
Building foundations for scientific machine
learning at scale

Michael W. Mahoney

Machine Learning and Analytics, SciData, LBNL
ICSI and Department of Statistics, UC Berkeley

March 2022

Outline

Introduction and Overview

Methods inform science: Learning meaningfully continuous

scientific systems (Aditi Krishnapriyan, etc.)

Science informs methods: A phenomenological theory for SOTA

NN performance (Charles Martin, etc.)

Implementations at scale: Putting randomized matrix algorithms

within LAPACK (RandLAPACK) (Riley Murray, etc.)

Conclusions

Foundations of data?

I NSF’s Transdisciplinary Research in Principles of Data Science

(TRIPODS) program

I integrate three areas central to the foundations of data by

uniting the statistics, mathematics, and theoretical computer

science research communities.

I UC Berkeley FODA (Foundations of Data Analysis) Institute

I complexity theory of inference via optimization

I stability as a computational-inferential principle

I randomness as a statistical-algorithmic resource

I principled combination of science-based and data-driven

models

What did AlphaFold learn?

I ML vs ML for science vs ScientificML

I Goals of ML for industry vs goals of ML for science: tension bw identifying

patterns in data versus discovering patterns in the world from data.

I What does AlphaFold know that armies of biologists do not know?

Combining domain-driven and data-driven models?

Outline

Introduction and Overview

Methods inform science: Learning meaningfully continuous

scientific systems (Aditi Krishnapriyan, etc.)

Science informs methods: A phenomenological theory for SOTA

NN performance (Charles Martin, etc.)

Implementations at scale: Putting randomized matrix algorithms

within LAPACK (RandLAPACK) (Riley Murray, etc.)

Conclusions

Connection between ResNets and Dynamical Systems

● ResNets are the most popular network architectures on the market.

● Hypothesis: Recent literature notes that ResNets learn a forward Euler discretization
of a dynamical system:

● Spoiler: we show that ResNets are not forward Euler discretizations of a dynamical
system in a meaningful way due to overfitting.

=1 sneak it in

● What does it even mean to say ResNet learns a forward Euler representation of a
dynamical system?

● We need context where a dynamical system is meaningful.

● So … let’s try time series prediction of a dynamical system.

Experiments in Dynamics

Numerical Integration and Machine Learning work in
Opposite Directions

Revisiting a Simple Dynamical System

● Learning a residual makes sense in many contexts:

Future = Now + Update

● Let’s study training such a F(x) based on a neural network G(x):

x(t+Δt) = F(x(t)) = x(t)+G(x(t)) = NumericalMethod[G(x)]

● Numerical integrators approximate the integral with a discrete series of applications of
f(x,t)=dx/dt for a time step Δt:

Syntactic Similarity is not Sufficient for Correspondence

● Approximations to dynamical systems have richer properties.

A. For a given integrator, as Δt→ 0, error→ 0 (timestep refinement)

A. Integrators have a rate of convergence: log(error) ∝ r log(Δt)

A. The same dx/dt with different integrators should approach the same x(tmax) at
their respective rates

● We can verify these using a convergence test.

● These conditions are critical to deriving integration schemes.
(They also make great integration tests for numerical software!)

Does ResNet Units Satisfies these Properties?

xk+1=xk+RK4[G,Δt](xk)

xk+1=xk+Δt G(xk)

xk+1=xk+Δt G(xk +Δt/2G(xk))

Plug the frozen G into other
graphs

Given G:

Increase or Decrease Δt

● and predictions should change consistently as expected.

● If no, then the model should behave differently w.r.t. Δt.

● If yes, then we should be able to alter the model:

One-off plots aren’t sufficient
● Sweep Δt and calculate errors to do the full convergence test.

