Continuous-in-Depth Neural Networks

Michael W. Mahoney
|ICSI and UC Berkeley

Joint with Alejandro Queiruga (Google Research), N. Benjamin Erichson (ICSI and UC Berkeley),
and Dane Taylor (U Buffalo)

Leveraging Ideas from Dynamical Systems

Machine Learning /\ Dynamical Systems
(yZF(fEHE] (‘\ [y—f(t Y, T)]

The dynamical systems perspective can help us to better understand black-box ML
methods as well as to help us to design more robust models.

Residual Networks (ResNets) +—> Differential Equations
Network Architecture Design +—> Numerical Methods

Training P Optimal Control

Imaginary

Recent Results that Leverage Ideas from
Dynamical Systems

Lyapunov-stable autoencoders (arXiv:1905.10866)
Consistent Koopman models (arXiv:2003.02236)
Lipschitz recurrent neural networks (arXiv:2006.12070)

Rapid backdoor detection via noise-response analysis (arXiv:2008.00123)

! 1 1.0 s
’ o8
5]
] /
LI =] 0.6 / e & |
’ 2 04{ | e
\ B 0.2 / el =— Baseline
Q i
- 0.0 =" (kx=05) —e— Backdoored

Al >1 0 5 10 15 20
-1 0 1 -1 0 1 Titration level (o)

10!
.

o

[
N

itrat:
g

Robustness and Stability

® DNNs are known to be sensitive to different adversarial environments.

clean example adversarial perturbation adversarial example

- . = -
“king penguin”
62.8% confidence

“panda”
89.7% confidence

e For example, the vanishing and exploding gradients problem can be
studied using tools from stability analysis (e.g., Lyapunov methods).

e Aricher understanding of such connections enables us to design more
interpretable and more robust models that are also faster to train.

Outline for this Talk

e Reuvisiting the Forward Euler Interpretations of Residual Networks

e Continuous-in-Depth Neural Networks (arXiv:2008.02389)

Connection between ResNets and Dynamical Systems

e ResNets are the most popular network architectures on the market.

m.resld'ual >® >
unit unit

Xt Tit41 Tt42
Rt(xt,et) Rt+1($t+170t+1)

e Hypothesis: Recent literature notes that ResNets learn a forward Euler

discretization of a dynamical system:

Ox(t
Tpr1 = T + AtR(xk, k) —P 255) = R(xz(t),t,0)

e Spoiler: we show that ResNets are not forward Euler discretizations of a
dynamical system in a meaningful way due to overfitting.

Experiments in Dynamics

e What does it even mean to say ResNet learns a forward Euler
representation of a dynamical system?

e We need context where a dynamical system is meaningful.

e S0..let's try time series prediction of a dynamical system.

“IAA AN
WYV /7N

| @
\AAAAAARS §§E///

VUVVVYVY |

'AAAA A

i

u
u v

J

Numerical Integration and Machine Learning
work in Opposite Directions

Numerical Integration:
Ground Truth Dynamics

_ dx
f_dt

~_~

Approximation yields a model
Xn+l = Xp + Atf(xn)
. >

>

Inferred Time Series

S

Learning the Dynamics:
What's G???

G(x; 0)

Use data to optimize a model
min ”xn+1 - (-xn + At G(xn))”
(. J/

hd

<

Ground Truth Time Series
.

X
. LN
0 .

.
s,
N,
\
\
\
\

RN AN

Revisiting a Simple Dynamical System

e Learning a residual makes sense in many contexts:
Future = Now + Update

e Let's study training such a F(x) based on a neural network G(x):
x(t+At) = F(x(t)) = x(t)+G(x(t)) = NumericalMethod[G(X)]

e Numerical integrators approximate the integral with a discrete series of
applications of f(x,t)=dx/dt for a time step At:

t+At
x(t + Af) = x(1) + / F(x, dt
t

~ x(t) + schemel f, x, t, At]

Syntactic Similarity is not Sufficient for Correspondence

e Approximations to dynamical systems have richer properties.

For a given integrator, as At— 0, error— O (timestep refinement)
Integrators have a rate of convergence: log(error) o< r log(At)

The same dx/dt with different integrators should approach the same
x(t __) at their respective rates

Lo

max

e We can verify these using a convergence test.

e These conditions are critical to deriving integration schemes.
(They also make great integration tests for numerical software!)

