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@ Weight Analysis and Heavy-Tailed Self-Regularization
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Qutline
@ Prehistory and History

@ Older Background



Statistical Physics & Neural Networks: A Long History

@ 60s:
» J. D. Cowan, Statistical Mechanics of Neural Networks, 1967.
@ 70s:

» W. A. Little, “The existence of persistent states in the brain,” Math.
Biosci., 1974.

@ 80s:

» H. Sompolinsky, “Statistical mechanics of neural networks,” Physics
Today, 1988.

@ 90s:

» D. Haussler, M. Kearns, H. S. Seung, and N. Tishby, “Rigorous learning
curve bounds from statistical mechanics,” Machine Learning, 1996.

@ 00s:

» A. Engel and C. P. L. Van den Broeck, Statistical mechanics of
learning, 2001.
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Hopfield model

Hopfield, “Neural networks and physical systems with emergent collective computational abilities,” PNAS 1982.

Hopfield model:
@ Recurrent artificial neural network model

@ Equivalence between behavior of NNs with symmetric connections and the
equilibrium statistical mechanics behavior of certain magnetic systems.

@ Can design NNs for associative memory and other computational tasks

Phase diagram with three kinds of phases (« is load parameter):
@ Very low « regime: model has so so much capacity, it is a prototype method
@ Intermediate a: spin glass phase, which is “pathologically non-convex”

@ Higher a: generalization phase

But:

@ Lots of subsequent work focusing on spin glasses, replica theory, etc.

Let's go back to the basics!
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Restricted Boltzmann Machines and Variational Methods

RBMs = Hopfield 4+ temperature + backprop:
RBMs and other more sophisticated variational free energy methods
@ They have an intractable partition function.
@ Goal: try to approximate partition function / free energy.
@ Also, recent work on their phase diagram.
We do NOT do this.
Memorization, then and now.
@ Three (then) versus two (now) phases.

@ Modern “memorization” is probably more like spin glass phase.

Let's go back to the basics!
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Some other signposts

Cowen’s introduction of sigmoid into neuroscience.

Parisi's replica theory computations.

Solla’s statistical analysis.

Gardner’s analysis of annealed versus quenched entropy.

Saad'’s analysis of dynamics of SGD.

Lots more ...

More recent work on dynamics, energy langscapes, etc.
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Important: Our Methodological Approach

Most people like training and validating ideas by training.

We will use pre-trained models.

@ Many state-of-the-art models are publicly available.

@ They are “machine learning models that work” ...so analyze them.

@ Selection bias: you can't talk with deceased patients.
Of course, one could use these methods to improve training .

Benefits of this methodological approach.

@ Can develop a practical theory.
(Current theory isn't ... loose bounds and convergence rates.)

@ Can evaluate theory on state-of-the-art models.
(Big models are different than small ... easily-trainable models.)

@ Can be more reproducible.
(Training isn't reproducible . ..too many knobs.)

You can “pip install weightwatcher”
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Qutline
@ Prehistory and History

@ A Very Simple Deep Learning Model



PAC/VC versus Statistical Mechanics Approaches (1 of 2)

Basic Student-Teacher Learning Setup:
@ Classify elements of input space X into {0, 1}
@ Target rule / teacher T; and hypothesis space F of possible mappings

@ Given T for X C X, the training set, select a student f* € F, and evaluate how
well £* approximates T on X

@ Generalization error (€): probability of disagreement bw student and teacher on X
@ Training error (€;): fraction of disagreement bw student and teacher on X
Learning curve: behavior of |e; — €| as a function of control parameters
PAC/VC Approach:

@ Related to statistical problem of convergence of frequencies to probabilities

Statistical Mechanics Approach:

@ Exploit the thermodynamic limit from statistical mechanics
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PAC/VC versus Statistical Mechanics Approaches (2 of 2)

PAC/VC: get bounds on worst-case results
@ View m = |X| as the main control parameter; fix the function class F; and ask
how |e: — €] varies

@ Natural to consider v = P [|e; — €| > 4]
» Related to problem of convergence of frequencies to probabilities
» Hoeffding-type approach not appropriate (f* depends on training data)

@ Fix F and construct uniform bound P [maxscr |e:(h) — e(h)| > 8] < 2|F| e 2m
» Straightforward if | F| < oo; use VC dimension (etc.) otherwise

Statistical Mechanics: get precise results for typical configurations
@ Function class F = Fy varies with m; and let m and (size of F) vary in
well-defined manner
@ Thermodynamic limit: m,N — oo s.t. a = T (like load in associative memory
models).
» Limit s.t. (when it exists) certain quantities get sharply peaked around
their most probable value.
» Describe learning curve as competition between error (energy) and log
of number of functions with that energy (entropy)
» Get precise results for typical (most probably in that limit) quantities
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Rethinking generalization requires revisiting old ideas

Martin and Mahoney https://arxiv.org/abs/1710.09553

Very Simple Deep Learning (VSDL) model:

@ DNN is a black box, load-like parameters «, & temperature-like parameters 7

@ Adding noise to training data decreases «

@ Early stopping increases

Nearly any non-trivial model* exhibits “phase diagrams,” with qualitatively
different generalization properties, for different parameter values.