More time steps

Part 1: Δt→ 0 with same graph Part 2: Try different integrators

Illustration of Convergence Test for ODE-Nets

Four Prototypical Dynamical Systems

Interpolation: Predicting Fine-scale Solutions from Coarse

Training Data

Extrapolation: Predicting Trajectories for New Initial

Conditions

Irregularly Sampled Training Data

Outline

Introduction and Overview

Methods inform science: Learning meaningfully continuous

scientific systems (Aditi Krishnapriyan, etc.)

Science informs methods: A phenomenological theory for SOTA

NN performance (Charles Martin, etc.)

Implementations at scale: Putting randomized matrix algorithms

within LAPACK (RandLAPACK) (Riley Murray, etc.)

Conclusions

Some impracticalities

NN training is more of a dark art than science/engineering
I Lots of “tricks” that do not port
I Extensive expensive hyperparameter tuning
I . . .

NNs are nonrobust
I Adversarial perturbations, backdoor attacks, etc.
I Few design principled beyone training/testing "errors"
I Not designed with counterfactual considerations
I . . .

NNs require huge amounts of data
I How to design models if you are data poor?
I How to develop models if you are data poor?
I How to deploy models if you are data poor?
I . . .

Mahoney (UC Berkeley) Practical Theory & NN Models July 2021 3 / 48

A motivating question
Given a SOTA CV/NLP/Recsys model: how to tell if you have trained
with enough data (e.g., what metric, with/without any data)? Is the
model overtrained? Etc.?
Can we predict trends in the quality of state-of-the-art neural networks
without access to training or testing data?∗

Odd question for AI/ML people – if forced, they say of course not.
Some other possible answers:

I Yes or no, since a theorem says such-and-such.
I Yes or no, if you assume some Bayesian something-or-other.
I Maybe, since convolutions smooth, but not for NLP.
I I don’t know, since I build systems that work for any data.

This is not how people build bridges or do brain surgery or explore for
oil or trade stocks or . . .
Why is it the way we do AI/ML?

∗“Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data,” Martin, Peng,

and Mahoney, arXiv:2002.06716, Nature Communications, 2021.
Mahoney (UC Berkeley) Practical Theory & NN Models July 2021 6 / 48

What is theory? What is the role of theory?
https://en.wikipedia.org/wiki/Theory

Scientific theory:
“a well-confirmed type of explanation of nature, made in a way
consistent with scientific method . . . described in such a way that
scientific tests should be able to provide empirical support for it, or
empirical contradiction (“falsify”) of it.”
descriptive: this is the way the world is

Mathematical theory:
“a branch of or topic in mathematics . . . an extensive, structured
collection of theorems”
prescriptive/normative: this is the way the world should be

“Working with state-of-the-art neural network models is a practical business, and it demands a
practical theory.”

Mahoney (UC Berkeley) Practical Theory & NN Models July 2021 7 / 48

Lots of DNNs analyzed: Look at nearly every
publicly-available SOTA model in CV and NLP

Don’t evaluate your method on one/two/three NNs, evaluate it on:
I dozens (2017)
I hundreds (2019)
I thousands (2021)

Don’t use bad/toy models, use SOTA models.
I If you do, don’t be surprised if low-quality/toy models are different

than high-quality/SOTA models.

Don’t train models, instead validate pre-trained models.
I Validating models is harder than training models.

Mahoney (UC Berkeley) Practical Theory & NN Models July 2021 10 / 48

Results: LeNet5 (an old/small NN example)

Figure: Full and zoomed-in ESD for LeNet5, Layer FC1.

Older and/or smaller and/or less well-trained models look like bulk+spike.

Mahoney (UC Berkeley) Practical Theory & NN Models July 2021 11 / 48

Results: AlexNet (a typical modern/large DNN example)

Figure: Zoomed-in ESD for Layer FC1 and FC3 of AlexNet.

Newer SOTA models have heavy-tail structure in their weight matrix
correlations (i.e., not elements but eigenvalues).

