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Foundations of data?

» NSF's Transdisciplinary Research in Principles of Data Science
(TRIPODS) program
» integrate three areas central to the foundations of data by
uniting the statistics, mathematics, and theoretical computer

science research communities.

» UC Berkeley FODA (Foundations of Data Analysis) Institute

» complexity theory of inference via optimization
» stability as a computational-inferential principle
» randomness as a statistical-algorithmic resource
» principled combination of science-based and data-driven

models



What did AlphaFold learn?

Article

Highly accurate protein structure prediction
with AlphaFold
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Open access Sebastlan Bodensteln', David Siiver”, Orlol\.’lnvals‘ Andrew W. Senlor’, Koray Kavukcuoglu‘
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Proteins are essentlal to life, and understanding their structure can facllitate a

» ML vs ML for science vs ScientificML

» Goals of ML for industry vs goals of ML for science: tension bw identifying

patterns in data versus discovering patterns in the world from data.

» What does AlphaFold know that armies of biologists do not know?



Combining domain-driven and data-driven models?

Characterizing possible failure modes
in physics-informed neural networks

Aditi S. Krishnapriyan*'2, Amir Gholami*-2,
Shandian Zhe®, Robert M. Kirby*, Michael W. Mahoney?>*
Science | DOI:10.1145/3524015 Ch e . Lawrence Berkeley National Laboratory, 2University of California, Berkeley,
3University of Utah, “International Computer Science Institute

Neural Networks Learn {aditikl, amirgh, mahoneymw}@berkeley.edu, {zhe, kirby}@cs.utah.edu
to Speed Up Simulations

Physics-informed machine learning is gaining attention, Abstract
but suffers from trainingissues.

Recent work in scientific machine learning has developed so-called physics-

HYSICAL SCIENTISTS AND €n-

gineering research and de-

velopment (R&D) teams are

embracing neural networks

in attempts to accelerate
their simulations. From quantum me-
chanics to the prediction of blood flow
in the body, numerous teams have re-
ported on speedups in simulation by
swapping conventional finite-element
solvers for models trained on various
combinations of experimental and syn-
thetic data.
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Connection between ResNets and Dynamical Systems

ResNets are the most popular network architectures on the market.

B
unit unit
&y Tet+1

Ri(w,0:)
.
of a dynamical system:

Tt+2
Rit1(Tis1,0i41)
Hypothesis: Recent literature notes that ResNets learn a forward Euler discretization

Tpt1 = Tk + At’R,(:Bk,ek) —_—

oz (t) _
o = Ria(®),t,0)
=1 sneak it in

Spoiler: we show that ResNets are not forward Euler discretizations of a dynamical
system in a meaningful way due to overfitting.




Experiments in Dynamics

dynamical system?

What does it even mean to say ResNet learns a forward Euler representation of a
We need context where a dynamical system is meaningful.

So ... let’s try time series prediction of a dynamical system.

.
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Numerical Integration and Machine Learning work in
Opposite Directions

Numerical Integration:

Ground Truth Dynamics

Learning the Dynamics:
What's G???

f=% G(x; 0
dr (-x > )

Approximation yields a model Use data to optimize a model

Xntl =Xy + ALf(x,) min ||x,41 — (X, + At Gx))|

— N— —
Inferred Time Series Ground Truth Time Series
x‘ X P
//"\-0\ ;

= I

AW t

o>



Revisiting a Simple Dynamical System
e Learning a residual makes sense in many contexts:

Future = Now + Update

Let’s study training such a F(x) based on a neural network G(x):

x(t+At) = F(x(t)) = x(t)+G(x(t)) = NumericalMethod[G(x)]
f(x,t)=dx/dt for a time step At:

Numerical integrators approximate the integral with a discrete series of applications of

t+Ar
x(t + Art) = x(1) + / f(x, t)dt

=~ x(t) + schemel[ f, x, t, At]




Syntactic Similarity is not Sufficient for Correspondence

e Approximations to dynamical systems have richer properties.

A.  For a given integrator, as At-> 0, error-> 0 (timestep refinement)
A. Integrators have a rate of convergence: log(error) « r log(At)

A. The same dx/dt with different integrators should approach the same x(t ) at
their respective rates

e We can verify these using a convergence test.

e These conditions are critical to deriving integration schemes.
(They also make great integration tests for numerical software!)