Temperature

e Pertect
/ SG k\\

Toad Load « Load

Temperature

(a) Training/general- (b) Learning phases in (c) Noisifying data and
ization error. T- plane. adjusting knobs.

when analyzed via the Statistical Mechanics Theory of Generalization (SMToG)
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Remembering Regularization

Martin and Mahoney https://arxiv.org/abs/1710.09553

Statistical Mechanics (1990s): (this) Overtraining — Spin Glass Phase

(1 N N O

Binary Classifier with N Random Labelings:

2N over-trained solutions: locally (ruggedly) convex, very high barriers, all unable to generalize

implication: solutions inside basins should be more similar than solutions in different basins
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Stat Mech Setup: Student Teacher Model

Martin and Mahoney https://arxiv.org/abs/1710.09553
Given N labeled data points

@ Imagine a Teacher Network T that maps data to labels
@ Learning finds a Student J similar to the Teacher T

@ Consider all possible Student Networks J for all possible teachers T

The Generalization error € is related to the phase space volume €. of all possible
Student-Teacher overlaps for all possible J, T

A7
oy

1
= R, R==JIT
€ = arccos R, N
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Stat Mech Setup: Student Teacher Model

Martin and Mahoney https: //arxiv.org/abs/1710.09553
Statistical Mechanics Foundations:
@ Spherical (Energy) Constraints:  6(Tr[J?] — N)
@ Teacher Overlap (Potential): 6(+ Tr[JTT] — cos(me))
@ Teacher Phase Space Volume (Density of States):
Qr(e) = [ dIS(Tr[I?] — N)S(F; Tr[ITT] — cos(me))

Comparison to traditional Statistical Mechanics:

@ Phase Space Volume, free particles:

N p?
QE_derdep5<Z2p,;r—E>NvN

i i

@ Canonical Ensemble: Legendre Transform in R = cos(me):

actually more technical, and must choose sign convention on Tr[JTT], H

Qs(R) ~ [ du(d)e T~ [ dgNdpNeFH(pa)
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Stat Mech Setup: Student Teacher Model

Martin and Mahoney https://arxiv.org/abs/1710.09553

Early Models: Perception: J, T N-dim vectors

@ Continuous Perception J; € R (not so intersting)

@ Ising Perception J; = &1 (sharp transitions, requires Replica theory)

Our Proposal: J, T (N x M) Real (possibly Heavy Tailed) matrices
@ Practical Applications: Hinton, Bengio, etc.

@ Related to complexity of (Levy) spin glasses (Bouchaud)

Our Expectation:

@ Heavy-tailed structure means there is less capacity/entropy available for
integrals, which will affect generalization properties non-trivially

@ Multi-class classification is very different than binary classification
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Student Teacher: Recent Practical Application

“Similarity of Neural Network Representations Revisited”

Kornblith, Norouzi, Lee, Hinton; https://arxiv.org/abs/1905.00414

@ Examined different Weight matrix similarity metrics

@ Best method: Canonical Correlation Analysis (CCA): ||[YTX||2
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Figure: Diagnostic Tool for both individual and comparative DNNs

Martin and Mahoney (CC & ICSI/UCB) Statistical Mechanics Methods « 1 » Auguszt 2019 17 / 98



Student Teacher: Recent Generalization vs. Memorization

“Insights on representational similarity in neural networks with canonical correlation”

Morcos, Raghu, Bengio; https://arxiv.org/pdf/1806.05759.pdf

@ Compare NN representations and how they evolve during training

@ Projection weighted Canonical Correlation Analysis (PWCCA)

PWCCA

CCA distance

0.2

—— Generalizing
—— Memorizing
Inter

5 7 9 Softmax
Layer
Figure: Generalizing networks converge to more similar solutions than memorizing
networks.
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Qutline
@ Prehistory and History

@ More Immediate Background



Motivations: Theoretical AND Practical

Theoretical: deeper insight into Why Deep Learning Works?

@ convex versus non-convex optimization?

explicit/implicit regularization?

is / why is / when is deep better?

VC theory versus Statistical Mechanics theory?

Practical: use insights to improve engineering of DNNs?
@ when is a network fully optimized?

@ can we use labels and/or domain knowledge more efficiently?

large batch versus small batch in optimization?

designing better ensembles?
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Motivations: towards a Theory of Deep Learning

Energy Landscape Theory
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Raises broad questions about Why Deep Learning Works
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Motivations: regularization in DNNs?

ICLR 2017 Best paper

@ Large neural network models can easily overtrain/overfit on randomly
labeled data

@ Popular ways to regularize (basically min, f(x) + Ag(x), with “control
parameter” \) may or may not help.

Understanding deep learning requires rethinking generalization??
https://arxiv.org/abs/1611.03530

Rethinking generalization requires revisiting old ideas: statistical

mechanics approaches and complex learning behavior!!
https://arxiv.org/abs/1710.09553 (Martin & Mahoney)
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Motivations: stochastic optimization DNNs?

Theory (from convex problems):

@ First order (SGD, e.g., Bottou 2010)
larger “batches” are better (at least up to statistical noise)

@ Second order (SSN, e.g., Roosta and Mahoney 2016)
larger “batches” are better (at least up to statistical noise)

@ Large batch sizes have better computational properties!
So, people just increase batch size (and compensate with other parameters)
Practice (from non-convex problems):

@ SGD-like methods “saturate”
(https://arxiv.org/abs/1811.12941)

@ SSN-like methods “saturate”
(https://arxiv.org/abs/1903.06237)

@ Small batch sizes have better statistical properties!

Is batch size a computational parameter, or a statistical parameter, or what?

How should batch size be chosen?

Martin and Mahoney (CC & ICSI/UCB) Statistical Mechanics Methods « 1 » Auguszt 2019 22 /93



Set up: the Energy Landscape

Energy/Optimization function:
Epyn = h(Wp x hp—1(Wp—1 X h—o(---)+bi_1) +by)

Train this on labeled data {d;, y;} € D, using Backprop, by minimizing loss L:

. E N
min L ( E,- onn(di) yl>
Epnw is “the” Energy Landscape:

@ The part of the optimization problem parameterized by the heretofore

unknown elements of the weight matrices and bias vectors, and as defined
by the data {d;,y;} € D

@ Pass the data through the Energy function Epyy multiple times, as we run
Backprop training

@ The Energy Landscape® is changing at each epoch

§i.e., the optimization function that is nominally being optimized
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Problem: How can this possibly work?

Expected Observed

L

L
L o
Ny,
AT

Highly non-convex? Apparently not!

It has been known for a long time that local minima are not the issue.
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Problem: Local Minima?