Does ResNet Units Satisfies these Properties?

e [f yes, then we should be able to alter the model:
X, =x, A4t G(x, +41/2G(x,)

Given G: x,,=x,+At G(x,)

Plug the frozen G into
k w other graphs
Increase or Decrease At x,,,=x,tRK4[G At](x,)

e and predictions should change consistently as expected.

e If no, then the model should behave differently w.r.t. At.

Experiment

Make a dataset with one At: {x(0), x(At), x(2At)... x(T)}

Train 3 models using G: a shallow tanh NN with 50 hidden units.
Then, freeze G, and perform a convergence test.

Hypothesis: A, B, & C should hold.

eanl SO NS

We train three models:

1. Forward Euler: x, =x, +At G(xk) — Looks like a ResNet unit
2. Midpoint: X, .= X + At G(x, +At/2G(x,))
3. RK4: X,,= X, + At RK4[G,At](xk)

e For ground-truth, use the analytical solution.
e For comparison, plug the known dx/dt into the integrators.

After we train the models, they all perform good

e They are good discrete models without changing At.
e Note how using Euler as a numerical method is inaccurate.

=M~ Ground Truth 6 1
| —*— Numerical Euler
—4— ODE-Net(Euler)
| —e— ODE-Net(RK4) 2

p(t)
N

But if we cut At in half, ODE-Net(Euler) gets worse

e Numerical(Euler) improves, as expected.
e Neural(RK4) is still on top of the analytical solution.

p(t)
N

v(t)
o

0 2 4 6 8 10 0 2 4 6 8 10

(b) At = 0.5Atdata

One-off plots aren’t sufficient

e Sweep At and calculate errors to do the full convergence test.

Part 1: At— O with same graph

—*= ODE-Net(Euler)
= ODE-Net(Midpoint)

10°1 + ODE-Net(RK4) i

— 10_2 1 :

(@) 1

B l

B I

1074 |
10-6 , i .

1071 109 101
Inference At
-

More time steps

100_

10—2 .

10—4 !

1076

Part 2: Try different integrators

—e— Euler — Midpoint
=+ Euler — RK4
—&— Midpoint — Euler
—4— Midpoint — RK4
—o— RK4 — Euler
—#— RK4 — Midpoint

10-1 10!

Inference At

The trajectories on the last slide make one datapoint here:
error=||x (¢)-F(F(..F(x,)..))||

100 i

10—2.

Error

10—4_

10°°

Part 1: At— O on the model

—*= ODE-Net(Euler)
~*= ODE-Net(Midpoint)
—— ODE-Net(RK4)

10°1 100 101

Inference At

More time steps

100]

10—2.

10—4.

10°°

Part 2: Try different integrators

—e— Euler — Midpoint
—4+— Euler — RK4
—e— Midpoint — Euler
—4— Midpoint — RK4
—e— RK4 — Euler
—#— RK4 — Midpoint

Inference At

100 i

Error

10—4_

10°°

Vertical line is the training dataset sample rate

Part 1: At— O on the model

10721

—*= ODE-Net(Euler)
— ODE-Net(Midpoint)
—+ ODE-Net(RK4)

10°

Inference At

10-1

10!

More time steps

100]

10721

10—4.

10°°

Part 2: Try different integrators

—e— Euler — Midpoint
—4+— Euler — RK4
—&— Midpoint — Euler
—4— Midpoint — RK4
—e— RK4 — Euler
—#— RK4 — Midpoint

10!

1)°

Inference At

10-1

e There’s a noticeable dip in error for ODE-Net(Euler).
e ODE-Net(Euler) is extremely sensitive to perturbations in At.
e Thus, itis only a discrete model, i.e., it overfits to At.

100 i

10—2_

Error

10—4_

10°°

—*—= ODE-Net(Euler)
ODE-Net(Midpoint)
—+ ODE-Net(RK4)

100 10!

Inference At

10-1

More time steps

100]

10—2.

10—4_

10°°

—o— Euler — Midpoint
—4+— Euler — RK4
®— Midpoint — Euler
= Midpoint — RK4
—e— RK4 — Euler
—#— RK4 — Midpoint

Inference At

e The models embedded in Midpoint and RK4 have no dip.
e The error changes smoothly for incremental changes in At.
e For larger time steps, the slopes match.

100 i

Error

10—4_

10°°

10—2_

—*—= ODE-Net(Euler)
ODE-Net(Midpoint)
—+ ODE-Net(RK4)

s

100

Inference At

10-1

More time steps

100]

10—2.