Does ResNet Units Satisfies these Properties?
e If yes, then we should be able to alter the model:

Given G:

X=Xt AL G(xy +A/2G(x))
Xir1=Xi+At G(Xy )

Increase or Decrease At

Plug the frozen G into other
graphs
L]

Xps 1 =X, FRK4[G, At] ()
and predictions should change consistently as expected.

If no, then the model should behave differently w.rt. At.

o>



Error

One-off plots aren’t sufficient

1072

1074

1076

Sweep At and calculate errors to do the full convergence test.

Part 1: At-> 0 with same graph

Part 2: Try different integrators

T
~== ODE-Net(Euler) i
-~ ODE-Net(Midpoint) |
—— ODE-Net(RK4) i
j
|
|
|
f
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1076

—e— Euler — Midpoint
—+— Euler — RK4
—e— Midpoint — Euler
—+ Midpoint — RK4
—e— RK4 — Euler
—=— RK4 — Midpoint

10°

Inference At

1071 10t

More time steps

107t 10t

Inference At




— Euler-Net: ; + ANT(z; #)
- -~ Baseline numerical Euler: 7, + hE'(z;)
Wk

—  EulerNet: 2, + 0.0LN(2,:8)
--- Bassline numerical Euler: z; + 0.OLF(z)
\ ! \ \

= e e im
Evaluated h

(b) Euler-Net convergence test

—  RKA-Nex: z + RK 4N (z;6]]

1P Frr v v T —

- -~ Baseline numerical RK4: . + RKA[F(2.)]

() Evaluated h is 10% of the trained At

—  RKA-Net: 7 + RKAN (z60)]
- -~ Baseline numerical RK4: =z, + RK4[F(z,)|
\ \

1015 i s " " s

B T T (e T
Evaluated h

(e) RK4 Net convergence test

(d) RK4 Net

(f) Evaluated h is 10% of the trained At

Figure 2: Illustration of convergence tests with different ODE-Nets. (a) Schematic of an ODE-Net

DA

[m] = = =



—  Euler-Net: 7+ RN(r:;8)
W

o RRNe 5, ¢ RRAN(230)

—  Euler-Net: 7+ W\ (7c,8)
— RKA-Net: z‘+RK4W(2.,9)]
— o coim
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(a) Non-linear pendulum (b) Lotka-Volterra system
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() Cartesian pendulum
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(d) Double gyre fluid fAlow
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Figure 3: Illustration of convergence tests on prototypical dynamical systems. We demonstrate
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h =025 h=At=0J5 h=038

Euler-Net Truth

RK4-Net

Figure 4: Double gyre fluid flow: Reconstructing fine-scale flow fields from

coarse training

data. The training data for this problem consists of vorticity field snapshots of the dy
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Figure 5: N

: Ewty

(c) Incorrect model (Euler-Net)

e

(d) Correct model (RK4-Net)

[m]

=

to predicl initial condition trajectories on which
the model was not f;muwd ODE-Net models are trained on randomly chosen initial conditions (different
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o Training data——  RK4-Net
— Euler-Net --- Actual solution

Probakility

A1), ¥(t)

Ar 2Ar 347 s BAr
At distribution
{a) Af of training data distribution

@ - Training data — Finely resolved solution
--- Actual solution

1), ¥(t)

L
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Time

(e) Zoomed in fine-scale evaluation

a—
[
a
@
o
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(b) Fine-scale evaluation

— EulerNet =, + AtA (2 #)

——RK4-Net: x, + RK 4N (z;;#)]

/
102 10t
Evaluated b

(d) Convergence test

Figure 6: Learning continuous dynamics from irregularly spaced discrete pam.ts (a) ﬂmnm
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Some impracticalities

e NN training is more of a dark art than science/engineering

» Lots of “tricks” that do not port

» Extensive expensive hyperparameter tuning
> ..

@ NNs are nonrobust
» Adversarial perturbations, backdoor attacks, etc.
» Few design principled beyone training/testing "errors"
» Not designed with counterfactual considerations
>

@ NNs require huge amounts of data

How to design models if you are data poor?

How to develop models if you are data poor?
How to deploy models if you are data poor?

vV vy vy

Mahoney (UC Berkeley) Practical Theory & NN Models « ~ » Huly 2021

3/48



A motivating question

Can we predict trends in the quality of state-of-the-art neural networks
without access to training or testing data?*

e Odd question for Al/ML people — if forced, they say of course not.