Pattern
Classification

Duda, Hart and Stork, 2000

Whereas in low-dimensional spaces, local minima can be plentiful, in high di-
mension, the problem of local minima is different: The high-dimensional space may
afford more ways (dimensions) for the system to “get around” a barrier or local
maximum during learning. The more superfluous the weights, the less likely it is a
network will get trapped in local minima. However, networks with an unnecessarily
large number of weights are undesirable because of the dangers of overfitting, as we
shall see in Section 6.11.

Solution: add more capacity and regularize, i.e., over-parameterization
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Motivations: what is regularization?

Training Set Accuracy

Accuracy

Overfiting

Test Set Accuracy

Early Stopping
Epoch

Epoch

(b) Early Stopping.

00 0 0,
CAN) 09_?0
o9 o0 @
W0 00 % o
e & e 0 %°
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oy 6" @ P
o B °02°%0
o PAZARN)
A\
Epochs N\
(c) Batch Size. (d) Noisify Data.

Every adjustable knob and switch—and there are manyY—is regularization.

Thttps: //arxiv.org/pdf/1710.10686.pdf
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Outline

@ Preliminary Results
@ Regularization and the Energy Landscape



Basics of Regularization

Ridge Regression / Tikhonov-Phillips Regularization

Wx =y
~ ~ -1 . ;

. T T Moore-Penrose pseudoinverse (1955)
X= (W W+ al) W'y { Ridge regularization (Phillips, 1962)
min ||WX — y||% + ()é’|§(||% familiar optimization problem

X

Softens the rank of W to focus on large eigenvalues.
Related to Truncated SVD, which does hard truncation on rank of W

Early stopping, truncated random walks, etc. often implicitly solve
regularized optimiation problems.
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How we will study regularization
The Energy Landscape is determined by layer weight matrices W :
Epnn = h(Wp x hp1(Wp_1 x hp_»(---)+br1) +byp)

Traditional regularization is applied to Wy:
Vrpig L <Z Epnn(di) — )/i> +a Z W/l
1,091 i /

Different types of regularization, e.g., different norms || -
empirical signatures on W .

What we do:

@ Turn off “all” regularization.

, leave different

@ Systematically turn it back on, explicitly with « or implicitly with
knobs/switches.

@ Study empirical properties of W,.
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Lots of DNNs Analyzed

Question: What happens to the layer weight matrices W7

(Don't evaluate your method on one/two/three NN, evaluate it on a dozen/hundred.)

Retrained LeNet5 on MINST using Keras.
Two other small models:

@ 3-Layer MLP

@ Mini AlexNet

78

P

Pooing 4x4x256 4x4x256 384 192 10

Conv2D
28x28x3  10x10x96 10x10x96

Conv2D MaxPool Conv2D MaxPool FCI FC2 FC

Wide range of state-of-the-art pre-trained models:

@ AlexNet, Inception, etc.

Martin and Mahoney (CC & ICSI/UCB)
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@ Preliminary Results

@ Preliminary Empirical Results



Matrix complexity: Matrix Entropy and Stable Rank

= T R L 2 2
W =UuUxVv vi = X pi =vi/ > Vi
-1 W] ? v;
S(W) = —=rny i Pilog pi Re(W) = jooib = =i
i ! s - 2 T 2
log(R(W)) W3~ 12,
A warm-up: train a 3-Layer MLP:
0.020MLP3: Entropy S(WF) vs Epoch (e) MLP3: Stable Rank R(W$) vs Epoch (e)
- s, 1301 o,
_ 0918 e EE; 120 .':I» ES
S ogorg] T, gnc
§0914 ; 100
E 0.912 % %
E 0.910 g 80
£ 0.908 0
0.906 P
o 1 20 30 40 0 10 30 40
Epoch (e) Epoch (e)
(e) MLP3 Entropies. (f) MLP3 Stable Ranks.

Figure: Matrix Entropy & Stable Rank show transition during Backprop training.

Martin and Mahoney (CC & ICSI/UCB) Statistical Mechanics Methods « 1 » Auguszt 2019 34 /93



Matrix complexity: Scree Plots

— T _ _ .2 2
W =UxVv I//—Z,’,‘ pi—Vi/ZiVi
-1 Wiz _ v
S(W) = —=rny i Pilog pi Re(W) = jooib = =i
i ! s - 2 T 2
log(R(W)) IW[Z ~ 2,
A warm-up: train a 3-Layer MLP:
MLP3 Scree Plots, initial W) MLP3: Scree Plots, initial W
00087 — Fa 0.0150] | — fa
\ FC2 | — FQ2
00061 \ 001251 |
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0.004 \ 0.0075
0.002 0.0050
0.0025
0.000 — 0.0000 —_
0 100 200 300 400 500 0 100 200 300 400 500
(a) Initial Scree Plot. (b) Final Scree Plot.

Figure: Scree plots for initial and final configurations for MLP3.
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Matrix complexity: Singular/Eigen Value Densities

W =uUxv’ vi=Xji pi = Vi v
-1 Wz > 72
SW)=———_ 3" pjlog p; = A
(W) = foglrw)) 277/ 18 P W) =Wz =

A warm-up: train a 3-Layer MLP:

MLP3 FC2: Density, Singular Values pemp(v) MLP3 FC2: Empirical Spectral Density pamp(A
- =i
- final - final
%%%0 o5 10 15 20 25 2 3 I3
(a) Singular val. density (b) Eigenvalue density

Figure: Histograms of the Singular Values v; and associated Eigenvalues \; = v/2.
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ESD: detailed insight into W,
Empirical Spectral Density (ESD: eigenvalues of X = W] W/,)

import keras

import numpy as np

import matplotlib.pyplot as plt

=
Il

model.layers[i].get_weights()[0]

X = np.dot(W, W.T)
evals, evecs = np.linalg.eig(W, W.T)
plt.hist(X, bin=100, density=True)
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ESD: detailed insight into W,

Empirical Spectral Density (ESD: eigenvalues of X = W/ W)

Epoch 0 Epoch 4 Epoch 8 Epoch 12 Epoch 16
Eopch 0: 075
Random 050
Matrix
025
000
1 2 1 2 3 1 2 3 1 2 3 a4 2 4
Epoch 20 Epoch 24 Epoch 28 Epoch 32 Epoch 36
075
050 Eopch 36:
025 Random
000 + Spiles
2 4 2 4 2 4 2 4 2 4

Entropy decrease corresponds to:

e modification (later, breakdown) of random structure and

@ onset of a new kind of self-regularization.

