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Introduction Putting randomness into LAPACK Next generation RandNLA theory Conclusions

Outline

1 Introduction

2 Putting randomness into LAPACK

Sketching in the RandBLAS

Least squares and optimization

Low-rank approximation and full-rank decompositions

3 Next generation RandNLA theory

Theoretical aims motivated by RandLAPACK

Recent developments using RMT analysis

Looking beyond RandLAPACK

4 Conclusions

March 2023 Michael W. Mahoney and Micha l Dereziński 2
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Standard libraries for numerical linear algebra

Basic Linear Algebra Subprograms

BLAS

Level 1. E.g.,

s = xTy

Level 2. E.g.,

y = αAx+ βy

Level 3. E.g.,

C = αAB + βC

The Linear Algebra PACKage

LAPACK

Computational routines. E.g.,

A = QR

A = RTR

Drivers. E.g.,

min ‖Ax− b‖22
x = A−1b

A = UΛUT
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The situation

Communities that rely on NLA now vary widely.

They all want to solve larger and larger problems.

For decades, this hunger has been satiated by complementary innovations in hardware
and software.

This progress should not be taken for granted.

Two factors increasingly present obstacles to scaling linear algebra to the next level.

Space and power constraints in hardware.

NLA’s maturity as a field.
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Randomized numerical linear algebra (RandNLA)

Using randomized algorithms to solve deterministic problems.

Random sketching

E.g., for overdetermined least squares
with data (A, b), obtain sketched data

ASÂ

and b̂ = Sb.

High-level deterministic NLA

Next, solve the sketched problem

min
x
‖S (Ax− b) ‖22.

For example, by QR

Â = QR,

⇒ x̂ = R−1QTb̂.

This is often called “sketch-and-solve”.
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Randomized numerical linear algebra (RandNLA)

Tutorials, light on prerequisites

“RandNLA: randomized numerical linear algebra,” by Drineas and Mahoney [1]
“Lectures on randomized numerical linear algebra,” by Drineas and Mahoney [2]

Broad and proof-heavy resources

“Sketching as a tool for numerical linear algebra,” by Woodruff [3]
“An introduction to matrix concentration inequalities,” by Tropp [4]
“Lecture notes on randomized linear algebra,” by Mahoney [5]

Perspectives on theory, light on proofs

“Randomized algorithms for matrices and data,” by Mahoney [6]
“Determinantal point processes in randomized numerical linear algebra,” by
Dereziński and Mahoney [7]

Deep investigations of specific topics

“Finding structure with randomness: probabilistic algorithms for constructing
approximate matrix decompositions,” by Halko, Martinsson, and Tropp [8]
“Randomized algorithms in numerical linear algebra,” by Kannan and Vempala [9]
“Randomized methods for matrix computations,” by Martinsson [10]
“Randomized numerical linear algebra: Foundations and Algorithms,” by
Martinsson and Tropp [11]
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What does randomization buy us?

Efficient algorithms for computing approximate solutions

Whole areas. E.g., low-rank approximation [8], convex optimization [12].

Efficient algorithms for computing machine-precision solutions

Specific problems. E.g., strongly overdetermined least squares [13, 14, 15],
block column-pivoted QR [16, 17, 18].

Robust algorithms for intractable problems

E.g., nonnegative matrix factorization [19], interpolative decomposition [20].

More generally

Communication: lots of opportunities to reduce and redirect data movement.