@ Some other possible answers:
» Yes or no, since a theorem says such-and-such.
» Yes or no, if you assume some Bayesian something-or-other.
» Maybe, since convolutions smooth, but not for NLP.
» | don't know, since | build systems that work for any data.

@ This is not how people build bridges or do brain surgery or explore for

oil or trade stocks or ...
@ Why is it the way we do Al/ML?

* “Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data,” Martin, Peng,

and Mahoney, arXiv:2002.06716, Nature Communications, 2021.
Mahoney (UC Berkeley) Practical Theory & NN Models « ~ » Huly 2021
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What is theory? What is the role of theory?

https://en.wikipedia.org/wiki/Theory

Scientific theory:

@ "a well-confirmed type of explanation of nature, made in a way
consistent with scientific method ... described in such a way that
scientific tests should be able to provide empirical support for it, or
empirical contradiction (“falsify”) of it."

@ descriptive: this is the way the world is

Mathematical theory:

@ "a branch of or topic in mathematics ... an extensive, structured
collection of theorems”

@ prescriptive/normative: this is the way the world should be

“Working with state-of-the-art neural network models is a practical business, and it demands a

practical theory.”

Mahoney (UC Berkeley) Practical Theory & NN Models « ~ » Huly 2021
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Lots of DNNs analyzed: Look at nearly every
publicly-available SOTA model in CV and NLP

e Don't evaluate your method on one/two/three NNs, evaluate it on:

» dozens (2017)
» hundreds (2019)
» thousands (2021)

e Don't use bad/toy models, use SOTA models.

» If you do, don't be surprised if low-quality/toy models are different
than high-quality/SOTA models.

@ Don't train models, instead validate pre-trained models.
» Validating models is harder than training models.

Mahoney (UC Berkeley) Practical Theory & NN Models « > = = July 2021 10/48



Results: LeNet5 (an old/small NN example)

output

Input

LeNet5: pemp(A) and MP fit

— MPfit
Pemp(A)

o] 10 20
Eigenvalues of X = W™W

LERR

conv2  poolz hiddens

LeNet5: ... zoomed in

—— MPfit
Pemp(d)

1 2 3 4
Eigenvalues of X = WTW

5

Figure: Full and zoomed-in ESD for LeNet5, Layer FC1.

Older and/or smaller and/or less well-trained models look like bulk-+spike.

Mahoney (UC Berkeley) Practical Theory & NN Models « > 5 =

July 2021
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AlexNet FC1: ... zoomed in* 10 AlexNet FC3: .. zoomed in

3.0
—— MP fit — MPfit
2.5 Pemp(A) 0.8 Pemp(A)
2.0
E g 0.6
E LS 3
& <04
1.0
05 0.2
0.0 0.0
0 2 4 o] 2 4
Eigenvalues (A) of X =W, Wec; Eigenvalues (A) of X = W[ Wec;

Figure: Zoomed-in ESD for Layer FC1 and FC3 of AlexNet.

Newer SOTA models have heavy-tail structure in their weight matrix
correlations (i.e., not elements but eigenvalues).

Mahoney (UC Berkeley) Practical Theory & NN Models « =~ » =il - July 2021 12/48



RMT-based 5+1 Phases

Spectral Density pug(A)
c o o o
N 2 o ®

°
o

(a) RANDOM-LIKE.

°
>

Spectral Density pus(A)
° °
o Y

°
o

Random-like ESD p(A)

— MPfit
Pemo(A)

10 15 20 25
Eigenvalues A of X = W'W

Bulk Collapse ESD p(A)

— MPfit
Pemp(A)

2 ] 6
Eigenvalues A of X = W'W

(d) BULK-DECAY.

Figure: The 541 phases of learning we identified in DNN training.

Mahoney (UC Berkeley)

of Training (in pictures)

Bleeding out ESD p(A)
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(b) BLEEDING-OUT.

10 15 20 25
Eigenvalues A of X = W'W

Heavy Tailed ESD p(A)

04 PemolA)
=
=
&
> 0.3
@
8
002
e
g
201
&

0.0

0 10 20

(e) HEAVY-TAILED.
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c o o o
5 R o @
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(c) BULK+SPIKES.

Bulk+Spikes ESD p(A)
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A PemoA)
/

|

1
Eigenvalues A of X = W'W

Singular ESD p(A)

@
&

5
5

Spectral Density
Now
3 8

5

Pemo(A)

(f) RANK-COLLAPSE.