Martin and Mahoney (CC & ICSI/UCB) Statistical Mechanics Methods « 1 » Auguszt 2019 32 /93



Outline

© Preliminary Results

@ Gaussian and Heavy-tailed Random Matrix Theory



Random Matrix Theory 101: Wigner and Tracy-Widom

o Wigner: global bulk statistics approach universal semi-circular form

@ Tracy-Widom: local edge statistics fluctuate in universal way

pn(A)
LEEE BEiS Y Tracy-Widom
- ~
I’ ~ ~
s ~ N
4 ~
L4 ~
’ .|
! N :
’ ! right
4 . I I . .
/ eft \ arge deviation
" arge deviat \‘
1 A
2N 2N
Vo 0 by A

Problems with Wigner and Tracy-Widom:
@ Weight matrices usually not square

@ Typically do only a single training run
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Random Matrix Theory 102: Marchenko-Pastur

Let W be an N x M random matrix, with elements W;; ~ N(0,02,)).

» Y mp

Then, the ESD of X = WTW, converges to a deterministic function:

1M
() = A0
i—1
+_ _ —
N—soo Q_ VT =NA=X\T) if A e[\, A7)
— 2no2, A
Q fixed p .
0 otherwise.

with well-defined edges (which depend on Q, the aspect ratio):

1 2
Ai:af,,p<1im) Q=N/M>1.
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Random Matrix Theory 102": Marchenko-Pastur

Marchenko Pastur distributions p(A) Marchenko Pastur distributions p(A)
I __ 0= =
1.0 4 ‘\ Q=d0’=1

— Q=40’=15

08 3 ‘\ —— Q=402=05
S 06 = |
] 32 \
0.4 ‘

- 1 ﬁK
0.0 0 !

0 1 2 3 4 0 1 2 3 4 5

AEIT,AT] AENAT]
(a) Vary aspect ratios (b) Vary variance parameters

Figure: Marchenko-Pastur (MP) distributions.
Important points:
@ Global bulk stats: The overall shape is deterministic, fixed by @ and o.

@ Local edge stats: The edge AT is very crisp, i.e.,
AV = |Amax — AT| ~ O(M~2/3), plus Tracy-Widom fluctuations.

We use both global bulk statistics as well as local edge statistics in our theory.
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Random Matrix Theory 103: Heavy-tailed RMT

Go beyond the (relatively easy) Gaussian Universality class:

@ model strongly-correlated systems (“signal”) with heavy-tailed random matrices.

Generative Model Finite-N Limiting Bulk edge (far) Tail
w/ elements from Global shape Global shape Local stats Local stats
Universality class pPn(A) p(N\), N — oo A~ AT A R Amax
Basic MP Gaussian . MP . MP T™W No tail.
distribution
Spiked- Gaussian, MP +
pil + low-rank Gaussian MP T™W Gaussian
Covariance X X
perturbations spikes
Heavy tail, (Weakly) MP + L L
4<p Heavy-Tailed PL tail MP Heavy-Tailed Heavy-Tailed
. Moderately) P PL
Heavy tail ( ; PL
y Heavy-Tailed —(ap+b) (L No edge. Frechet
2<p<4 (or “fat tailed”) ~ A ~ ATl
F
Heavy tail, (Very) PL PL
0<p<2 Heavy-Tailed -Gy | =Gy No edge. Frechet

Basic MP theory, and the spiked and Heavy-Tailed extensions we use, including known, empirically-observed, and conjectured
relations between them. Boxes marked “*" are best described as following “TW with large finite size corrections” that are likely
Heavy-Tailed, leading to bulk edge statistics and far tail statistics that are indistinguishable. Boxes marked “**" are

phenomenological fits, describing large (2 < p < 4) or small (0 < p < 2) finite-size corrections on N — oo behavior.



Fitting Heavy-tailed Distributions

Pemp(A) W) Pemp(A) W(u = 3)
u=1 Zoomed in
u=3 10* u=3
u=5
_ 10
=
£
< 10-¢
1077
10 107 100 1013 10° 10 105 10¢ 107

Figure: The log-log histogram plots of the ESD for three Heavy-Tailed random
matrices M with same aspect ratio @ = 3, with u = 1.0, 3.0, 5.0, corresponding to
the three Heavy-Tailed Universality classes (0 < <2 vs 2 < < 4 and 4 < p).
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Non-negligible finite

5 gPowerlaw estimate for a given u, different classes

—— Theory O<p<d:a=1+05u
— WAt 2<p<d
. O<p<2

i 3 3 i 5
n

(a) M = 1000, N = 2000.

size effects

Powerlaw estimate for a given y, fixed M

Powerlaw estimate for a given y, fixed N

6| — w<2:a=@2pm+1 — MPia=(12u+1
=2 40 1
Q=4
5 Q=10
35
4 3.0
o s
25
3
20
2
15
1
00 05 00 05 10 15 20 25 30 35 40

10 15 20 25 30 35 40

W drawn from 4, M=1000, N=Q*M W drawn from 41, N=1000, M=N/Q

(b) Fixed M. (c) Fixed N.

Figure: Dependence of « (the fitted PL parameter) on p (the hypothesized

limiting PL parameter).
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Heavy Tails (!) and Heavy-Tailed Universality (?)

Universality: large-scale properties are independent of small-scale details
@ Mathematicians: justify proving theorems in random matrix theory
@ Physicists: derive new phenomenological relations and predict things

@ Gaussian Universality is most common, but there are many other types.