Finite-precision arithmetic: once a curse, now a blessing.
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“The RandLAPACK book” [21]
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“The RandLAPACK book” [21]

Table of Contents

1 Introduction
2 Basic Sketching
3 Least Squares and Optimization
4 Low-rank Approximation
5 Further Possibilities for Drivers
6 Advanced Sketching: Leverage Score Sampling
7 Advanced Sketching: Tensor Product Structures
A Details on Basic Sketching
B Details on Least Squares and Optimization
C Details on Low-Rank Approximation
D Correctness of Preconditioned Cholesky QRCP
E Bootstrap Methods for Error Estimation

“Randomized Numerical Linear Algebra: A Perspective on the Field with an Eye to Software,” arXiv:2302.11474,
R. Murray, J. Demmel, M. W. Mahoney, N. B. Erichson, M. Melnichenko, O. A. Malik, L. Grigori, P. Luszczek, M.
Derezinski, M. E. Lopes, T. Liang, H. Luo, and J. Dongarra
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Developing standard libraries for RandNLA

RandLAPACK

Library that concerns algorithms for solving traditional linear algebra problems
and advanced sketching functionality.

To be written in C++, build on BLAS++/LAPACK++ portability layer [22].

Main drivers:

Least squares and optimization.
Low-rank approximation
Full-rank decompositions.

Prominent computational routines:

advanced sketching.
error estimation.

The design spaces of algorithms for these tasks are large.

March 2023 Michael W. Mahoney and Micha l Dereziński 10
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Developing standard libraries for RandNLA

RandBLAS

Library that concerns basic sketching.

For sketching dense data matrices.

Reference implementation in C++.

Hope: it grows to become a community standard for RandNLA, in the sense that
its API would see wider adoption than any single implementation.

To achieve this goal, it is important to keep its scope narrowly focused.
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Sketching in the RandBLAS

Sketching can look like sampling or like embedding.

Â = S

A
Viable distributions:

iid Gaussian

iid uniform over ±1
structured sparse

randomly subsampled FFT/DCT/RHT

Distinguished by relative sizes of (S,A).
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Sketching in the RandBLAS

Sketching can look like sampling or like embedding.

Â = S

A

Viable distributions:

structured sparse

randomly subsampled block FFT or DCT

Distinguished by relative sizes of (S,A).
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SASOs: short-axis-sparse sketching operators

Consider S ∈ Rd×m that’s very wide.

Independent columns; exactly ` ±1’s per column.

Examples from the literature: CountSketch (` = 1), SJLT, OSNAP [23, 24].

Sample ` indices from {1, . . . , d} without replacement, m� d times.

Takes O(d) workspace and O(m`) time.

See GitHub: https://tinyurl.com/sjlt-fy-recycle

E.g., 10x speedup when d = 6K, m = 100K, and ` = 8 on one laptop CPU core.

(Decrease from ≈ 1 second to 0.1 seconds.)
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LASOs: long-axis-sparse sketching operators

Consider S ∈ Rd×m that’s very wide.

Independent rows; at most ` non-zeros in each row:

Sample t1, ..., t` from [m] according to a distribution p (e.g., uniform)

Initialize a row of S with non-zeros in {t1, ..., t`}
The non-zero entries are ±1, scaled so that E[S∗S] = Im.

Examples from the literature: LS sampling (` = 1), LESS, LessUniform [25, 26, 27].

LASO takes O(d`) time

Faster than SASO with same `, because d� m

Quality depends on distribution p and the coherence of input matrix

March 2023 Michael W. Mahoney and Micha l Dereziński 16
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Sparse matrix multiply faster than Intel MKL

This example fixes (d, `) = (6K, 8) and varies m.

Compute SA via outer-product approach:

S stored in compressed sparse row (CSR)

A has m rows, 2K columns, stored in row-major.

(Runtime of MKL dcsrmm) / (Runtime of our implementation)

0.0x

0.5x

1.0x

1.5x

2.0x

1 thread 8 threads 16 threads

m = 100K m = 500K m = 1M

Speedup of our implementation compared to MKL (higher is better)

2.7 GHz Intel Xeon Platinum 8280, 192 GB DDR4.
March 2023 Michael W. Mahoney and Micha l Dereziński 17
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Example: Preconditioned least squares

Least squares problem: minx ‖Ax− b‖22 for A ∈ Rm×n

Preconditioner uses sketching operator S ∈ Rd×m

1: d = min{dn · sampling factore, m}
2: S = SketchOpGen(d,m)
3: Q,R = qr econ(SA)
4: zo = QTSb # R−1zo solves minx{‖S(Ax− b)‖22}
5: Aprecond = AR−1 # as a linear operator
6: z = iterative ls solver(Aprecond, b, ε, L, zo)
7: return R−1z

Quality of the preconditioner (which affects the convergence of the solver) can, to an
extent, be measured by cond(AR−1) = cond(SU) for U = orth(A).