Practical Theory & NN Models « >
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Watching weights with WeightWatcher
https://github.com/CalculatedContent/WeightWatcher

Analyzing DNN Weight matrices with WeightWatcher

1. Take a model
U » v’ 2. Take a weight matrix .
3. Do Spectral analysis
> 4. Histogram of eigenvalues

Random-like ESD p(A) Bulk-+Spikes ESD p(A) Heavy Tailed ESD p(A)

041 Penpl)

00l

Lo 15 20 25 0o 0 10 20
Eigenvalues A of X = W'W  Eigenvalues A of X =W'W  Eigenvalues A of X = W™ W

=P Analyze one layer of pre-trained model
=P Compare multiple layers of pre-trained model
=P Monitor NN properties as you train your own model

“pip install weightwatcher”

Mahoney (UC Berkeley) Practical Theory & NN Models «  » July 2021 24 /48



cle

Motivations: WeightWatcher Theory

Understanding deep learning requires rethinking generalization

The weightwatcher theory is a Semi-Empirical theory based on:

the Statistical Mechanics of Generalization,
Random Matrix Theory, and
the theory of Strongly Correlated Systems

calculation | consulting why deep learning works
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New approach: SemiEmpirical Theory
1 3 g M
lim —log E4 |exp | STr[WIAW] || = =3 Ga(\)
“Asymptotics of HCZI integrals ...” ETanaka (2008)

“Generalized Norm” !
simple, functional form Eigenvalues of Teacher

can infer from empirical fit empirical fit to:
A
GA(A) = fRA(Z)dZ e — R(Z) — za—l

WeightWatcher 4 = alog \ ~ . G\
PowerlLaw metric @ = Q08 Amaz Ogi:Z1 al Z)

e why deep learning works
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(The first) large-scale study (meta-analysis) of hundreds of
SOTA pretrained models *

Series F ] Metmic Tog WIZ) | & ] Toe XT3
TSE 028 [0 [ o0
Test Accuracy vs Avg. log Frobenius Nor Test Arcracy v vl specrlNorr vee O R Bl I
¥ s A v endall7 | - 0. 03| 0.
RMSE, 0.56 A2 0.8 1. .79 RHSE: 0.23 A2: 0.98 1. 0.9 L on 093 [0 093
Y $ i b ‘ ::i: . ResNet s| om 00 0 |09 | 09
. 3 . 3 Kendallr | 10 0 |0 | -0
-ty ety
R e 373 “ e - RNSE 24 28 18 9
i Lo 3 -y e o R | am | om |om| om
H LN e e £ bo = e Kendallr | 019 079 |-080| -oss
iy o s En s e TS 03 041 [ 016 [ 021
2 * g 2 » weasen DenseNet: I 093 090 | oo [ oor
N . 10 . Kendallr | -10 10 |0 -0
6 . o .
— : . 2 .
105 100 135 120 15 5 o o Table 1: Quality metrics (for RMSE, smaller is better; for R, larger s better; and for Kendall-~
ol s i} rank correlation, larger magnitude is better) for reported Top] test error for pretrained models
in each architecture series. Column # refers to number of models. VGG, ResNet, and DenseNet
(a) Log Frobenius Norm, VGG (b) Log Spectral Norm, VGG were pretrained on ImageNet. ResNet-1K was pretrained on ImageNet-1K.
Testpccory vo g, Weihted Ao Test Accuracy vs Avg. log a-form ietiear .
R RS 0 Summary statistics: VGG; ResNet; DenseNet.
" "
i 5 Lo
L[ | [P ]
§7 P NP Tog T2 [Toel TS | & TGEl TS
2 e 2ol v o RMSE (mean) 181 | 557 |4 435
B e e » B | v e . RMSE (std) 9.14 916|916 | 017
L s > © o s » R2 (mean) 39 385 389 389
g+ v . |+ s . R2 (stq) 931 | 9036 |os| om
26 30 32 34 S2 oss ss 38 Kendal-tan (mean) | 381 | 377|386 | 38
toa ki) Kendal-tan (std) 0.7 94 |936| 936
(c) Weighted Alpha, VGG (d) Log a-Norm, VGG

Table 3: Comparison of linear regression fits for different average Log Norm and Weighted Alpha
Figure 2: Comparison of Average Log Norm and Weighted Alpha quality metrics versus re; metrics across 5 CV datasets, 17 architectures, covering 108 (out of over 400) different pretrained
test accuracy for pretrained VGG models: VGG11, VGG13, VGG16, and VGG19, with and

Different metrics on pre-trained VGG.
Summary statistics: hundreds of models.