Mahoney (UC Berkeley) Practical Theory & NN Models July 2021 12 / 48

RMT-based 5+1 Phases of Training (in pictures)

(a) Random-like. (b) Bleeding-out. (c) Bulk+Spikes.

(d) Bulk-decay. (e) Heavy-Tailed. (f) Rank-collapse.

Figure: The 5+1 phases of learning we identified in DNN training.
Mahoney (UC Berkeley) Practical Theory & NN Models July 2021 20 / 48

Watching weights with WeightWatcher
https://github.com/CalculatedContent/WeightWatcher

“pip install weightwatcher”

Mahoney (UC Berkeley) Practical Theory & NN Models July 2021 24 / 48

c|c
(TM)

(TM)

 6
calculation | consulting why deep learning works

Understanding deep learning requires rethinking generalization

Motivations: WeightWatcher Theory

The weightwatcher theory is a Semi-Empirical theory based on:  

the Statistical Mechanics of Generalization,
 Random Matrix Theory, and

the theory of Strongly Correlated Systems

c|c
(TM)

(TM)

 46
calculation | consulting why deep learning works

New approach: SemiEmpirical Theory

“Generalized Norm”
 simple, functional form
 can infer from empirical fit

Eigenvalues of Teacher
empirical fit to:

“Asymptotics of HCZI integrals …” Tanaka (2008)

WeightWatcher
PowerLaw metric

(The first) large-scale study (meta-analysis) of hundreds of
SOTA pretrained models ‡

Different metrics on pre-trained VGG.

Summary statistics: VGG; ResNet; DenseNet.

Summary statistics: hundreds of models.

Lots more plots to prove we can “predict trends . . . without access . . . ”
‡“Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data,” Martin,

Peng, and Mahoney, arXiv:2002.06716, Nature Communications, 2021.
Mahoney (UC Berkeley) Practical Theory & NN Models July 2021 28 / 48

Using a theory: leads to predictions

Based on analyzing hundreds of pre-trained SOTA models:
“Correlation flow”:

I “Shape” of ESD of adjacent layers, as well as overlap between
eigenvectors of adjecent layers, should be well-aligned.

“Scale collapse”:
I “Size” of ESD of one or more layers changes dramatically, while the size

of other layers changes very little, as a function of some perturbation of
a model, during training (or post-training modification).

“Correlation traps”:
I Spuriously large eigenvalues§ may appear, and they may even be

important for model convergence.

We can measure these quantities with Weightwatcher—so can you!

§Eigenvalues not due to signal in the data—we have theorems-style theory for Hessians (“Hessian Eigenspectra of More
Realistic Nonlinear Models,” Liao and Mahoney, https://arxiv.org/abs/2103.01519), but it’s still open for Weights.

Mahoney (UC Berkeley) Practical Theory & NN Models July 2021 32 / 48

Hessian information at scale‖: pyHessian and ADAHessian
(with Amir Gholami, Zhewei Yao, etc.)

PyHessian is a pytorch library for Hessian based analysis of
neural network models. It enables computing:

Top Hessian eigenvalues
The trace of the Hessian matrix
The full Hessian Eigenvalues Spectral Density (ESD)

Compute lots of Hessian
information for:

Training (ADAHESSIAN)
Quantization (HAWQ,
QBERT, I-BERT) ¶

Pruning
Inference

Also used for:
Validation: loss landscape
Validation: model robustness
Validation: adversarial data
Validation: test hypotheses

¶TLDR: See our recent review: “A Survey of Quantization Methods for Efficient Neural
Network Inference,” by Gholami et al. (arXiv:2103.13630).

‖TLDR: It takes 2X backprop time!
Mahoney (UC Berkeley) Practical Theory & NN Models July 2021 43 / 48

Loss landscapes and robustness
(with Yoqing Yang, etc.)