Heavy-Tailed Phenomenon

@ Rare events are not extraordinarily rare, i.e., are heavier than Gaussian tails
@ Modeled with power law and related functions

@ Seen in finance, structural glass theory, etc.

Heavy-Tailed Random Matrix Theory

@ Phenomenological work by physicists (Bouchard, Potters, Sornette, 90s)
@ Theorem proving by mathematicians (Auffinger, Ben Arous, Burda, Peche, 00s)

@ Universality of Power Laws, Levy-based dynamics, finite-size attractors, etc.

Martin and Mahoney (CC & ICSI/UCB) Statistical Mechanics Methods « 1 » Auguszt 2019 4€ / 93



Heavy-Tailed Universality: Earthquake prediction

“Complex Critical Exponents from Renormalization Group Theory of Earthquakes ..." Sornette et al. (1985)

Power law fit!l of the regional strain ¢ (a measure of seismic release) before the
critical time t. (of the earthquake)

de _ A+ B(t—t)"
dt ‘
.
el tomarien
Table 1. — Parameters found by fitting time-to-failure- ions to the lative Benioff
strain.
Parameters T Loma Prieta | Kommandorski Island
Power fit
2 Equation (2)
15 A 8.50+£0.73 6.23 £26.9
H B -0.29+0.44 -249+19.3
1620 1930 1940 1950 1960 1970 1980 1990 “m 035+023 026+1.0
e I 19903 £4.1 1998.8 +19.7

(a) (b)

Figure: (a) Cumulative Beniolf strain released by magnitude 5 and greater
earthquakes in the San Francisco Bay area prior to the 1989 Loma Prieta
eaerthquake. (b) Fit of Power Law exponent (m).

I More sophisticated Renormalization Group (RG) analysys uses complex critical exponents; giving tog-peripdic corrections:
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Heavy-Tailed Universality: Market Crashes

“Why Stock Markets Crash: Critical Events in Complex Financial Systems” by D. Sornette (book, 2003)
Simple Power Law

log p(t) = A+ B(t — t.)°

Complex Power Law (RG Log Periodic corrections)

log p(t) = A+ B(t — t.)? + C(t — t.)?(cos(wlog(t — t.) — ¢)

crash te tmaz | tmin | drop | B | wi | A A B C Var
1929 (WS) | 30.22 | 29.65 | 29.87 [ 47% | 0.45 | 7.9 [ 2.2 571 | —267 14.3 56
1985 (DEM) | 85.20 | 85.15 | 85.30 [ 14% | 0.28 | 6.0 | 2.8 | 3.88 1.16 —0.77 | 0.0028
1985 (CHF) | 85.19 | 85.18 | 85.30 | 15% [ 0.36 | 5.2 [ 3.4 | 3.10 | —0.86 | —0.055 | 0.0012
1987 (WS) | 87.74 | 87.65 | 87.80 | 30% | 0.33 | 7.4 [ 2.3 | 411 —165 12.2 36
1997 (H-K) | 97.74 [ 97.60 | 97.82 | 46% [ 0.34 | 7.5 | 2.3 | 20077 | —8241 | —397 | 190360
1998 (WS) [ 98.72 | 98.55 [ 98.67 [ 19% [ 0.60 | 6.4 [ 2.7 [ 1321 | —402 19.7 375
1998 (YEN) [ 98.78 [ 98.61 [ 98.77 | 21% [0.19 [ 7.2 | 2.4 | 207 —84.5 2.78 17
1998 (CANS) | 98.66 | 98.66 | 98.71 | 5.1% | 0.26 [ 8.2 | 2.2 | 1.62 | —0.23 | —0.011 | 0.00024

(a) Dow Jones 1929 crash (b) Universal parameters, fit to RG model
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Heavy-Tailed Universality: Neuronal Avalanches

Neuronal avalanche dynamics indicates different universality classes in neuronal cultures; Scienfic Reports 3417 (2018)

From:

cultures

s

TV A b
g [ R “
Sfit I FHA
ERHE NN
e HA
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E R N
it i
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o w0 m e w0 o & w0 1
time (s) time (s)

(c) Spiking activity of cultured neurons
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Experiments: just apply this to pre-trained models

https://medium.com/@siddharthdas_32104/cnns-architectures-lenet-alexnet-vgg-googlenet-resnet-and-more-...

Year CNN Developed | Place TopSermor | No. of
by rate parameters
1998 LeNet(8) Yann LeCun 60 thousand
etal
2012 AlexNet(7) | Alex 1st 15.3% 60 million
Krizhevsky,
Geoffrey
Hinton, llya
Sutskever
2013 ZFNet() Matthew st 14.8%
Zeiler and
Rob Fergus
2014 GoogLeNet(1 | Google st 6.67% 4 million
9)
2014 VGG Net(16) | Simonyan, | 2nd 7.3% 138 million
Zisserman
2015 ResNet(152) | Kaiming He [ 1st 3.6%
nception-ve
@ w0
Incetiony3 PR
Restiet.50 ¥66.15
i ] .ﬂPw;ga.:.‘.;ol
Za R Reatiet 18
3 7| 09
H S |ene
i fe
i 7| @ewm
3 60 © &0 5M 35M  65M  95M
BN Aextiet
5 5 Heatiet
su*w\.‘wj.‘\gkéﬁque\'y» o s 10 5 20 28 )
ARl A8 26 48 ok <O o),
P etton ™ € B et ol o0 2 Operations (G-Ops]
PR e v—”‘fﬁﬁé“&v‘:&e\

An Analysis of Deep Neural Network Madels for Practical Applications, 2017.