Lots more plots to prove we can “predict trends ... without access ...’

‘Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data,” Martin,

Peng, and Mahoney, arXiv:2002.06716, Nature Communications, 2021.

Mahoney (UC Berkeley) Practical Theory & NN Models « = = July 2021
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Using a theory: leads to predictions

Based on analyzing hundreds of pre-trained SOTA models:
e “Correlation flow":
» “Shape” of ESD of adjacent layers, as well as overlap between
eigenvectors of adjecent layers, should be well-aligned.
@ “Scale collapse’:
» “Size” of ESD of one or more layers changes dramatically, while the size
of other layers changes very little, as a function of some perturbation of
a model, during training (or post-training modification).
o “Correlation traps’:

» Spuriously large eigenvaluesS may appear, and they may even be
important for model convergence.

We can measure these quantities with Weightwatcher—so can you!

§

Eigenvalues not due to signal in the data—we have theorems-style theory for Hessians (“Hessian Eigenspectra of More
Realistic Nonlinear Models,” Liao and Mahoney, https://arxiv.org/abs/2103.01519), but it's still open for Weights:
Mahoney (UC Berkeley) Practical Theory & NN Models « — » July 2021 32/48



Hessian information at scalel: pyHessian and ADAHessian

(with Amir Gholami, Zhewei Yao, etc.)

PYHESSIN™

P 1
“ﬁ“b(“’) =N Z"”"‘t("“"") Gradient: g—E e RWI Hessian: Lt
-1 w

38r 1

aw}f € RIWIxIWI Compute lots of Hessian

information for:
@ Training (ADAHESSIAN)

@ Quantization (HAWQ,
QBERT, I-BERT) 1

@ Pruning

W

@ Inference

PyHessian is a pytorch library for Hessian based analysis of ~ Also used for:

neural network models. It enables computing: @ Validation: loss landscape
@ Top Hessian eigenvalues @ Validation: model robustness
@ The trace of the Hessian matrix @ Validation: adversarial data
@ The full Hessian Eigenvalues Spectral Density (ESD) @ Validation: test hypotheses

YTLDR: See our recent review: “A Survey of Quantization Methods for Efficient Neural
Network Inference,” by Gholami et al. (arXiv:2103.13630).
ITLDR: It takes 2X backprop time!
Mahoney (UC Berkeley) Practical Theory & NN Models « > = = July 2021 43 /48



Loss landscapes and robustness

(with Yoqing Yang, etc.)
Use CKA similarity, mode connectivity, Hessian information to characterize

“rugged convexity" in loss landscapes:

Log Hessian eigenvalue

6
ll2
o

Test accuracy

width of model

o 0 m 200
Width of model viidth of model

(d) Hessian trace
Model distance (L2)

(c) Hessian eigenvalue
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(b) Training loss

Mode connectivity

v
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£
8
B
3
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10 100
Width of model
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Introduction Randomized BLAS Least squares and optimization Low-rank approximation Conclusion Extra slides

What is LAPACK?

LAPACK (Linear Algebra PACKage)
m standard software library for numerical linear algebra
m routines for systems of linear equations and linear least squares, eigenvalue
problems, and SVD
m also routines to implement associated matrix factorizations, LU, QR, Cholesky
and Schur, etc.

“If you call a linear algebra routine in python, R, etc. ...then you probably call
something that calls something that calls LAPACK.”

BLAS (Basic Linear Algebra Subprograms)
m a specification that prescribes a set of low-level routines for common linear
algebra operations
m vector addition, scalar multiplication, dot products, linear combinations, and
matrix multiplication
m the de facto standard low-level routines for linear algebra libraries

Michael W. Mahoney



Introductio Randomized BLAS Least squares and optimizatio Low-rank approximation Conclusion Extra slides

Randomized numerical linear algebra (RNLA)

Using randomized algorithms to solve deterministic problems.

For example: min || Az — b]|2
@x

The algorithms use randomness internally
m Rely on a black-box random number generator.

B The generator needn’t be very high-quality.

The algorithms gamble with solution quality and/or computational cost
® Quality and cost vary from one run to another.

m Many RNLA algorithms have extremely small variations in performance.

