
Joint with Alejandro Queiruga (Google Research), N. Benjamin Erichson (ICSI and UC Berkeley),
 and Dane Taylor (U Buffalo)

Michael W. Mahoney
ICSI and UC Berkeley

Leveraging Ideas from Dynamical Systems

Machine Learning Dynamical Systems

The dynamical systems perspective can help us to better understand black-box ML
methods as well as to help us to design more robust models.

Residual Networks (ResNets) Differential Equations

Network Architecture Design Numerical Methods

Training Optimal Control

Recent Results that Leverage Ideas from
Dynamical Systems

● Lyapunov-stable autoencoders (arXiv:1905.10866)
● Consistent Koopman models (arXiv:2003.02236)
● Lipschitz recurrent neural networks (arXiv:2006.12070)
● Rapid backdoor detection via noise-response analysis (arXiv:2008.00123)

Robustness and Stability

● DNNs are known to be sensitive to different adversarial environments.

● For example, the vanishing and exploding gradients problem can be
studied using tools from stability analysis (e.g., Lyapunov methods).

● A richer understanding of such connections enables us to design more
interpretable and more robust models that are also faster to train.

Outline for this Talk

● Revisiting the Forward Euler Interpretations of Residual Networks

● Continuous-in-Depth Neural Networks (arXiv:2008.02389)

Connection between ResNets and Dynamical Systems

● ResNets are the most popular network architectures on the market.

● Hypothesis: Recent literature notes that ResNets learn a forward Euler
discretization of a dynamical system:

● Spoiler: we show that ResNets are not forward Euler discretizations of a
dynamical system in a meaningful way due to overfitting.

=1 sneak it in

● What does it even mean to say ResNet learns a forward Euler
representation of a dynamical system?

● We need context where a dynamical system is meaningful.

● So … let’s try time series prediction of a dynamical system.

Experiments in Dynamics

Numerical Integration and Machine Learning
work in Opposite Directions

Revisiting a Simple Dynamical System

● Learning a residual makes sense in many contexts:

 Future = Now + Update

● Let’s study training such a F(x) based on a neural network G(x):

x(t+Δt) = F(x(t)) = x(t)+G(x(t)) = NumericalMethod[G(x)]

● Numerical integrators approximate the integral with a discrete series of
applications of f(x,t)=dx/dt for a time step Δt:

Syntactic Similarity is not Sufficient for Correspondence

● Approximations to dynamical systems have richer properties.

A. For a given integrator, as Δt→ 0, error→ 0 (timestep refinement)

B. Integrators have a rate of convergence: log(error) ∝ r log(Δt)

C. The same dx/dt with different integrators should approach the same
x(tmax) at their respective rates

● We can verify these using a convergence test.

● These conditions are critical to deriving integration schemes.
(They also make great integration tests for numerical software!)

Does ResNet Units Satisfies these Properties?

 xk+1=xk+RK4[G,Δt](xk
)

xk+1=xk+Δt G(xk)

xk+1=xk+Δt G(xk
 +Δt/2G(xk))

Plug the frozen G into
other graphs

Given G:

Increase or Decrease Δt

● and predictions should change consistently as expected.

● If no, then the model should behave differently w.r.t. Δt.

● If yes, then we should be able to alter the model:

Experiment
1. Make a dataset with one Δt: {x(0), x(Δt), x(2Δt)... x(T)}
2. Train 3 models using G: a shallow tanh NN with 50 hidden units.
3. Then, freeze G, and perform a convergence test.
4. Hypothesis: A, B, & C should hold.

We train three models:
1. Forward Euler: xk+1= xk + Δt G(xk) ← Looks like a ResNet unit
2. Midpoint: xk+1= xk + Δt G(xk

 +Δt/2G(xk))
3. RK4: xk+1= xk + Δt RK4[G,Δt](xk

)

● For ground-truth, use the analytical solution.
● For comparison, plug the known dx/dt into the integrators.

After we train the models, they all perform good

● They are good discrete models without changing Δt.
● Note how using Euler as a numerical method is inaccurate.

But if we cut Δt in half, ODE-Net(Euler) gets worse

● Numerical(Euler) improves, as expected.
● Neural(RK4) is still on top of the analytical solution.

One-off plots aren’t sufficient
● Sweep Δt and calculate errors to do the full convergence test.

More time steps

Part 1: Δt→ 0 with same graph Part 2: Try different integrators

The trajectories on the last slide make one datapoint here:
 error=||xtrue(tmax)-F(F(...F(x0)...))||

More time steps

Part 1: Δt→ 0 on the model Part 2: Try different integrators

Vertical line is the training dataset sample rate

More time steps

Part 1: Δt→ 0 on the model Part 2: Try different integrators

● There’s a noticeable dip in error for ODE-Net(Euler).
● ODE-Net(Euler) is extremely sensitive to perturbations in Δt.
● Thus, it is only a discrete model, i.e., it overfits to Δt.