Use CKA similarity, mode connectivity, Hessian information to characterize
“rugged convexity” in loss landscapes:

Mahoney (UC Berkeley) Practical Theory & NN Models July 2021 44 / 48

Outline

Introduction and Overview

Methods inform science: Learning meaningfully continuous

scientific systems (Aditi Krishnapriyan, etc.)

Science informs methods: A phenomenological theory for SOTA

NN performance (Charles Martin, etc.)

Implementations at scale: Putting randomized matrix algorithms

within LAPACK (RandLAPACK) (Riley Murray, etc.)

Conclusions

Introduction Randomized BLAS Least squares and optimization Low-rank approximation Conclusion Extra slides

What is LAPACK?

LAPACK (Linear Algebra PACKage)

standard software library for numerical linear algebra
routines for systems of linear equations and linear least squares, eigenvalue
problems, and SVD
also routines to implement associated matrix factorizations, LU, QR, Cholesky
and Schur, etc.

“If you call a linear algebra routine in python, R, etc. . . . then you probably call
something that calls something that calls LAPACK.”

BLAS (Basic Linear Algebra Subprograms)

a specification that prescribes a set of low-level routines for common linear
algebra operations
vector addition, scalar multiplication, dot products, linear combinations, and
matrix multiplication
the de facto standard low-level routines for linear algebra libraries

Michael W. Mahoney 3

Introduction Randomized BLAS Least squares and optimization Low-rank approximation Conclusion Extra slides

Randomized numerical linear algebra (RNLA)

Using randomized algorithms to solve deterministic problems.

For example: min
x
‖Ax− b‖22

The algorithms use randomness internally

Rely on a black-box random number generator.

The generator needn’t be very high-quality.

The algorithms gamble with solution quality and/or computational cost

Quality and cost vary from one run to another.

Many RNLA algorithms have extremely small variations in performance.

Reviews from different perspectives: [17, 12, 18, 19, 20, 21, 22, 13, 23]

Michael W. Mahoney 5

Introduction Randomized BLAS Least squares and optimization Low-rank approximation Conclusion Extra slides

What does randomization buy us?

Efficient algorithms for computing approximate solutions

Whole areas. E.g., low-rank approximation [12], convex optimization [24].

Efficient algorithms for computing machine-precision solutions

Specific problems. E.g., strongly overdetermined least squares [9, 10, 11],
block column-pivoted QR [25, 26].

Robust algorithms for intractable problems

E.g., nonnegative matrix factorization [27], interpolative decomposition [28]

Solving problems under data-privacy constraints [29, 30, 31, 32]

Reviews from different perspectives: [17, 12, 18, 19, 20, 21, 22, 13, 23]

Michael W. Mahoney 6

Introduction Randomized BLAS Least squares and optimization Low-rank approximation Conclusion Extra slides

Two ingredients of RNLA algorithms

Random sketching

For overdetermined least squares with
data (A, b), obtain sketched data

ASÂ

and b̂ = Sb.

High-level deterministic NLA

Next, solve the sketched problem

min
x
‖S (Ax− b) ‖22.

For example, by SVD

Â = UΣV T,

⇒ x̂ = V Σ†UTb̂.

Michael W. Mahoney 7

Introduction Randomized BLAS Least squares and optimization Low-rank approximation Conclusion Extra slides

An architecture in two parts

Randomized LAPACK will be written in C++ and build on LAPACK++.

Configurable object-oriented API and simplified procedural API

Data model to focus on dense matrices in shared-memory.

Accommodate sparse/abstract matrices with “linear operator” objects.

The Randomized BLAS will handle sketching dense data matrices.

Procedural API only

Hide all details of the random number generator (but preserve reproducibility)

Support sketching operators drawn from a variety of distributions

Opportunities to reorganize computation for big performance gains

Michael W. Mahoney 8

Introduction Randomized BLAS Least squares and optimization Low-rank approximation Conclusion Extra slides

Levels in the Randomized BLAS

Levels 1 – 3 produce sketches. Possible organizations:

One sketch at Level 1, two at Level 2, three or more at Level 3.

