{v}_{\mu, y} = \operatorname{argmin}_{\widehat{\mathbf{w}}} \mathbb{E}_{\mu, y} \left[\left(\mathbf{x}^{\top} \widehat{\mathbf{w}} - y(\mathbf{x}) \right)^{2} \right] + \lambda_{n} \| \widehat{\mathbf{w}} \|^{2}$$

Our observations:

• Minimum norm induces an ℓ_2 -regularizer: $\lambda_n \| \widehat{\mathbf{w}} \|^2$

Our observations:

- Minimum norm induces an ℓ_2 -regularizer: $\lambda_n \| \widehat{\mathbf{w}} \|^2$
- ► Sample size is effective dimension: $n = tr((\mathbf{\Sigma}_{\mu} + \lambda_n \mathbf{I})^{-1} \mathbf{\Sigma}_{\mu})$

Our observations:

- Minimum norm induces an ℓ_2 -regularizer: $\lambda_n \| \widehat{\mathbf{w}} \|^2$
- ► Sample size is effective dimension: $n = tr((\mathbf{\Sigma}_{\mu} + \lambda_n \mathbf{I})^{-1} \mathbf{\Sigma}_{\mu})$

$$MSE[\mathbf{X}^{\dagger}\mathbf{y}] = \sigma^{2}\mathbb{E}[tr((\mathbf{X}^{\top}\mathbf{X})^{\dagger})] + \mathbf{w}^{\top}\mathbb{E}[\mathbf{I} - \mathbf{X}^{\dagger}\mathbf{X}]\mathbf{w}.$$

$$MSE[\mathbf{X}^{\dagger}\mathbf{y}] = \sigma^{2}\mathbb{E}[tr((\mathbf{X}^{\top}\mathbf{X})^{\dagger})] + \mathbf{w}^{\top}\mathbb{E}[\mathbf{I} - \mathbf{X}^{\dagger}\mathbf{X}]\mathbf{w}.$$

$$\mu = \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}) \implies \begin{cases} \mathbf{X}^{ op} \mathbf{X} & - & \text{Wishart distribution} \\ \mathbf{X}^{\dagger} \mathbf{X} & - & \text{Gaussian projection} \end{cases}$$

$$MSE[\mathbf{X}^{\dagger}\mathbf{y}] = \sigma^{2}\mathbb{E}[tr((\mathbf{X}^{\top}\mathbf{X})^{\dagger})] + \mathbf{w}^{\top}\mathbb{E}[\mathbf{I} - \mathbf{X}^{\dagger}\mathbf{X}]\mathbf{w}.$$

$$\mu = \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}) \implies \begin{cases} \mathbf{X}^{\top} \mathbf{X} & - & \text{Wishart distribution} \\ \mathbf{X}^{\dagger} \mathbf{X} & - & \text{Gaussian projection} \end{cases}$$

Conjecture

Fix n/d < 1 and let $\mu = \mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$, where $c\mathbf{I} \preceq \mathbf{\Sigma} \preceq C\mathbf{I}$. Then:

$$MSE[\mathbf{X}^{\dagger}\mathbf{y}] = \sigma^{2}\mathbb{E}[tr((\mathbf{X}^{\top}\mathbf{X})^{\dagger})] + \mathbf{w}^{\top}\mathbb{E}[\mathbf{I} - \mathbf{X}^{\dagger}\mathbf{X}]\mathbf{w}.$$

$$\mu = \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}) \implies \begin{cases} \mathbf{X}^{\mathsf{T}} \mathbf{X} & - & \text{Wishart distribution} \\ \mathbf{X}^{\dagger} \mathbf{X} & - & \text{Gaussian projection} \end{cases}$$

Conjecture

Fix n/d < 1 and let $\mu = \mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$, where $c\mathbf{I} \preceq \mathbf{\Sigma} \preceq C\mathbf{I}$. Then:

$$\frac{\mathbb{E}\left[\operatorname{tr}((\mathbf{X}^{\top}\mathbf{X})^{\top})\right]}{\mathcal{V}(\mathbf{\Sigma},n)} - 1 = O(1/d) \quad \text{for} \quad \mathcal{V}(\mathbf{\Sigma},n) = \frac{1-\alpha_n}{\lambda_n},$$

$$MSE[\mathbf{X}^{\dagger}\mathbf{y}] = \sigma^{2}\mathbb{E}[tr((\mathbf{X}^{\top}\mathbf{X})^{\dagger})] + \mathbf{w}^{\top}\mathbb{E}[\mathbf{I} - \mathbf{X}^{\dagger}\mathbf{X}]\mathbf{w}.$$

$$\mu = \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}) \implies \begin{cases} \mathbf{X}^{\mathsf{T}} \mathbf{X} & - & \text{Wishart distribution} \\ \mathbf{X}^{\dagger} \mathbf{X} & - & \text{Gaussian projection} \end{cases}$$