V6619

125M 1551
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Experiments: just apply this to pre-trained models

Model Layer | Q (M % N) a | D ‘ifi‘
alexnet 17/FC1 | 2.25 | (4096 x 9216) | 2.29 | 0.0527 | PL
20/FC2 | 1 | (4096 x 4096) | 2.25 | 0.0372 | PL

22/FC3 | 4.1 | (1000 x 4096) | 3.02 | 0.0186 | PL

densenet121 432 1.02 | (1000 x 1024) | 3.32 | 0.0383 | PL
denseneti2] 132 | 1.02| (1000 x 1024) | 3.32 | 0.0383 | PL
densenet161 572 2.21 (1000 x 2208) | 3.45 | 0.0322 | PL
densenet169 600 1.66 | (1000 x 1664) | 3.38 | 0.0396 | PL
densenet201 712 | 1.02 | (1000 x 1920) | 3.41 | 0.0332 | PL
inception v3 L.226 1.3 (768 x 1000) 5.26 | 0.0421 PL
L302 2.05 | (1000 x 2048) | 4.48 | 0.0275 [ PL

resnet101 286 2.05 | (1000 x 2048) [ 3.57 | 0.0278 [ PL
resnet152 422 2.05 | (1000 x 2048) [ 3.52 | 0.0298 [ PL
resnet18 67 1.95 (512 > 1000) 3.34 | 0.0342 | PL
Tosnet3d 05 | 1.05 | (512 x 1000) | 339 | 0.0857 | PL
resnet50 150 2.05 | (1000 x 2048) | 3.54 | 0.027 PL
veell 21 [ 6.12 | (4096 x 25088) | 232 | 0.0327 | PL
27 | 1 | (4096 x 4096) | 2.17 | 0.0309 | TPL

30 | 41 | (1000 x 4096) | 2:83 | 0.0308 | PL

vggll bn 32 6.12 | (4096 x 25088) | 2.07 | 0.0311 | TPL
35 1 (4096 x 4096) | 1.95 | 0.0336 | TPL

38 | 41 | (1000 x 4096) | 200 | 0.0330 | PL

vgel6 34 6.12 | (4096 x 25088) | 2.3 | 0.0277 | PL
37 1 (4096 x 4096) | 2.18 | 0.0321 | TPL

40 4.1 (1000 x 4096) | 2.09 | 0.0403 | TPL

V216 bn I7 [ 6.12 | (4006 x 25088) | 2.05 | 0.0285 | TPL
50 1 (4096 x 4096) | 1.97 | 0.0363 | TPL

53 4.1 (1000 x 4096) | 3.03 | 0.0358 | PL

vgel9 40 6.12 | (4096 x 25088) [ 2.27 | 0.0247 [ PL
43 1 (4096 x 4096) | 2.19 | 0.0313 | PL

46 4.1 (1000 x 4096) | 2.07 | 0.0368 | TPL

vgel9 bn 56 6.12 | (4096 x 25088) | 2.04 | 0.0295 | TPL
50 1| (4096 x 4096) | 1.9 | 0.0373 | TPL

62 | 41 | (1000 4096) | 3.03 | 0.035 | PL
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RMT: LeNet5 (an old/sm

Figure: Full and zoomed-in ESD for LeNet5, Layer FC1.

Martin and Mahoney (CC & ICSI/UCB)
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LeNet5: pemp(A) and MP fit
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RMT: AlexNet (a typical modern/large DNN example)

3.0

AlexNet FC1: ... zoomed in*

—— MPfit
Pemp(A)

0 2 4
Eigenvalues (A) of X = W, Wec;

10 AlexNet FC3:

.. zoomed in

—— MPfit
Pemp(A)

0 2

4

Eigenvalues (A) of X = W[ Wec;

Figure: Zoomed-in ESD for Layer FC1 and FC3 of AlexNet.

Marchenko-Pastur Bulk-decay + Heavy-tailed
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RMT: InceptionV3 (a particularly unusual example)

11 i
safaadediaifradiae
LR LR 9

Convolution

Pooling
Other
InceptionV3 Wazs: Pemp(A) and MP fi InceptionV3 Wiga: Pempl(A) and MP fi
L0 —— MPfit —— MPfit
PemelA) 08 PerlA)
0.8 ‘emp emp
0.6
Z 06 =
g g
5 §
0.4 404
0.2 0.2
0.0 0.0
0 10 20 0 10 20 30
Eigenvalues of X =W, . W55, Eigenvalues of X =W, W,

Figure: ESD for Layers L226 and L302 in InceptionV3, as distributed w/ pyTorch.

Marchenko-Pastur bulk decay, onset of Heavy Tails
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Convolutional 2D Feature Maps

We analyze Conv2D layers by extracting the feature maps individually,
i.e., A (3 x3x64x64) Conv2D layer yields 9 (64 x 64) Feature Maps

T

(a) «=1.38 (b) a =274 (c) a“:“ 3?02

Figure: Select Feature Maps from different Conv2D layers of VGG16.
Fits shown with PDF (blue) and CDF (red)
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Open Al GPT2 Attention Matrices

NLP Embedding and Attention Matrices are Dense/Linear, but generally have
large aspect ratios

GPT2N. M = (3072.768) Q = 4.00 GPT2 N. M = (2304.768) Q = 3.00 GPT2 N, M = (3072,768) Q = 4.00

¥ 8 &8 8 8 3

o
o o1 o2 @3 o4 05 06 o 0000 0025 0050 0075 0100 0125 0150 0175 0200

(a) a= (b) a= (c) a=

Figure: Selected ESDs from Open Al GPT2 (Huggingface implementation)
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Outline

© Developing a Theory for Deep Learning

@ An RMT-based Theory for Deep Learning



RMT-based 5+1 Phases of Training

Spectral Density pur(A)

(a) RANDOM-LIKE.
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Figure: The 5+1 phases of learning we identified in DNN training.
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RMT-based 5+1 Phases of Training

We model “noise” and also “signal” with random matrices:
W ~ Wrand + Asig

(1)

Operational
Definition

Informal
Description
via Eqn. (1)

Edge/tail Illustration
Fluctuation and
Comments Description

ESD well-fit by MP

wyrand random;