10—4_

10°°

—o— Euler — Midpoint
—4+— Euler — RK4
®— Midpoint — Euler
= Midpoint — RK4
—e— RK4 — Euler
—#— RK4 — Midpoint

Inference At

100

10—2.

Error

10—4_

10°°

If we take the NN G from Euler and put it into another

integrator, the error is large.

—*= ODE-Net(Euler)
— ODE-Net(Midpoint)
—+ ODE-Net(RK4)

10° 10!

Inference At

10-1

More time steps

100]

10—2.

10—4.

10°°

—e— Euler — Midpoint
—4+— Euler — RK4
—&— Midpoint — Euler
—4— Midpoint — RK4
—e— RK4 — Euler
—#— RK4 — Midpoint

10-1

10!

Inference At

Error

e But, both of the Gs trained inside of higher order integrators
work as expected when inside of any of the other integrators.

100 i

10—2 il

10—4 i

10°°

—— ODE-Net(Euler) E
-+~ ODE-Net(Midpoint) |
—— ODE-Net(RK4) E

10!

Inference At

More time steps

100]

10—2 i

—e— Euler — Midpoint
—4+— Euler — RK4
—e— Midpoint — Euler
—4— Midpoint — RK4
—e— RK4 — Euler
—#— RK4 — Midpoint

10!

Inference At

Implications

Our results show that our prevalent training methodology does not yield
models that can be interpreted with continuous theory.

Having a peak says that it’s fragile to the number of timesteps.
That means, we can’t do " "interpolation”.

The RK4 scheme enables us to interpolate between domain shifted data.
In turn, this means that we can increase the number of layers (i.e., be
continuous-in-depth).

Our analysis can be seen as a diagnostic tool to assess if the model has overfit:
how well does it represent a continuous system, and how well does it exhibit
the numerical properties of a continuous operator?

Hessian Loss Landscape

(a) Euler (b) RK4

e "ADAHESSIAN: An Adaptive Second Order Optimizer for Machine Learning," arXiv:2006.00719
"PyHessian: Neural Networks Through the Lens of the Hessian," arXiv:1912.07145

Continuous-in-Depth Neural Networks

ContinuousNet is a deep model that is a dynamical system:

e Basis functions in depth for parameters.

e High-order Runge Kutta-based computation graphs.

e Right timestep refinement and grid refinement.

Goal: recover (then extend) the exact same graph as ResNet, but phrased as a
function of time.

y

input

7

_ |Conyv

3x3

A4

A OdeBlock
N

N O\

NR. 0[N

%OdeBlock

Avg
p-|Pool
1x1

NR., 00|\

FC

output

e ContinuousNet’s governing equation has time-varying parameters:
#(t) = €R (x(t),0(t))
e Blocks of residual units are replaced by numerical integrators:
1
Tout =Tin T / R (x(t)a 9(15)) dt
0

= OdeBlock [R, 0, At,t € [0,1]] (xin)
e (deBlocks are assembled into the same ResNet architectures:

/ W N NN NN

Convi OdeBlock R, 0 OdeBlock R, 0 OdeBlock Avg
input | ~ | 3x3 »-(Pool
1x1

FC

Down Down
/ NR, 0[N [samele] Ng g [N [samelel Ng g [N

output

ContinuousNet’s governing equation has time-varying parameters:
z(t) = €R (x(t),|0(t))
Blocks of residual units are replaced by numerical integrators:
1
Tout =Tin T / R (x(t)a 9(15)) dt
0

= OdeBlock [R, 0, At,t € [0,1]] (xin)
OdeBlocks are assembled into the same ResNet architectures:

/ W N NN NN

Convi OdeBlock OdeBlock OdeBlock Avg
input | ~ | 3x3 -(Pool
1x1

/ NR. 0[N NR. 0[N NR., 00|\

FC

output

e Inthe NN perspective, integrators prescribe graphs that nest the residual that
calculate the same thing:

I X; X;
GD ([¥
|~ L2
D | |

s |

(BN) 2 s/
| ? |
@D I [=] |

Y At k v At k

~> \»{? —_—— >
Xt+1 @ i+l Xt+1 @ i+l

ResNet / Euler Midpoint RK4-Classic RK4-3/8

e Inthe NN perspective, integrators prescribe graphs that nest the residual that
calculate the same thing:

I.xt -xt xl
G ([§ R
R o< A
I R e e A
adl b | B | R R Bl
EO| {
Ry
- R 6 3 3
Qoo k AV,
Y Al YA: A All6
\»? \»(? N— — - —>f
Xt+1 @ i+l Xt+1 @ i+l
ResNet / Euler Midpoint RK4-Classic RK4-3/8

Same R, and the same weights (in the simple case)

e Inthe NN perspective, integrators prescribe graphs that nest the residual that

calculate the same thing:

Ix, X; X;
| @D ([k
| | = | R) f‘ %i4
| G | | '
R At R J ﬂ
@D) | LR
: : ? : allfaN TR
6 3 3
R | =
|\ — = \ v At \ % ALl6
\»% \»@ —_——
Xt+1 @ i+l Xt+1 @ ‘i+1

ResNet / Euler Midpoint RK4-Classic RK4-3/8

e We use edge weights that are well-known in numerical analysis.

e Numerical integration effectively chains
together these units into familiar and unfamiliar
graphs.

e Picking a scheme and a N, specifies how to
generate a graph.

e Each one is (approximately) equivalent: each is
discrete, but each approximates the same

]%15‘113/ R continuous model.
=

o) 4
M=3 i : i
‘—_'_'_kt
o) A
M=3
I s s N

RK4-3/8, _

Nt:].

In ResNet and NNs, parameters are glued to
computation nodes in the graph.

ContinuousNet’s computations are assigned
weights by evaluating a continuous 6(z): What's
the value halfway between steps?

Basis functions in depth:

M
0(t) => ¢’ (t)6"
p=1

Yields a systematic way to project to different
equivalent basis functions.

e ResNet is exactly forward Euler with the same
step size as piecewise constant basis
functions.

e Construct witha continuous map /t,¢,,,)— 0,
to define values between steps:

(0, , t € [0, At)
0 , t € [At, 2At)

RKA-3/8, ooz~ ommmroeee 6(t) = <

Nt:].

\HNt , te|T — At,T)

o) 4 b
M=3 l ; i
‘—_'_'_kt
o) A
M=3
I s s N

Experiments for Image Classification

The original hypothesis can be tested with a convergence test on a DL
problem using ContinuousNet.

Updated hypothesis:
e Expect forward Euler (ResNet) to overfit

e Expect training with Midpoint or RK4 to enable transfer between
depths and graph modules

We can perform the same experiment on CIFAR10
e Test set errorin place of analytical solution

Train ContinuousNet M=32-32-32 with RK4 and Euler (ResNet-198)
e ContinuousNet(Euler): same dip as pendulum
e ContinuousNet(RK4): re-manifests with many N, and integrators

100
70
50 -
40 -
30 -

—4— Euler
—0— RK4-Classic

20 A

Test Error %

—#— Euler » RK4-3/8
—4— RK4-Classic -» RK4-3/8
—8— RK4-Classic —» Euler

T = T T T T T

0 20 40 60 80 0 20 40 60 80
Computational Graph Depth N = 1/At Computational Graph Depth N; = 1/At

We can perform the same experiment on CIFAR10
e Test set errorin place of analytical solution

Train ContinuousNet M=32-32-32 with RK4 and Euler (ResNet-198)
e ContinuousNet(Euler): same dip as pendulum
e ContinuousNet(RK4): re-manifests with many N, and integrators

100
70

—4— Euler
—0— RK4-Classic

50 1 |
x 4017
5 30|
Y 204
§ —#— Euler » RK4-3/8
—4— RK4-Classic -» RK4-3/8
10 1 B —8— RK4-Classic —» Euler
6_ sl L SSEE SHSEEs B et R, i < ; | |
0 20 40 60 80 0 20 40 60 80

Computational Graph Depth N = 1/At Computational Graph Depth N; = 1/At

We can perform the same experiment on CIFAR10
e Test set errorin place of analytical solution

Train ContinuousNet M=32-32-32 with RK4 and Euler (ResNet-198)
e ContinuousNet(Euler): same dip as pendulum
e ContinuousNet(RK4): re-manifests with many N, and integrators

100
70
50 -
40 -
30 -

—4— Euler
—0— RK4-Classic

20 A
—#— Euler » RK4-3/8

—4— RK4-Classic -» RK4-3/8
—8— RK4-Classic —» Euler

Test Error %

T = T T T T T

0 20 40 60 80 0 20 40 60 80
Cornputational Graph Depth N = 1/At Computational Graph Depth N; = 1/At