Conjecture

Fix n/d < 1 and let $\mu = \mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$, where $c\mathbf{I} \preceq \mathbf{\Sigma} \preceq C\mathbf{I}$. Then:

$$\begin{vmatrix} \mathbb{E}\left[\operatorname{tr}((\mathbf{X}^{\top}\mathbf{X})^{\dagger})\right] \\ \mathcal{V}(\mathbf{\Sigma},n) \\ \frac{\mathbf{V}(\mathbf{\Sigma},n)}{\mathbf{V}(\mathbf{\Sigma},n)} - 1 \end{vmatrix} = O(1/d) \quad \text{for} \quad \mathcal{V}(\mathbf{\Sigma},n) = \frac{1-\alpha_n}{\lambda_n}, \\ \begin{vmatrix} \mathbf{w}^{\top}\mathbb{E}[\mathbf{I} - \mathbf{X}^{\dagger}\mathbf{X}]\mathbf{w} \\ \mathbf{w}^{\top}\mathcal{B}(\mathbf{\Sigma},n)\mathbf{w} \\ -1 \end{vmatrix} = O(1/d) \quad \text{for} \quad \mathcal{B}(\mathbf{\Sigma},n) = \lambda_n(\mathbf{\Sigma} + \lambda_n \mathbf{I})^{-1}. \end{aligned}$$

Empirical evidence for the conjecture

Definition

Let K be a random variable over non-negative integers.

A determinantal surrogate design $ar{\mathbf{X}} \sim \mathrm{Det}(\mu, \mathcal{K})$ is defined so that

 $\mathbb{E}[F(\bar{\mathbf{X}})] \propto \mathbb{E}[\text{pdet}(\mathbf{X}\mathbf{X}^{\top})F(\mathbf{X})] \quad \text{for} \quad \mathbf{X} \sim \mu^{K}.$

Definition

Let K be a random variable over non-negative integers.

A determinantal surrogate design $ar{\mathbf{X}} \sim \mathrm{Det}(\mu, \mathcal{K})$ is defined so that

 $\mathbb{E}\big[F(\bar{\mathbf{X}})\big] \propto \mathbb{E}[\text{pdet}(\mathbf{X}\mathbf{X}^{\top})F(\mathbf{X})] \quad \text{for} \quad \mathbf{X} \sim \mu^{K}.$

• The proportionality constant is $1/\mathbb{E}[pdet(XX^{\top})]$.

Definition

Let K be a random variable over non-negative integers.

A determinantal surrogate design $ar{\mathbf{X}} \sim \mathrm{Det}(\mu, \mathcal{K})$ is defined so that

 $\mathbb{E}[F(\bar{\mathbf{X}})] \propto \mathbb{E}[\text{pdet}(\mathbf{X}\mathbf{X}^{\top})F(\mathbf{X})] \text{ for } \mathbf{X} \sim \mu^{K}.$

- The proportionality constant is $1/\mathbb{E}[pdet(XX^{\top})]$.
- ► To compute it, we let *K* be a Poisson random variable.

Definition

Let K be a random variable over non-negative integers.

A determinantal surrogate design $ar{\mathbf{X}} \sim \mathrm{Det}(\mu, K)$ is defined so that

 $\mathbb{E}[F(\bar{\mathbf{X}})] \propto \mathbb{E}[\text{pdet}(\mathbf{X}\mathbf{X}^{\top})F(\mathbf{X})] \text{ for } \mathbf{X} \sim \mu^{K}.$

- The proportionality constant is $1/\mathbb{E}[pdet(XX^{\top})]$.
- ► To compute it, we let K be a Poisson random variable.
- New expectation formulas for $K \sim \text{Poisson}(\gamma)$ and $\mathbf{X} \sim \mu^{K}$:

$$\mathbb{E} ig[\det(\mathbf{X}\mathbf{X}^{ op})ig] = \mathrm{e}^{-\gamma}\det(\mathbf{I}+\gamma\mathbf{\Sigma}_{\mu})$$

 $\mathbb{E} ig[\det(\mathbf{X}^{ op}\mathbf{X})ig] = \det(\gamma\mathbf{\Sigma}_{\mu})$