Amax = AT is

spike at A =0

over-regularization

RANDOM-LIKE R . + i sharp, with Fig. 15(a)
with appropriate A || A58 || zero or small TW statistics
ESD RANDOM-LIKE, W has eigenmass at BPP transition,
. X bulk edge as .
BLEEDING-OUT excluding eigenmass spikes “pull out”; Amax and Fig. 15(b)
i + ; ’ +
just above A\ 1A% || medium AT separate
ESD RANDOM-LIKE wrand well-separated Atis TW,
BULK+SPIKES plus > 1 spikes from low-rank ASE; Amax is Fig. 15(c)
well above AT HASigH larger Gaussian
ESD less RANDOM-LIKE; Complex A8 with Ed b A+
BULK-DECAY Heavy-Tailed eigenmass correlations that -dge above Fig. 15(d)
+. . \ f is not concave
above A™; some spikes don't fully enter spike
ESD better-described W2 g small; No good A+
HEAVY-TAILED by Heavy-Tailed RMT ASE is large and N g )‘+' Fig. 15(e)
than Gaussian RMT strongly-correlated max >
RANK-COLLAPSE ESD has large-mass W very rank-deficient; o Fig. 15(F)

The 541 phases of learning we identified in

DNN training.



RMT-based 5+1 Phases of Training

Lots of technical issues ...
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Outline

© Developing a Theory for Deep Learning

@ Tikhonov Regularization versus Heavy-tailed Regularization



Bulk+Spikes: Small Models ~ Tikhonov regularization

Low-rank perturbation Perturbative correction
rand large A _ 2 |A|2
W[ >~ W/ + A max = O |A‘2
A]> (@)
LeNet5: pemp(A) and MP fit
o3 f\\ ey | simple scale threshold
0.4 ' 1
3%0.3 \ X = <)A(+Oz|) WTy
02 i .
BUIkm_ : /Splkes eigenvalues > « (Spikes)
00 carry most of the
' 10 20 . . .
Eigenvalues of X= W'W signal /information

A+
Smaller, older models like LeNet5 exhibit traditional regularization and can
be described perturbatively with Gaussian RMT
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Heavy-tailed Self-regularization

W is strongly-correlated and highly non-random

@ We model strongly-correlated systems by heavy-tailed random matrices
@ l.e., we model signal (not noise) by heavy-tailed random matrices
Then RMT/MP ESD will also have heavy tails

Known results from RMT / polymer theory (Bouchaud, Potters, etc)

ESD p(A) for AlexNet, FC2, zoomed in

AlexNet
ReseNet50
Inception V3
for DenseNet201

1 H 3 2
N Eigenvalues (3) of X = Wic,Wic:

“All" larger, modern DNNs exhibit novel Heavy-tailed self-regularization
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Heavy-tailed Self-regularization

Summary of what we “suspect” today
@ No single scale threshold.
No simple low rank approximation for W,.

Contributions from correlations at all scales.

Can not be treated perturbatively.

“All" larger, modern DNNs exhibit novel Heavy-tailed self-regularization
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Spikes: carry more “information” than the Bulk

Spikes have less entropy, are more localized than bulk.

Localization Ratios, 10 runs

Mini AlexNet FC1: Mini AlexNet FC1:
Vector Entropies, 10 runs 005 Participation Ratios, 10 runs
30
0.04 6
25
5
20 0.03 a
» 0.02 3
10 2
5 0.01 N
0 0.90 0.95 1.00 0.00 60 80 100 120 0 3.0 32 34
(a) Vector Entropies. (b) Localization Ratios. (C) Participation Ratios.

Figure: Eigenvector localization metrics for the FC1 layer of MiniAlexNet.

Information begins to concentrate in the spikes.
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Power Law Universality: ImageNet and AllenNLP

ImageNet Power Law fits: p(A) ~A~% AllenNLP Power Law fits: p(A) ~A~¢
3.0 10
25 8
2.0
6
15
4
1.0
oo . [
2 3 4 5 2 4 6
a a
(a) ImageNet pyTorch models (b) AllenNLP models

Figure 12: Distribution of power law exponents « for linear layers in pre-trained models trained
on ImageNet, available in pyTorch, and for those NLP models, available in AllenNLP.

All these models display remarkable Heavy Tailed Universality
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Power Law Universality: ImageNet

Power law Exponents a
for 7500 ImageNet Weight Matrices

800
600
@ 7500 matrices (and Conv2D feature maps
400 @ over 50 architectures
@ Linear layers and Conv2D feature maps
e ° 80— 90% < 5
0 1 T T
0 5 10 15 20

aforp(A)

All these models display remarkable Heavy Tailed Universality
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Power Law Universality: Open Al GPT versus GPT2

GPT and GPT2 Layer Weight Matrix
Power Law Exponents a, p(A) ~A~?

12 - GPT2

GPT
10

08
06
04

02

1l

GPT versus GPT2: (Huggingface implementation)

example of a class of models that “improves” over time.

m] ] - E E A
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Mechanisms?

Spiked-Covariance Model
@ Statistical model: Johnstone, “On the distribution ..." 2001.

@ Simple self-organization model: Malevergne and Sornette, "Collective
Origin of the Coexistence of Apparent RMT Noise and Factors in
Large Sample Correlation Matrices,” 2002.

@ Low-rank perturbative variant of Gaussian randomness modeling noise

Heavy-tailed Models: Self-organized criticality (and others ...)

@ Johansen, Sornette, and Ledoit, “Predicting financial crashes using
discrete scale invariance,” 1998.

@ Markovic and Gros, “Power laws and self-organized criticality in
theory and nature,” 2013.

@ Non-perturbative model where heavy-tails and power laws are used to
model strongly correlated systems
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Outline

e Validating and Using the Theory
@ Varying the Batch Size: Explaining the Generalization Gap



Self-regularization: Batch size experiments

A theory should make predictions:

@ We predict the existence of 541 phases of increasing implicit
self-regularization

@ We characterize their properties in terms of HT-RMT

Do these phases exist? Can we find them?

