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Leveraging Ideas from Dynamical Systems

Machine Learning Dynamical Systems

The dynamical systems perspective can help us to better understand black-box ML 
methods as well as to help us to design more robust models.

Residual Networks (ResNets) Differential Equations

Network Architecture Design Numerical Methods

Training Optimal Control



Recent Results that Leverage Ideas from 
Dynamical Systems

 
● Lyapunov-stable  autoencoders (arXiv:1905.10866)
● Consistent Koopman models (arXiv:2003.02236)
● Lipschitz recurrent neural networks (arXiv:2006.12070)
● Rapid backdoor detection via noise-response analysis (arXiv:2008.00123)



Robustness and Stability

● DNNs are known to be sensitive to different adversarial environments. 

● For example, the vanishing and exploding gradients problem can be 
studied using tools from stability analysis (e.g., Lyapunov methods). 

● A richer understanding of such connections enables us to design more 
interpretable and more robust models that are also faster to train. 



Outline for this Talk

● Revisiting the Forward Euler Interpretations of Residual Networks

● Continuous-in-Depth Neural Networks (arXiv:2008.02389)



Connection between ResNets and Dynamical Systems

● ResNets are the most popular network architectures on the market.

● Hypothesis: Recent literature notes that ResNets learn a forward Euler 
discretization of a dynamical system:

● Spoiler: we show that ResNets are not forward Euler discretizations of a 
dynamical system in a meaningful way due to overfitting.

=1 sneak it in



● What does it even mean to say ResNet learns a forward Euler 
representation of a dynamical system?

● We need context where a dynamical system is meaningful. 

● So … let’s try time series prediction of a dynamical system.

Experiments in Dynamics



Numerical Integration and Machine Learning 
work in Opposite Directions



Revisiting a Simple Dynamical System 

 
● Learning a residual makes sense in many contexts: 

       Future = Now + Update

● Let’s study training such a F(x) based on a neural network G(x):

x(t+Δt) = F(x(t)) = x(t)+G(x(t)) = NumericalMethod[G(x)]

● Numerical integrators approximate the integral with a discrete series of 
applications of f(x,t)=dx/dt for a time step Δt:



Syntactic Similarity is not Sufficient for Correspondence

● Approximations to dynamical systems have richer properties.

A. For a given integrator, as Δt→ 0, error→ 0 (timestep refinement)

B. Integrators have a rate of convergence: log(error) ∝ r log(Δt)

C. The same dx/dt with different integrators should approach the same 
x(tmax ) at their respective rates

● We can verify these using a convergence test.

● These conditions are critical to deriving integration schemes. 
(They also make great integration tests for numerical software!)



Does ResNet Units Satisfies these Properties?

 xk+1=xk+RK4[G,Δt](xk
  )

xk+1=xk+Δt G(xk )

xk+1=xk+Δt G(xk
 +Δt/2G(xk ))

Plug the frozen G into 
other graphs

Given G:

Increase or Decrease Δt

● and predictions should change consistently as expected.

● If no, then the model should behave differently w.r.t. Δt.

● If yes, then we should be able to alter the model:



Experiment
1. Make a dataset with one Δt: {x(0), x(Δt), x(2Δt)... x(T)}
2. Train 3 models using G: a shallow tanh NN with 50 hidden units.
3. Then, freeze G, and perform a convergence test.
4. Hypothesis: A, B, & C should hold.

We train three models:
1. Forward Euler:    xk+1= xk + Δt G(xk )                          ← Looks like a ResNet unit
2. Midpoint:             xk+1= xk + Δt G(xk

 +Δt/2G(xk ))
3. RK4:                      xk+1= xk + Δt RK4[G,Δt](xk

  )

● For ground-truth, use the analytical solution.
● For comparison, plug the known dx/dt into the integrators.



After we train the models, they all perform good

● They are good discrete models without changing Δt.
● Note how using Euler as a numerical method is inaccurate.



But if we cut Δt in half, ODE-Net(Euler) gets worse

● Numerical(Euler) improves, as expected.
● Neural(RK4) is still on top of the analytical solution.



One-off plots aren’t sufficient
● Sweep Δt and calculate errors to do the full convergence test.