New technique: determinant preserving random matrices

Definition

A random $d \times d$ matrix **A** is determinant preserving (d.p.) if

 $\mathbb{E}\big[\mathsf{det}(\mathbf{A}_{\mathcal{I},\mathcal{J}})\big] = \mathsf{det}\big(\mathbb{E}[\mathbf{A}_{\mathcal{I},\mathcal{J}}]\big) \quad \text{for all } \mathcal{I},\mathcal{J} \subseteq [d] \text{ s.t. } |\mathcal{I}| = |\mathcal{J}|.$

New technique: determinant preserving random matrices

Definition

A random $d \times d$ matrix **A** is determinant preserving (d.p.) if

$$\mathbb{E}\big[\mathsf{det}(\mathbf{A}_{\mathcal{I},\mathcal{J}})\big] = \mathsf{det}\big(\mathbb{E}[\mathbf{A}_{\mathcal{I},\mathcal{J}}]\big) \quad \text{for all } \mathcal{I},\mathcal{J} \subseteq [d] \text{ s.t. } |\mathcal{I}| = |\mathcal{J}|.$$

Examples:

• A has i.i.d. Gaussian entries $a_{ij} \sim \mathcal{N}(0, 1)$

New technique: *determinant preserving random matrices*

Definition

A random $d \times d$ matrix **A** is determinant preserving (d.p.) if

$$\mathbb{E}\big[\mathsf{det}(\mathbf{A}_{\mathcal{I},\mathcal{J}})\big] = \mathsf{det}\big(\mathbb{E}[\mathbf{A}_{\mathcal{I},\mathcal{J}}]\big) \quad \text{for all } \mathcal{I},\mathcal{J} \subseteq [d] \text{ s.t. } |\mathcal{I}| = |\mathcal{J}|.$$

Examples:

- A has i.i.d. Gaussian entries $a_{ij} \sim \mathcal{N}(0, 1)$
- A = sZ, where s is random and Z is a fixed, rank-1 matrix

Definition

A random $d \times d$ matrix **A** is determinant preserving (d.p.) if

 $\mathbb{E}\big[\mathsf{det}(\mathbf{A}_{\mathcal{I},\mathcal{J}})\big] = \mathsf{det}\big(\mathbb{E}[\mathbf{A}_{\mathcal{I},\mathcal{J}}]\big) \quad \text{for all } \mathcal{I},\mathcal{J} \subseteq [d] \text{ s.t. } |\mathcal{I}| = |\mathcal{J}|.$

Examples:

- A has i.i.d. Gaussian entries $a_{ij} \sim \mathcal{N}(0, 1)$
- A = sZ, where s is random and Z is a fixed, rank-1 matrix
- $\mathbf{A} = \mathbf{X}^{\mathsf{T}} \mathbf{X}$, where $\mathbf{X} \sim \mu^{K}$ and $K \sim \mathsf{Poisson}(\gamma)$

Definition

A random $d \times d$ matrix **A** is determinant preserving (d.p.) if

$$\mathbb{E}\big[\mathsf{det}(\mathbf{A}_{\mathcal{I},\mathcal{J}})\big] = \mathsf{det}\big(\mathbb{E}[\mathbf{A}_{\mathcal{I},\mathcal{J}}]\big) \quad \text{for all } \mathcal{I},\mathcal{J} \subseteq [d] \text{ s.t. } |\mathcal{I}| = |\mathcal{J}|.$$

Examples:

- A has i.i.d. Gaussian entries $a_{ij} \sim \mathcal{N}(0, 1)$
- A = sZ, where s is random and Z is a fixed, rank-1 matrix
- $\mathbf{A} = \mathbf{X}^{\mathsf{T}} \mathbf{X}$, where $\mathbf{X} \sim \mu^{K}$ and $K \sim \mathsf{Poisson}(\gamma)$

Theorem (closure properties)

If A, B are d.p. and independent, then A + B and AB are also d.p.

- Consistency of surrogate expressions
- Random feature models

- Consistency of surrogate expressions
- Random feature models
- Non-linear and kernelized models

- Consistency of surrogate expressions
- Random feature models
- Non-linear and kernelized models
- Prediction error

P. L. Bartlett, P. M. Long, G. Lugosi, and A. Tsigler.

Benign overfitting in linear regression.

Technical Report Preprint: arXiv:1906.11300, 2019.

📕 T. Hastie, A. Montanari, S. Rosset, and R. J. Tibshirani.

Surprises in high-dimensional ridgeless least squares interpolation.

Technical Report Preprint: arXiv:1903.08560, 2019.