Corresponds to the distortion of S as a subspace embedding for A.

March 2023 Michael W. Mahoney and Micha l Dereziński 18
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SASO quality: can we get a good preconditioner?

This example fixes (d,m) = (6K, 100K) and varies `.

Consider two types of 100K× 2K matrices A:

Gaussian: entries are iid standard normal.

Spiked: stack identities and randomly scale 2K rows by 10K (“high coherence”).

Let U = orth(A) and consider the condition number cond(SU).

2 4 6 8
nonzeros per column of S
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Spiked A
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SASOs in action with PARLA

Least squares problem

minx ‖Ax− b‖22
A is 100K× 2K

cond(A) = 100K

MATLAB times (seconds)

Using qr(A,0): 17.3

Using svd(A,"econ"): 25.4

Core i7-1065G7

‖(AR−1)T(Ax− b)‖2 vs time in seconds

1.8x faster than QR

Ten trials with
SASO S ∈ R6K×100K

March 2023 Michael W. Mahoney and Micha l Dereziński 20
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SASOs in action with PARLA

Least squares problem

minx ‖Ax− b‖22
A is 100K× 2K

cond(A) = 100K

MATLAB times (seconds)

Using qr(A,0): 17.3

Using svd(A,"econ"): 25.4

Core i7-1065G7

Mean time in each algorithm phase

Ten trials with SASO S ∈ R6K×100K

Could sketch over 5x
faster with RandBLAS

March 2023 Michael W. Mahoney and Micha l Dereziński 21
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Performance landscape of randomized least squares

Least squares problem: minx ‖Ax− b‖22 for A ∈ Rm×n

Preconditioner uses sketching operator S ∈ Rd×m

The key parameters that affect performance:

Choice of solver

Type, e.g., Blendenpik [14], LSRN [15], or a more general-purpose optimization
method like Newton Sketch [28] (included for comparison)

Stopping criterion and tolerance

Choice of sketch

Type, e.g., SASO or LASO (or Gaussian or subsampled FFT, etc.)

Oversampling factor d/n

Sparsity parameter `, i.e., nnzs per row/column of S (only for SASO or LASO)

March 2023 Michael W. Mahoney and Micha l Dereziński 22
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Performance landscape of randomized least squares with PARLA

Input matrices: GA (low coherence), T3 (medium coherence), T1 (high coherence)

Sketching operators: SJLT (SASO), LessUniform (LASO with uniform distribution p)
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Performance landscape of randomized least squares with PARLA

Some take-aways from the performance landscape:

Custom least squares solvers (Blendenpik, LSRN) are (predictably) better than a
general purpose optimization method (Newton Sketch).

LessUniform (LASO) with best sketch parameters is faster than SJLT (SASO)
with best sketch parameters, regardless of solver and input matrix.

SJLT (SASO) is more robust to the choice of sparsity and oversampling factor
than LessUniform (LASO), for hard input matrices (high coherence).

The above takeaways should translate to the eventual optimized RandBLAS implementation.

March 2023 Michael W. Mahoney and Micha l Dereziński 24
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Least squares and saddle point problems

Consider data A ∈ Rm×n, b ∈ Rm, c ∈ Rn, and µ ≥ 0.

Primal problem
argmin
x∈Rn

‖Ax− b‖22 + µ‖x‖22 + 2cTx.

Dual problem
argmin
y∈Rm

‖ATy − c‖22 + µ‖y − b‖22.

Application of sketching in the embedding regime:

1 ∼,Σ,V = svd(SA)

2 define preconditioner M = V (Σ2 + µI)−1/2.