More time steps

Part 1: Δt→ 0 with same graph Part 2: Try different integrators



The trajectories on the last slide make one datapoint here:
               error=||xtrue(tmax )-F(F(...F(x0 )...))||

More time steps

Part 1: Δt→ 0 on the model Part 2: Try different integrators



Vertical line is the training dataset sample rate

More time steps

Part 1: Δt→ 0 on the model Part 2: Try different integrators



● There’s a noticeable dip in error for ODE-Net(Euler).
● ODE-Net(Euler) is extremely sensitive to perturbations in Δt.
● Thus, it is only a discrete model, i.e., it overfits to Δt.

More time steps



● The models embedded in Midpoint and RK4 have no dip.
● The error changes smoothly for incremental changes in Δt.
● For larger time steps, the slopes match.

More time steps



● If we take the NN G from Euler and put it into another 
integrator, the error is large.

More time steps



● But, both of the Gs trained inside of higher order integrators 
work as expected when inside of any of the other integrators.

More time steps



● Our results show that our prevalent training methodology does not yield 
models that can be interpreted with continuous theory. 

● Having a peak says that it’s fragile to the number of timesteps. 
That means, we can’t do ``interpolation’’.

● The RK4 scheme enables us to interpolate between domain shifted data. 
In turn, this means that we can increase the number of layers (i.e., be 
continuous-in-depth).
 

● Our analysis can be seen as a diagnostic tool to assess if the model has overfit: 
how well does it represent a continuous system, and how well does it exhibit 
the numerical properties of a continuous operator?

Implications



Hessian Loss Landscape

● "ADAHESSIAN: An Adaptive Second Order Optimizer for Machine Learning," arXiv:2006.00719
● "PyHessian: Neural Networks Through the Lens of the Hessian," arXiv:1912.07145



Continuous-in-Depth Neural Networks
ContinuousNet is a deep model that is a dynamical system:

● Basis functions in depth for parameters.
● High-order Runge Kutta-based computation graphs.
● Right timestep refinement and grid refinement.

Goal: recover (then extend) the exact same graph as ResNet, but phrased as a 
function of time.



● ContinuousNet’s governing equation has time-varying parameters:

● Blocks of residual units are replaced by numerical integrators:

● OdeBlocks are assembled into the same ResNet architectures:
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● In the NN perspective, integrators prescribe graphs that nest the residual that 
calculate the same thing:



● In the NN perspective, integrators prescribe graphs that nest the residual that 
calculate the same thing:

Same R, and the same weights (in the simple case)



● In the NN perspective, integrators prescribe graphs that nest the residual that 
calculate the same thing:

● We use edge weights that are well-known in numerical analysis.



● Numerical integration effectively chains 
together these units into familiar and unfamiliar 
graphs.

● Picking a scheme and a Nt specifies how to 
generate a graph.

● Each one is (approximately) equivalent: each is 
discrete, but each approximates the same 
continuous model.



● In ResNet and NNs, parameters are glued to 
computation nodes in the graph.

● ContinuousNet’s computations are assigned 
weights by evaluating a continuous θ(t): What’s 
the value halfway between steps?

● Basis functions in depth:

● Yields a systematic way to project to different 
equivalent basis functions.



● ResNet is exactly forward Euler with the same 
step size as piecewise constant basis 
functions.

● Construct with a  continuous map  [tk,tk+1 )→ θk
to define values between steps:



The original hypothesis can be tested with a convergence test on a DL 
problem using ContinuousNet.

Updated hypothesis: 

● Expect forward Euler (ResNet) to overfit

● Expect training with Midpoint or RK4 to enable transfer between 
depths and graph modules

Experiments for Image Classification



We can perform the same experiment on CIFAR10
● Test set error in place of analytical solution

Train ContinuousNet M=32-32-32 with RK4 and Euler (ResNet-198)
● ContinuousNet(Euler): same dip as pendulum
● ContinuousNet(RK4): re-manifests with many Nt and integrators
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DeeperShallower
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We can perform the same experiment on CIFAR-10
● Test set error in place of analytical solution

Train ContinuousNet M=32-32-32 with RK4 and Euler (ResNet-198)
● ContinuousNet(Euler): same dip as pendulum
● ContinuousNet(RK4): re-manifests with many Nt and integrators



We see the same properties CIFAR-100:



And Tiny-Imagenet: (64x64 with 200 classes)



● Infinitely many computer programs exist for a problem.