We can perform the same experiment on CIFAR-10
e Test set errorin place of analytical solution

Train ContinuousNet M=32-32-32 with RK4 and Euler (ResNet-198)
e ContinuousNet(Euler): same dip as pendulum
e ContinuousNet(RK4): re-manifests with many N, and integrators

100

70 1 —4— Euler =
1 —0— RK4-Classic

50 A

40 -

30 A

20 A

Test Error %

—#— Euler » RK4-3/8
—4— RK4-Classic -» RK4-3/8
—8— RK4-Classic —» Euler

60 80 0 20 40 60 80
Computational Graph Depth N = 1/At Computational Graph Depth N; = 1/At

We see the same properties CIFAR-100:

Test Error %

102 -

6 x 10! -

4 x10?

3 x 10! 1

2 x 10!

Computational Graph Depth (N = 1/At) Computational Graph Depth (N = 1/At)

And Tiny-lmagenet: (64x64 with 200 classes)

Test Error %

100 -

70 1
60 -

—&— Euler

—— Mipoint

—@—"Euler » RK4-3/8
—#— Midpoint - RK4-3/8
—— Euler -» Midpoint
—8— Midpoint - Euler

5 10 15 20 25 30
Computational Graph Depth (N; = 1/At)

Computational Graph Depth (N; = 1/At)

Why ContinuousNet?

e Infinitely many computer programs exist for a problem.
e We choose to find one that is a continuous trajectory.

e ContinuousNet has infinitely many (approximately) equivalent graph
manifestations and basis set projections.

e This opens the door to better understanding and new tricks
post-training and during-training.

ContinuousNet has equivalent accuracy to the corresponding ResNet, and
outperforms previous differential-equation NNs

Model for CIFAR10

ResNet-200 (v2) (baseline)

Neural ODE (reported by Zhang, 2019)
ANODEV2 (Zhang, 2019)

Hamiltonian PDE (Ruthotto, 2019)
ContinuousNet(Euler)

ContinuousNet(RK4-classic)

Params

319M

0.45M

0.45M

0.26 M

319M

319M

Units (N,)

33-33-33

3-3-3
32-32-32

32-32-32

Accuracy
93.84%
67.94%
88.93%
89.30%
93.84%

93.57%

Min / Max

93.56% /94.03%

64.70% 1 70.06%

88.65% / 89.19%

93.55% / 94.04%

93.40% / 93.70%

Manifestation Invariance:

ContinuousNet can remanifest its graph after training, without using data:

The weights it learns can plug into a ResNet graph.
It can even be made shorter, without sacrificing much accuracy.

We can reduce the inference time.

Model for CIFAR10
ContinuousNet(RK4-classic)
Manifest as (Euler)
Manifest as (RK4-3/8)

LManifest as (RK4-3/8)

Params
3.9 M
Same weights
Same weights

Same weights

Units (N,)
32-32-32
32-32-32
1-11-11

6-6-6

Accuracy

93.57%

Inference Time (s)
32.55
8.93
11.06

6.25

ContinuousNet can also iteratively deepen its graph during training:

-=> Just like mesh refinement

OdeBlock2: #:convl:w[0,1,2,0](?)

—
I 0.05 -
< 0.00 -

G 0.10 1
< 0.00 -

°|C|> 0.10 A
.00 -

% 0.10-
Z 0.00 ~_—v—v—

=16
Nt

.

Soo o

[olole)

[0;(@]0,]

=32 Nt
oo
[eoNe)
o w

N¢

e —

0.0

0.2 0.4 0.6 0.8 1.0
t in second OdeBlock

Test Acc. Clock Time (s)

Loss

400 -

200 A

L
o

o
[
|

o
o
L

—— RK4_Classic
—— Euler

—— RK4_Classic
—— Euler

—— RK4_Classic

20

100

120

140

160

OdeBlock2: #:convl:w[0,1,2,0](?)

—
I 0.05 -
< 0.00 -

‘,‘i 0.10
< 0.00 -
s 0.10 -
2 0.00 -
® 0.10 1

=16y,

=32 Nt
oo

N¢

Soo o
[olole)
[0;(@]0,]

[eoNe]

ContinuousNet can also iteratively deepen its graph during training:

-=> Just like mesh refinement

.00 -

o w

|| PR

0.0

0.2 0.4 0.6 0.8 1.0
t in second OdeBlock

= —— RK4_Classic
uler

Loss

—— RK4_Classic
—— Euler

—— RK4_Classic

100

120

140

160

OdeBlock2: #:convl:w[0,1,2,0](?)