March 2023 Michael W. Mahoney and Micha l Dereziński 25
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Least squares and saddle point problems

Primal-dual optimal solutions completely characterized by ...[
I A
A∗ −µI

] [
y
x

]
=

[
b
c

]
.

Using y = b−Ax, arrive at the normal equations

(A∗A+ µI)x = A∗b− c.

Use reformulations. E.g., solve c = A∗bshift for bshift, then set

Aµ =

[
A√
µI

]
and bµ =

[
b− bshift

0

]
,

so x solves normal equations iff ...

x = argmin
x̃∈Rn

{
‖Aµx̃− bµ‖22

}
.

Reformulations have a major impact on the available iterative solvers!

March 2023 Michael W. Mahoney and Micha l Dereziński 26
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Kernel ridge regression

Given λ > 0, pos def m×m “kernel matrix” K, and observations h ∈ Rm, solve

argmin
α∈Rm

{
1

m
‖Kα− h‖22 + λαTKα

}
.

K is defined by a kernel function and data {xi}mi=1 ⊂ X . E.g.,

Kij = exp

(
−‖xi − xj‖22

2σ2

)
.

Sketch-and-solve [29]:

Note, optimal α solves KRR normal equations (K +mλ)α = h.

Approximate K ≈ AAT by a RandNLA method.

Solve (AAT +mλ)α = h.

New: the sketched linear system is equivalent to a “dual” LS problem!

March 2023 Michael W. Mahoney and Micha l Dereziński 27
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Low-rank approximation

Produce a suitably factored representation of a low-rank matrix Â, which is
an approximation of a target matrix A.

Representations include ...

SVD

Hermitian eigenvalue decomposition

CX and interpolative decompositions. E.g.,

Â = CX, for C = k columns of A, suitable X

CUR decompositions

Algorithms in RandLAPACK

can accept parameter k, produce Â where rankÂ = min{k, rankA}.
some algs can accept ε and ensure ‖A− Â‖ ≤ ε (automatically determine k).

March 2023 Michael W. Mahoney and Micha l Dereziński 28
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Example: Randomized SVD

A two-phase approach from Halko, Martinsson, and Tropp [8]:

1 Y = AS # Sample from the range of A

2 Q = orth(Y )

3 B = QTA # Implicitly, Â = QB = QQTA.

4 U ,Σ,V T = svd(B)

5 U = QU # Implicitly, Â = UΣV T.

6 return (U ,Σ,V T)

Many variations! Two general strategies:

1 The sketching operator S can be “data-aware.” Leverage power iteration.

2 Alternative constructions of (Q,B). Can proceed iteratively.

March 2023 Michael W. Mahoney and Micha l Dereziński 29
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Full-rank decompositions: QR with column pivoting (QRCP)

Given A ∈ Rm×n, produce (p,Q,R) where

A[:,p] = QR.

Would like to have |R[i, i]| ≈ σi(A).

Useful for ill-conditioned least-squares and low-rank approximation.

Standard methods: LAPACK’s QP3, rank-revealing QR, window-pivoting.

All are much slower than unpivoted QR (LAPACK’s QRF).

March 2023 Michael W. Mahoney and Micha l Dereziński 30
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Householder QR with randomization for pivoting

Independently developed by Martinsson [16] and Duersch and Gu [17].

Compute pivots in blocks of size b (e.g., b = 64) at a time.

Base a block’s pivots on a sketch Y = SA (where Y has k & b rows).

Update (A,Y ) after each block.

We modified C code by Martinsson et al. [18] to use LAPACK++:

https://github.com/rileyjmurray/hqrrp.

Can easily link against Intel MKL, Apple Accelerate, AMD AOCL, etc...