More time steps

● The models embedded in Midpoint and RK4 have no dip.
● The error changes smoothly for incremental changes in Δt.
● For larger time steps, the slopes match.

More time steps

● If we take the NN G from Euler and put it into another
integrator, the error is large.

More time steps

● But, both of the Gs trained inside of higher order integrators
work as expected when inside of any of the other integrators.

More time steps

● Our results show that our prevalent training methodology does not yield
models that can be interpreted with continuous theory.

● Having a peak says that it’s fragile to the number of timesteps.
That means, we can’t do ``interpolation’’.

● The RK4 scheme enables us to interpolate between domain shifted data.
In turn, this means that we can increase the number of layers (i.e., be
continuous-in-depth).

● Our analysis can be seen as a diagnostic tool to assess if the model has overfit:
how well does it represent a continuous system, and how well does it exhibit
the numerical properties of a continuous operator?

Implications

Hessian Loss Landscape

● "ADAHESSIAN: An Adaptive Second Order Optimizer for Machine Learning," arXiv:2006.00719
● "PyHessian: Neural Networks Through the Lens of the Hessian," arXiv:1912.07145

Continuous-in-Depth Neural Networks
ContinuousNet is a deep model that is a dynamical system:

● Basis functions in depth for parameters.
● High-order Runge Kutta-based computation graphs.
● Right timestep refinement and grid refinement.

Goal: recover (then extend) the exact same graph as ResNet, but phrased as a
function of time.

● ContinuousNet’s governing equation has time-varying parameters:

● Blocks of residual units are replaced by numerical integrators:

● OdeBlocks are assembled into the same ResNet architectures:

ContinuousNet’s governing equation has time-varying parameters:

Blocks of residual units are replaced by numerical integrators:

OdeBlocks are assembled into the same ResNet architectures:

● In the NN perspective, integrators prescribe graphs that nest the residual that
calculate the same thing:

● In the NN perspective, integrators prescribe graphs that nest the residual that
calculate the same thing:

Same R, and the same weights (in the simple case)

● In the NN perspective, integrators prescribe graphs that nest the residual that
calculate the same thing:

● We use edge weights that are well-known in numerical analysis.

● Numerical integration effectively chains
together these units into familiar and unfamiliar
graphs.

● Picking a scheme and a Nt specifies how to
generate a graph.

● Each one is (approximately) equivalent: each is
discrete, but each approximates the same
continuous model.

● In ResNet and NNs, parameters are glued to
computation nodes in the graph.

● ContinuousNet’s computations are assigned
weights by evaluating a continuous θ(t): What’s
the value halfway between steps?

● Basis functions in depth:

● Yields a systematic way to project to different
equivalent basis functions.

● ResNet is exactly forward Euler with the same
step size as piecewise constant basis
functions.

● Construct with a continuous map [tk,tk+1)→ θk
to define values between steps:

The original hypothesis can be tested with a convergence test on a DL
problem using ContinuousNet.

Updated hypothesis:

● Expect forward Euler (ResNet) to overfit

● Expect training with Midpoint or RK4 to enable transfer between
depths and graph modules

Experiments for Image Classification

We can perform the same experiment on CIFAR10
● Test set error in place of analytical solution

Train ContinuousNet M=32-32-32 with RK4 and Euler (ResNet-198)
● ContinuousNet(Euler): same dip as pendulum
● ContinuousNet(RK4): re-manifests with many Nt and integrators

We can perform the same experiment on CIFAR10
● Test set error in place of analytical solution

Train ContinuousNet M=32-32-32 with RK4 and Euler (ResNet-198)
● ContinuousNet(Euler): same dip as pendulum
● ContinuousNet(RK4): re-manifests with many Nt and integrators

DeeperShallower

We can perform the same experiment on CIFAR10
● Test set error in place of analytical solution

Train ContinuousNet M=32-32-32 with RK4 and Euler (ResNet-198)
● ContinuousNet(Euler): same dip as pendulum
● ContinuousNet(RK4): re-manifests with many Nt and integrators

We can perform the same experiment on CIFAR-10
● Test set error in place of analytical solution

Train ContinuousNet M=32-32-32 with RK4 and Euler (ResNet-198)
● ContinuousNet(Euler): same dip as pendulum
● ContinuousNet(RK4): re-manifests with many Nt and integrators

We see the same properties CIFAR-100:

And Tiny-Imagenet: (64x64 with 200 classes)

● Infinitely many computer programs exist for a problem.