Reviews from different perspectives: [17, 12, 18, 19, 20, 21, 22, 13, 23]

Michael W. Mahoney



Introduction Randomized BLAS Least squares and optimization Low-rank approximation Conclusion Extra slides

What does randomization buy us?
m Efficient algorithms for computing approximate solutions
Whole areas. E.g., low-rank approximation [12], convex optimization [24].
m Efficient algorithms for computing machine-precision solutions
Specific problems. E.g., strongly overdetermined least squares [9, 10, 11],

block column-pivoted QR [25, 26].

m Robust algorithms for intractable problems

E.g., nonnegative matrix factorization [27], interpolative decomposition [28]

m Solving problems under data-privacy constraints [29, 30, 31, 32]

Reviews from different perspectives: [17, 12, 18, 19, 20, 21, 22, 13, 23]

Michael W. Mahoney 6



Introductio Randomized BLAS Least squa d opt

Two mgredlents of RNLA algonrlthms

Random sketching

For overdetermined least squares with
data (A, b), obtain sketched data

A = S A

and b = Sb. L

ow-rank approximation Conclusion Extra slides

High-level deterministic NLA

Next, solve the sketched problem
min ||.S (Axz — b) H%
@x

For example, by SVD

Michael W. Mahoney



Extra slides

Introduction Randomized BLAS Least squares and optimization Low-rank approxim:

An architecture in two parts

Randomized LAPACK will be written in C++ and build on LAPACK++.
m Configurable object-oriented API and simplified procedural API
m Data model to focus on dense matrices in shared-memory.
m Accommodate sparse/abstract matrices with “linear operator” objects.

The Randomized BLAS will handle sketching dense data matrices.

m Procedural APl only
m Hide all details of the random number generator (but preserve reproducibility)
m Support sketching operators drawn from a variety of distributions

m Opportunities to reorganize computation for big performance gains

Michael W. Mahoney



Introduction Randomized BLAS Least squ nd optimizatio Low-rank approximation Conclusion Extra slides

Levels in the Randomlzed BLAS

Levels 1 — 3 produce sketches. Possible organizations:
m One sketch at Level 1, two at Level 2, three or more at Level 3.

m One sketching operator at Level 1, two at Level 2, three or more at Level 3.

Special examples | (AS,ATAS) | (SA,Sb) | 51AS,
Level by # sketches 2 2 1
Level by # operators 1 1 2

Level 0: generate defining data for a sketching operator.

Michael W. Mahoney 13



Introduction Randomized BLAS Least squares and optimization Low-rank approximation Conclusion

Least squares problems . ..and optimization

Data matrix A is m x n and tall (m > n).

Overdetermined least squares

min ||Ax — bl|2
xrER”

Underdetermined least squares

m}%{n lyll2 subjectto ATy =c.
CRm

Randomized LAPACK:
m take a “primal-dual” perspective on these problems.
m include methods for solving to any desired accuracy.

m facilitate more general second-order optimization algorithms.

Michael W. Mahoney
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A saddle point perspective

Consider a simple saddle point system

o401

Equation 1 (with H = 0) characterizes optimal solutions to the primal-dual pair
min ||Az — b|j3 + 2"z
xeR"

min

y — b||3 subject to ATy = c.
ye]Rw:,

Encounter sequences of saddle point systems in ...
m /, regression for p € (1,2)
B minimizing a composite convex function via Newton's method

® Interior-point methods for quadratic linear programming when H is psd
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Overdetermined least-squares example

Fixed data matrix: Normal equation error vs time in seconds
A € R100,000%x2,000 10°
cond(A) = 100,000 ,
10/
Fixed target vector: 1o
| AATB||> = 0.95]b]»
107
LAPACK time in seconds:
107°
GELSD: 26.3
GELSS: 45.6 10732
Laptop w/ Core i7-1065G7 . 5 " % s
Battery power Ten trials with SRCT § € R6:000x100,000
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Low-rank approximation

Produce a suitably factored representation of a low-rank matrix A, which
stands in as an approximation for a target matrix A.

How to measure the quality of an approximation?
m Distance from the target ||A — A|

= Distance from an “optimal” approximation || A, — AJ|.

Algorithms in Randomized LAPACK
m can accept parameter k, produce A where rank A = min{k,rank A}.
m can (in some cases!) accept ¢ and ensure [|A — A|| <.

m come with theoretical guarantees for bounding ||A — A| and/or ||A, — A||.

Michael W. Mahoney 18
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» Implementations at scale: Putting randomized matrix
algorithms within LAPACK (RandLAPACK)
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