We’ll refer to the algorithm as “QPR.”
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Comparing QPR to QP3 and QRF

Core i7-1065G, 83.2 – 249.6 GFLOPS peak, 16GB DDR4 at 1866 MHz.
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Figure: “QPR” is 4x faster than MKL’s QP3 once n ≥ 5000.
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Comparing QPR to QP3 and QRF

Running on a 2020 Mac Mini with M1 CPU and 16GB RAM.
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Figure: “QPR” is 5x faster than Accelerate’s QP3 once n ≥ 3000.
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RandNLA theory: Aims motivated by RandLAPACK

1 Sharp error estimates.

E.g., Error = (1± o(1)) · Estimate instead of Error = Õ(Bound); all else being equal,

“with high probability” is preferred over “in expectation”.

2 Practical parameter regimes.

E.g., sketch size 2n for least squares or k + 5 for low-rank, instead of Õ(n) or Õ(k).

3 Non-asymptotic input dimensions.

E.g., for all m× n matrices A, rather than asymptotically as m and n go to infinity.

4 Fast sketching operators.

E.g., extremely sparse sketching matrices, with few nnzs per row/column, instead of

dense Gaussian or ±1 matrices. Although, what is fast depends a lot on the problem.
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RandNLA theory: Aims motivated by RandLAPACK

1 Sharp error estimates.

2 Practical parameter regimes.

3 Non-asymptotic input dimensions.

4 Fast sketching operators.

TCS analysis usually gets Aims 3 and 4, and works with fast sketches like
Subsampled FFT/RHT, SASOs (CountSketch, SJLT), but fast is in big-O sense.

Specialized analysis for Gaussian sketches can often get Aims 1 - 3.

General RMT analysis works with dense ±1 sketches and gets Aims 1 and 2.

Some recent works using free probability techniques can extend the RMT
analysis to Subsampled FFT/RHT, which (at least in theory) qualify for Aim 4.

Most recently, we have been able to get Aims 1 - 4 with certain fast LASOs
(LESS embeddings).
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RMT analysis in RandNLA: Toy example

Consider input matrix A ∈ Rm×n and iid Gaussian sketching matrix S ∈ Rd×m

Quality of the sketch Â = SA is often measured by cond(SU) for U = orth(A)
(e.g., subspace embedding, quality of a preconditioner, etc.)

Thanks to the rotation invariance of Gaussian distribution, SU is also Gaussian, so
we can use the Marchenko-Pastur law:

σmin(SU) ∼ 1−
√
n

d
, σmax(SU) ∼ 1 +

√
n

d

Sharp non-asymptotic high-probability statements can be obtained as well. [30]

This Random Matrix Theory (RMT) approach recovers bounds on cond(SU) for
almost any sketch size d > n, whereas the Johnson-Lindenstrauss (JL) approach is
vacuous for d < Cn for some constant C = O(1).
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RMT analysis in RandNLA: Least squares

Consider sketching matrix S ∈ Rd×m with iid Gaussian entries.

Least squares: x∗ = argminx ‖Ax− b‖22 where A ∈ Rm×n

Sketch-and-precondition: Construct preconditioner R−1 from the QR of SA

cond(AR−1) ≤ 6 with high probability for d ≥ 2n.

Sketch-and-solve: Compute x̂ = argminx ‖S(Ax− b)‖22 directly

E‖A(x̂− x∗)‖22 =
n

d− n− 1
‖Ax∗ − b‖22 for d ≥ n+ 2.

Those statements are not recovered by JL-style analysis.

Many related results [31, 32, 33, 34], including ridge regression [35, 36, 37, 38].
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RMT analysis in RandNLA: Low-rank approximation

Randomized SVD: Compute Q = orth(AS), and implicitly, Â = QQ∗A.

Once again, there is a simple bound for Gaussian S, relative to best rank-k
approximation Ak [39]:

E‖A− Â‖2F ≤
(
1 +

k

d− k − 1

)
· ‖A−Ak‖2F for d ≥ k + 2.

Moreover, using RMT, we can show that for Gaussian and ±1 matrices S:

E‖A− Â‖2F = (1± o(1)) · α for α such that
∑
i

σ2
i (A)

dσ2
i (A) + α

= 1.