ContinuousNet can also iteratively deepen its graph during training:
= Just like mesh refinement

—
I 0.05 -
< 0.00 -

G 0.10 1
< 0.00 -
S 0.10 A

< 0.00 -

°|C|> 0.10 A

32 Ne=16 N

Nt=

Soo o
[olole)
[0;(@]0,]

o0

[eoNe]

o w

.00 -

|| PR

0.0

0.2 0.4 0.6 0.8 1.0
t in second OdeBlock

400 -

Time (s)

Test Acc.

Loss

—— RK4_Classic
—— Euler

—— RK4_Classic
—— Euler

—— RK4_Classic

20

100

120

140

160

OdeBlock2: #:convl:w[0,1,2,0](?)

ContinuousNet can also iteratively deepen its graph during training:

-=> Just like mesh refinement

—
I 0.05 -
< 0.00 -

G 0.10 1
< 0.00 -
S 0.10 A

< 0.00 -

°|C|> 0.10 A

32 Ne=16 N

Nt=

Soo o
[olole)
[0;(@]0,]

oo

[eoNe]

o w

.00 -

|| PR

0.0

0.2 0.4 0.6 0.8
t in second OdeBlock

1.0

Clock Time (s)

Loss

400 -

200 A

—— RK4_Classic
—— Euler

—— RK4_Classic
—— Euler

—— RK4_Classic

0 20

100

120

140

160

ContinuousNet can also iteratively deepen its graph during training:
= Just like mesh refinement

OdeBlock2: #:convl:w[0,1,2,0](?)

—
I 0.05 -
< 0.00 -

G 0.10 1
< 0.00 -
S 0.10 A

< 0.00 -

°|C|> 0.10 A
.00 -

=16
Nt

Soo o

[olole)

[0;(@]0,]

32 Nt

o0
oo
ow

N¢

e —

0.0

0.2 0.4 0.6 0.8 1.0
t in second OdeBlock

Clock Time (s)

Loss

400 -

200 A

—— RK4_Classic
—— Euler

—— RK4_Classic
—— Euler

—— RK4_Classic

0 20

100

120

140

160

OdeBlock2: #:convl:w[0,1,2,0](?)

—
I 0.05 -
< 0.00 -

‘,‘i 0.10
< 0.00 -
s 0.10 -
2 0.00 -
® 0.10 1

32 Ne=16 N

Nt=

Soo o
[olole)
[0;(@]0,]

oo

ContinuousNet can also iteratively deepen its graph during training:

[eoNe]

-=> Just like mesh refinement

.00 -

o w

|| PR

0.0

0.2 0.4 0.6 0.8 1.0
t in second OdeBlock

Clock Time (s)

Test Acc.

400 -

200 A

L
o

o
[
|

o
o
L

—— RK4_Classic
—— Euler

—— RK4_Classic
—— Euler

—— RK4_Classic

20

100

120

140

160

ContinuousNet can also iteratively deepen its graph during training:

-=> Just like mesh refinement

OdeBlock2: #:convl:w[0,1,2,0](?)

—
I 0.05 -
< 0.00 -

G 0.10 1
< 0.00 -

]

i 1]
T T

el

< 0.00 -

°|C|> 0.10 A
.00 -

=16
Nt

Soo o

[olole)

[0;(@]0,]

el o,

0.0 0.2 0.4 0.6 0.8 1.0
t in second OdeBlock

=32 N

Nt
oo
[eNe)
o w

Clock Time (s)

Test Acc.

400 -

200 A

—— RK4_Classic
—— Euler

—— RK4_Classic
—— Euler

—— RK4_Classic

20

140

160

Save time by training on shorter graphs initially

OdeBlock2: #:convl:w[0,1,2,0](?)

e RK4_Classic

—— Euler

—
I 0.05 -
< 0.00 -

lock Time (s)
N
o
o

G 0.10 1
< 0.00 -
S 0.10 A

~

< 0.00 -

°ICI> 0.10 A —— RK4_Classic

—— Euler

.00 -

16,

Soo o
[olole)
[0;(@]0,]

Loss Test Acc

—— RK4_Classic

T T T T T

0.0 0.2 0.4 0.6 0.8 1.0
t in second OdeBlock

32 Nt

o0

oo

ow
1

N¢

0 20 40 60 80 100 120 140 160
Epoch #

RefineNet(Euler)

RefineNet(RK4 Classic)

-0.03 -

-0.05 A

-0.02

OdeBlock2: #:convl:w[0,1,2,0](?)