One sketching operator at Level 1, two at Level 2, three or more at Level 3.

Special examples (AS,ATAS) (SA,Sb) S1AS2

Level by # sketches 2 2 1
Level by # operators 1 1 2

Level 0: generate defining data for a sketching operator.

Michael W. Mahoney 13

Introduction Randomized BLAS Least squares and optimization Low-rank approximation Conclusion Extra slides

Least squares problems . . . and optimization

Data matrix A is m× n and tall (m� n).

Overdetermined least squares

min
x∈Rn

‖Ax− b‖22

Underdetermined least squares

min
y∈Rm

‖y‖22 subject to ATy = c.

Randomized LAPACK:

take a “primal-dual” perspective on these problems.

include methods for solving to any desired accuracy.

facilitate more general second-order optimization algorithms.

Michael W. Mahoney 14

Introduction Randomized BLAS Least squares and optimization Low-rank approximation Conclusion Extra slides

A saddle point perspective

Consider a simple saddle point system

[
I A
AT 0−H

] [
y
x

]
=

[
b
c

]
. (1)

Equation 1 (with H = 0) characterizes optimal solutions to the primal-dual pair

min
x∈Rn

‖Ax− b‖22 + 2cTx

min
y∈Rm

‖y − b‖22 subject to ATy = c.

Encounter sequences of saddle point systems in ...

`p regression for p ∈ (1, 2)

minimizing a composite convex function via Newton’s method

Interior-point methods for quadratic linear programming when H is psd

Michael W. Mahoney 15

Introduction Randomized BLAS Least squares and optimization Low-rank approximation Conclusion Extra slides

Overdetermined least-squares example

Fixed data matrix:

A ∈ R100,000×2,000

cond(A) = 100, 000

Fixed target vector:

‖AA†b‖2 = 0.95‖b‖2

LAPACK time in seconds:

GELSD: 26.3

GELSS: 45.6

Laptop w/ Core i7-1065G7

Battery power

Normal equation error vs time in seconds

Ten trials with SRCT S ∈ R6,000×100,000

Michael W. Mahoney 17

Introduction Randomized BLAS Least squares and optimization Low-rank approximation Conclusion Extra slides

Low-rank approximation

Produce a suitably factored representation of a low-rank matrix Â, which
stands in as an approximation for a target matrix A.

How to measure the quality of an approximation?

Distance from the target ‖A− Â‖
Distance from an “optimal” approximation ‖A? − Â‖.

Algorithms in Randomized LAPACK

can accept parameter k, produce Â where rank Â = min{k, rankA}.
can (in some cases!) accept ε and ensure ‖A− Â‖ ≤ ε.
come with theoretical guarantees for bounding ‖A− Â‖ and/or ‖A? − Â‖.

Michael W. Mahoney 18

Outline

Introduction and Overview

Methods inform science: Learning meaningfully continuous

scientific systems (Aditi Krishnapriyan, etc.)

Science informs methods: A phenomenological theory for SOTA

NN performance (Charles Martin, etc.)

Implementations at scale: Putting randomized matrix algorithms

within LAPACK (RandLAPACK) (Riley Murray, etc.)

Conclusions

Conclusions

I Foundations of Scientific Machine Learning

I Methods inform science: Learning meaningfully continuous

scientific systems

I Science informs methods: A phenomenological theory for

SOTA NN performance

I Implementations at scale: Putting randomized matrix

algorithms within LAPACK (RandLAPACK)

	Introduction and Overview
	Methods inform science: Learning meaningfully continuous scientific systems (Aditi Krishnapriyan, etc.)
	Science informs methods: A phenomenological theory for SOTA NN performance (Charles Martin, etc.)
	Implementations at scale: Putting randomized matrix algorithms within LAPACK (RandLAPACK) (Riley Murray, etc.)
	Conclusions