This is sharper when A exhibits realistic spectral decays, e.g., allowing for small
approximation factor even with sketch size d = k.

Many related results available, e.g., [40, 41, 42].
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Introduction Putting randomness into LAPACK Next generation RandNLA theory Conclusions

RMT analysis in RandNLA: Iterative sketching

Consider input matrix A ∈ Rm×n and iid Gaussian or ±1 matrices St ∈ Rd×m.
Note: In iterative sketching, input matrix may change in each iteration.

Iterative Hessian Sketch: xt+1 = xt − η
(
A∗S∗t StA

)†
gt.

E
‖xt+1 − x∗‖2

‖xt − x∗‖2
= (1± o(1)) ·

(
(1− η)2 + n

d− n
η2
)
.

This lets us derive the optimal step size η. [43, 44, 45]

Sketch-and-Project (Generalized Kaczmarz): xt+1 = xt − (StA)†St(Axt − b)

E
‖xt+1 − x∗‖2

‖xt − x∗‖2
≤ 1− (1− o(1)) · dσ2

min(A)

E‖A− Â‖2F
,

This relates the convergence rate of Generalized Kaczmarz to the approximation
error E‖A− Â‖2F of Randomized SVD. [46, 47, 48]
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Can we extend this to sparse sketching operators?

Recall: Performance landscape of randomized least squares with sparse sketches

Sketching operators: SJLT (SASO), LessUniform (LASO with uniform distribution p)
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Central Limit Theorem for sparse sketching operators

g1 . . . g`1√
`

Row of LASO matrix S

` non-zeros per row

×

A

= 1√
`

∑`
j=1 gja

>
Ij

±1/√pIj

Random row ∼ p

Central Limit Theorem leads to implicit “Algorithmic Gaussianization” of the sketch:

1√
`

∑̀
j=1

gja
>
Ij

`→∞−→ N (0,A>A)

How many samples/non-zeros do we need?

When is the sketch sufficiently “Gaussianized”?

How do we quantify the convergence?
e.g. Wasserstein distance, total variation (TV) distance, etc.
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The hierarchy of Gaussianized vectors

Sub-gaussian concentration of x ∈ Rn w.r.t. a set of functions F : Rn → R

∀f ∈ F : X = f(x)− E f(x) is O(‖f‖Lip)-sub-gaussian

Examples
x ∈ Rn

Gaussian vectors

uniform on the sphere

i.i.d. bounded entries

i.i.d. sub-gaussian entries

Hanson-Wright vectors

sub-gaussian vectors

RMT

JL

Concentration
F ⊆ {Rn→R}

Lipschitz functions

Convex functions

Euclidean functions
f(x) =

√
x>Bx

Linear functions
f(x) = |v>x|
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CLT characterization for LASO sketches

Consider tall input matrix A ∈ Rm×n, i.e., m� n, and a wide LASO matrix
S ∈ Rd×m with distribution p and ` ∈ [m] non-zeros per row.

Informal statement. [49]
If p is a τ -approximation of the leverage score distribution of A, and we use
` ≥ τn log(nd/δ) non-zeros, then SA is total variation distance δ away from a sketch
S̃A that satisfies Euclidean function concentration.

Leverage score of the ith row ai of A is: `i(A) = a>
i (A

>A)−1ai.

When p is the leverage score distribution, we call this LEverage Score
Sparsification (LESS).

When p is the uniform distribution (LessUniform), then τ is simply the
coherence of matrix A.

We show this by establishing a version of the Hanson-Wright inequality that is
restricted to the subspace defined by the columns of A.
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Leverage Score Sparsified (LESS) embeddings [34]

S

s>
i

×

A leverage scores

leverage score of ith row ai: `i(A) = a>
i (A

>A)−1ai.
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Leverage Score Sparsified (LESS) embeddings [34]

Sparse sketching operators which are essentially indistinguishable from Gaussian.