0.02 -

0.00 -

0.02 A

0.00 -

0.0

0.2

0.4 0.6 0.8
t in second OdeBlock

1.0

Euler Network: /6, /| may be uniform, but actual
steps are not continuous.
ResNets aren’t uniform iterations.

ContinuousNet(RK4): the final parameters are
smoother functions in time.
lterative operations change uniformly.

Key Advantages Compared to Previous ODE-Nets

e 1-to-1correspondence with ResNets
e Basis functions yield introspectable and controllable depth
e Disentangle computation from parameters

e We focus on fixed step integrators instead of adaptive:
o Control At to answer a scientific question.

e Think static graphs should be a better engineering solution:
o Infrastructure and tools already exist
o Ahead-of-time graph generation for different needs

Outro

e A ResNet will overfit a continuous dynamical system.

e Physical time series models are improved by embedding inside of a higher
order integrator.

e ContinuousNet finds deep dynamical systems that are as expressive as
ResNets using basis-function weights.

e ContinuousNet can manifest as different discrete graphs: iteratively
deepening during training or compressing post-training.

Next Steps
1. Reimplement in JAX

2. Training
a. Train lightning fast with the adjoint equation!
b. Explore refinement strategies and schedules
c. Nonuniform splitting (think hp-adaptivity)

3. Compression
a. New Basis Functions
b. Compress the parameter coefficients through projection
c. Nonuniform steps

4. Noise/Adversarial Robustness

Thank You

Continuous-in-Depth Neural Networks

Alejandro F. Queiruga *f N. Benjamin Erichson* Dane Taylor
Google Research ICSI and UC Berkeley University at Buffalo, SUNY
afq@google.com erichson@berkeley.edu danet@buffalo.edu

Michael W. Mahoney
ICSI and UC Berkeley
mmahoney @ stat.berkeley.edu

Abstract

Recent work has attempted to interpret residual networks (ResNets) as one step of a forward Euler
discretization of an ordinary differential equation, focusing mainly on syntactic algebraic similarities
between the two systems. Discrete dynamical integrators of continuous dynamical systems, however,
have a much richer structure. We first show that ResNets fail to be meaningful dynamical integrators in
this richer sense. We then demonstrate that neural network models can learn to represent continuous
dynamical systems, with this richer structure and properties, by embedding them into higher-order
numerical integration schemes, such as the Runge Kutta schemes. Based on these insights, we introduce
ContinuousNet as a continuous-in-depth generalization of ResNet architectures. ContinuousNets exhibit
an invariance to the particular computational graph manifestation. That is, the continuous-in-depth
model can be evaluated with different discrete time step sizes, which changes the number of layers,
and different numerical integration schemes, which changes the graph connectivity. We show that this
can be used to develop an incremental-in-depth training scheme that improves model quality, while
significantly decreasing training time. We also show that, once trained, the number of units in the
computational graph can even be decreased, for faster inference with little-to-no accuracy drop.

e Preprint: https://arxiv.org/pdf/2008.02389.pdf

e Code: https://github.com/afgueiruga/ContinuousNet

https://arxiv.org/pdf/2008.02389.pdf
https://github.com/afqueiruga/ContinuousNet

In ResNet and NNs, parameters are glued to nodes in the graph.

ContinuousNet’s computations are assigned weights by evaluating
a o).

To reconstruct ResNet, we map a continuous map /#,¢,,,)— 6,

(91 , 1€ [0, At)

v , t € |At, 2At
o) =14 |)

\QNt ,te [T —At,T)
To generalize further, use basis functions (piecewise constant here):

M
0(t) = ¢°(t)0”
B=1

ResNet looks like forward Euler with
different parameters at each layer.

Numerical integrators all approximate
the same function.

A model that does represent a
dynamical system, has a whole family of
interchangeable graphs.

REA-BIB, e s,

N=1
i ; ' i 'z
o) b i i i Weights are assigned to nodes with shape
M=3 ' i 5 i functions.
b
o) A Shape functions have well-defined
M=3 t refinements, too.
e