● We choose to find one that is a continuous trajectory.

● ContinuousNet has infinitely many (approximately) equivalent graph
manifestations and basis set projections.

● This opens the door to better understanding and new tricks
post-training and during-training.

Why ContinuousNet?

Model for CIFAR10 Params Units (Nt) Accuracy Min / Max

ResNet-200 (v2) (baseline) 3.19 M 33-33-33 93.84% 93.56% / 94.03%

Neural ODE (reported by Zhang, 2019) 0.45 M - 67.94% 64.70% / 70.06%

ANODEV2 (Zhang, 2019) 0.45 M - 88.93% 88.65% / 89.19%

Hamiltonian PDE (Ruthotto, 2019) 0.26 M 3-3-3 89.30% -

ContinuousNet(Euler) 3.19 M 32-32-32 93.84% 93.55% / 94.04%

ContinuousNet(RK4-classic) 3.19 M 32-32-32 93.57% 93.40% / 93.70%

ContinuousNet has equivalent accuracy to the corresponding ResNet, and
outperforms previous differential-equation NNs

Model for CIFAR10 Params Units (Nt) Accuracy Inference Time (s)

ContinuousNet(RK4-classic) 3.19 M 32-32-32 93.57% 32.55

↳Manifest as (Euler) Same weights 32-32-32 93.55% 8.93

↳Manifest as (RK4-3/8) Same weights 11-11-11 93.44% 11.06

↳Manifest as (RK4-3/8) Same weights 6-6-6 92.28% 6.25

Manifestation Invariance:
ContinuousNet can remanifest its graph after training, without using data:

● The weights it learns can plug into a ResNet graph.
● It can even be made shorter, without sacrificing much accuracy.
● We can reduce the inference time.

OdeBlock2:R:conv1:w[0,1,2,0](t)

ContinuousNet can also iteratively deepen its graph during training:
➔ Just like mesh refinement

OdeBlock2:R:conv1:w[0,1,2,0](t)

ContinuousNet can also iteratively deepen its graph during training:
➔ Just like mesh refinement

OdeBlock2:R:conv1:w[0,1,2,0](t)

ContinuousNet can also iteratively deepen its graph during training:
➔ Just like mesh refinement

OdeBlock2:R:conv1:w[0,1,2,0](t)

ContinuousNet can also iteratively deepen its graph during training:
➔ Just like mesh refinement

OdeBlock2:R:conv1:w[0,1,2,0](t)

ContinuousNet can also iteratively deepen its graph during training:
➔ Just like mesh refinement

OdeBlock2:R:conv1:w[0,1,2,0](t)

ContinuousNet can also iteratively deepen its graph during training:
➔ Just like mesh refinement

OdeBlock2:R:conv1:w[0,1,2,0](t)

ContinuousNet can also iteratively deepen its graph during training:
➔ Just like mesh refinement

OdeBlock2:R:conv1:w[0,1,2,0](t)

Save time by training on shorter graphs initially

OdeBlock2:R:conv1:w[0,1,2,0](t)

ContinuousNet(RK4): the final parameters are
smoother functions in time.
Iterative operations change uniformly.

Euler Network: ||θk|| may be uniform, but actual
steps are not continuous.
ResNets aren’t uniform iterations.

Key Advantages Compared to Previous ODE-Nets

● 1-to-1 correspondence with ResNets

● Basis functions yield introspectable and controllable depth

● Disentangle computation from parameters

● We focus on fixed step integrators instead of adaptive:
○ Control Δt to answer a scientific question.

● Think static graphs should be a better engineering solution:
○ Infrastructure and tools already exist
○ Ahead-of-time graph generation for different needs

● A ResNet will overfit a continuous dynamical system.

● Physical time series models are improved by embedding inside of a higher
order integrator.

● ContinuousNet finds deep dynamical systems that are as expressive as
ResNets using basis-function weights.

● ContinuousNet can manifest as different discrete graphs: iteratively
deepening during training or compressing post-training.

Outro

1. Reimplement in JAX

2. Training
a. Train lightning fast with the adjoint equation!
b. Explore refinement strategies and schedules
c. Nonuniform splitting (think hp-adaptivity)

3. Compression
a. New Basis Functions
b. Compress the parameter coefficients through projection
c. Nonuniform steps

4. Noise/Adversarial Robustness

Next Steps

●
●

https://arxiv.org/pdf/2008.02389.pdf
https://github.com/afqueiruga/ContinuousNet

In ResNet and NNs, parameters are glued to nodes in the graph.

ContinuousNet’s computations are assigned weights by evaluating
a θ(t).

To reconstruct ResNet, we map a continuous map [tk,tk+1)→ θk:

To generalize further, use basis functions (piecewise constant here):