The central limit theorem characterization provides:

a way to convert RMT-style results from Gaussian sketches to sparse sketching
operators, including for least squares, low-rank and iterative sketching.
an explanation for the empirical behavior of LASO sketches, in terms of the
coherence of the input matrix A.

Example of a non-asymptotic RMT-style result for LESS embeddings: [49]

E‖A(x̂− x∗)‖22 =
(
1±O( 1√

d
)
)
· n

d− n− 1
‖Ax∗ − b‖22
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RandNLA directions looking beyond RandLAPACK

What will we need from RandNLA in 10-20 years,
when RandLAPACK is ubiquitous and ChatGPT runs the world?

RandNLA in large-scale continuous optimization.

RandNLA in massively distributed computing environments.

Statistical/ML properties of RandNLA algorithms.
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Outline

1 Introduction

2 Putting randomness into LAPACK

Sketching in the RandBLAS

Least squares and optimization

Low-rank approximation and full-rank decompositions

3 Next generation RandNLA theory

Theoretical aims motivated by RandLAPACK

Recent developments using RMT analysis

Looking beyond RandLAPACK

4 Conclusions
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Conclusions

Things we covered:

The nature of RandBLAS and RandLAPACK.

Efficient sparse sketching.

The importance of sparse sketching in a least squares context.

Randomized algorithms for low-rank and full-rank decompositions.

Theoretical directions in RandNLA motivated by RandLAPACK.
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Extra slides
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A word on “drivers” and “computational routines”

Most algorithms are either drivers or computational routines (terms borrowed from
LAPACK’s API).
Drivers:

solve higher-level problems than computational routines,

their implementations tend to use a small number of computational routines,

are used only for traditional linear algebra problems.

Computational routines:

address a mix of traditional linear algebra problems and specialized RandNLA
problems.

We use this taxonomy to push much of the RandNLA design space into
computational routines.

essential: to keeping drivers simple and few in number.

side effect: since choices made in the computational routines affect drivers, it is
hard to state theoretical guarantees for the drivers without being prescriptive on
the choice of computational routine (which we don’t want to do).
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Least Squares and Optimization (Section 3)

3.1 Problem classes

3.1.1 Minimizing regularized quadratics

3.1.2 Solving least squares and basic saddle point problems

3.2 Drivers

3.2.1 Sketch-and-solve for overdetermined least squares

3.2.2 Sketch-and-precondition for least squares and saddle point problems

3.2.3 Nystrom PCG for minimizing regularized quadratics

3.2.4 Sketch-and-solve for minimizing regularized quadratics

3.3 Computational routines

3.3.1 Technical background: optimality conditions for saddle point problems

3.3.2 Preconditioning least squares and saddle point problems: tall data matrices

3.3.3 Preconditioning least squares and saddle point problems: data matrices
with fast spectral decay

3.3.4 Deterministic preconditioned iterative solvers
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Low-rank Approximation (Section 4)

4.1 Problem classes

4.1.1 Spectral decompositions

4.1.2 Submatrix-oriented decompositions

4.2 Drivers

4.2.1 Methods for SVD

4.2.2 Methods for Hermitian eigendecomposition

4.2.3 Methods for CUR and two-sided ID

4.3 Computational routines

4.3.1 Power iteration

4.3.2 Orthogonal projections: QB and rangefinders

4.3.3 Column-pivoted matrix decompositions

4.3.4 One-sided ID and CSS

4.3.5 Estimating matrix norms

4.3.6 Oblique projections
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Further Possibilities for Drivers (Section 5)

5.1 Multi-purpose matrix decompositions

5.1.1 QR decomposition of tall matrices

5.1.2 QR decomposition with column pivoting

5.1.3 UTV, URV, and QLP decompositions

5.2 Solving unstructured linear systems

5.2.1 Direct methods

5.2.2 Iterative methods

5.3 Trace estimation

5.3.1 Sampling-based methods

5.3.2 Quadrature-based methods via Krylov subspaces

5.3.3 There’s much more to say
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