● We choose to find one that is a continuous trajectory.

● ContinuousNet has infinitely many (approximately) equivalent graph 
manifestations and basis set projections.

● This opens the door to better understanding and new tricks 
post-training and during-training.

Why ContinuousNet?



Model for CIFAR10 Params Units (Nt) Accuracy Min / Max

ResNet-200 (v2) (baseline) 3.19 M 33-33-33 93.84% 93.56% / 94.03%

Neural ODE (reported by Zhang, 2019) 0.45 M - 67.94% 64.70% / 70.06%

ANODEV2 (Zhang, 2019) 0.45 M - 88.93%  88.65% / 89.19%

Hamiltonian PDE (Ruthotto, 2019) 0.26 M 3-3-3 89.30%  -

ContinuousNet(Euler) 3.19 M 32-32-32  93.84%  93.55% / 94.04%

ContinuousNet(RK4-classic) 3.19 M 32-32-32 93.57% 93.40% / 93.70%

ContinuousNet has equivalent accuracy to the corresponding ResNet, and 
outperforms previous differential-equation NNs



Model for CIFAR10 Params Units (Nt) Accuracy Inference Time (s)

ContinuousNet(RK4-classic) 3.19 M 32-32-32 93.57% 32.55

↳Manifest as (Euler) Same weights 32-32-32 93.55% 8.93

↳Manifest as (RK4-3/8) Same weights 11-11-11 93.44% 11.06

↳Manifest as (RK4-3/8) Same weights 6-6-6 92.28% 6.25

Manifestation Invariance: 
ContinuousNet can remanifest its graph after training, without using data: 

● The weights it learns can plug into a ResNet graph. 
● It can even be made shorter, without sacrificing much accuracy.
● We can reduce the inference time. 



OdeBlock2:R:conv1:w[0,1,2,0](t)

ContinuousNet can also iteratively deepen its graph during training:
➔ Just like mesh refinement
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OdeBlock2:R:conv1:w[0,1,2,0](t)

ContinuousNet can also iteratively deepen its graph during training:
➔ Just like mesh refinement



OdeBlock2:R:conv1:w[0,1,2,0](t)

Save time by training on shorter graphs initially



OdeBlock2:R:conv1:w[0,1,2,0](t)

ContinuousNet(RK4):  the final parameters are 
smoother functions in time.
Iterative operations change uniformly.

Euler Network: ||θk|| may be uniform, but actual 
steps are not continuous.
ResNets aren’t uniform iterations.



Key Advantages Compared to Previous ODE-Nets

● 1-to-1 correspondence with ResNets

● Basis functions yield introspectable and controllable depth

● Disentangle computation from parameters

● We focus on fixed step integrators instead of adaptive:
○ Control Δt to answer a scientific question.

● Think static graphs should be a better engineering solution:
○ Infrastructure and tools already exist
○ Ahead-of-time graph generation for different needs



● A ResNet will overfit a continuous dynamical system.

● Physical time series models are improved by embedding inside of a higher 
order integrator.

● ContinuousNet finds deep dynamical systems that are as expressive as 
ResNets using basis-function weights.

● ContinuousNet can manifest as different discrete graphs: iteratively 
deepening during training or compressing post-training.

Outro



1. Reimplement in JAX

2. Training
a. Train lightning fast with the adjoint equation!
b. Explore refinement strategies and schedules
c. Nonuniform splitting (think hp-adaptivity)

3. Compression
a. New Basis Functions
b. Compress the parameter coefficients through projection
c. Nonuniform steps

4. Noise/Adversarial Robustness

Next Steps



●
●

https://arxiv.org/pdf/2008.02389.pdf
https://github.com/afqueiruga/ContinuousNet




In ResNet and NNs, parameters are glued to nodes in the graph.

ContinuousNet’s computations are assigned weights by evaluating 
a θ(t).

To reconstruct ResNet, we map a continuous map  [tk,tk+1 )→ θk:

To generalize further, use basis functions (piecewise constant here):