There are many knobs. Let's vary one—batch size.
@ Tune the batch size from very large to very small
@ A small (i.e., retrainable) model exhibits all 5+1 phases
@ Large batch sizes => decrease generalization accuracy

@ Large batch sizes => decrease implicit self-regularization

Generalization Gap Phenomena: all else being equal, small batch sizes lead to
more implicitly self-regularized models.
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Batch size and the Generalization Gap
Large versus small batches?
@ Larger is better:
» Convex theory: SGD is closer to gradient descent
» Implementations: Better parallelism, etc.
(But see Golmant et al. (arxiv:1811.12941) and Ma et al.
(arxiv:1903.06237) for “inefficiency” of SGD and KFAC.)
@ Smaller is better:
» Empirical: Hoffer et al. (arXiv:1705.08741) and Keskar et al.
(arXiv:1609.04836)

» Information: Schwartz-Ziv and Tishby (arxiv:1703.00810)
(This is like a “supervised” version of our approach.)

Connection with weight norms?
@ Older: Bartlett, 1997; Mahoney and Narayanan, 2009.

@ Newer: Liao et al., 2018; Soudry et al., 2017; Poggio et al., 2018;
Neyshabur et al., 2014; 2015; 2017a; Bartlett et al., 2017; Yoshida and

Miyato, 2017; Kawaguchi et al., 2017; Neyshabur et al., 2017b; Arora et al.,
2018b;a; Zhou and Feng, 2018.
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Batch Size Tuning: Generalization Gap

Mini AlexNet FC1: Min AlexNet FC2: Mini AlexNet:
Stable Rank vs MP Soft Rank Stable Rank vs Batch Size Accuracies vs Batch Size
- 10 : 10
« train
2000 08 2000 0.7 test
5 % ~ 0.8% .
& 1500 068 & 1500 [ Zos
@ & @ € s
8 044 2 064 g .
% 1000 = % 1000 = 0.9
0.2 .
.
500 0.0 500 04 10 ce o 0 s e
100 102 10! 100 102 10! 10° 102 10!
10910 batch size 10910 batch size log10 Batch Size

Figure: Varying Batch Size: Stable Rank and MP Softrank for FC1 and FC2
Training and Test Accuracies versus Batch Size for MiniAlexNet.

@ Decreasing batch size leads to better results—it induces strong
correlations in W.

@ Increasing batch size leads to worse results—it washes out strong
correlations in W.

Martin and Mahoney (CC & ICSI/UCB) Statistical Mechanics Methods « 1 » Auguszt 2019

76 / 95



Batch Size Tuning: Generalization Gap

Mini AlexNet FCL: ESD Mini Alexet FCL: ESD Mini AlexNet FCL: ESD
10 runs; batch size 500 10 runs; batch size 250 10 runs; batch size 100

Spectral Density pu(A)

5 20 25
o1 X = Wi W

(a) Batch Size 500. (b) Batch Size 250. (c) Batch Size 100.
20 A — NPt — MPIiL E — went

5§” “‘ Puenth) Preld) Prold)
20

IS

E‘nz ‘ \\
(e) Batch Size 16. (f) Batch Size 8. (g) Batch Size 4.

Mini AlexNet FCL: ESD
10 runs; batch size 32

Spectral Density pun(A)

(d) Batch Size 32.

Mini AlexNet FC1: ESD
10 runs; batch size 2

perl2)

Spectral Density pus(2)

]
Eigenvaluss A of X = Wi, Wic:

(h) Batch Size 2.

Figure: Varying Batch Size. ESD for Layer FC1 of MiniAlexNet. We exhibit all 5

of the main phases of training by varying only the batch size.

@ Decreasing batch size induces strong correlations in W, leading to a more

implicitly-regularized model.

@ Increasing batch size washes out strong correlations in W, leading to a less

implicitly-regularized model.
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Summary so far

applied Random Matrix Theory (RMT)
self-regularization ~ entropy / information decrease
541 phases of learning
small models ~ Tinkhonov-like regularization
modern DNNs ~ heavy-tailed self-regularization
Remarkably ubiquitous
How can this be used?
Why does deep learning work?

Martin and Mahoney (CC & ICSI/UCB) Statistical Mechanics Methods « 1 » Auguszt 2019
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Outline

e Validating and Using the Theory

@ Using the Theory: pip install weightwatcher



Open source tool: weightwatcher
https://github.com/CalculatedContent/WeightWatcher
A python tool to analyze weight matrices in Deep Neural Networks.

Test Accuracy vs. Universal metric a
Pretrained VGG and VGG_BN Models

. e = VGGIL, BN
18 VGG13, BN
* = VGG16, BN
e = VGG19, BN
1.6 "
1.4 .
RS
1.2
.
.
1.0
0.8 -

69 70 71 72 73 74
topl Test Accuracy

All our results can be reproduced by anyone on a basic laptop
using widely available, open source, pretained models:
(keras, pytorch, osmr/imgclsmob, huggingface, allennlp, distiller, modelzoo, etc.)
and without even needing the test or training data!
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WeightWatcher

WeightWatcher is an open source to analyze DNNs with our heavy tailed o and
weighted & metric (and other userful theories)

goal: to develop a useful, open source tool
supports: Keras, PyTorch, some custom libs (i.e. huggingface)

implements: various norm and rank metrics

pip install weightwatcher

current version: 0.1.2
latest from source: 0.1.3

looking for: users and contributors

https://github.com/CalculatedContent/WeightWatcher

Martin and Mahoney (CC & ICSI/UCB) Statistical Mechanics Methods « 1 » Auguszt 2019
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WeightWatcher: Usage

Usage

import weightwatcher as ww

watcher = ww.WeightWatcher(model=model)
results = watcher.analyze()

watcher.get_summary()
watcher.print_results()

Advanced Usage

def analyze(self, model=None, layers= [],
min_size= 50, max_size= 0,
compute_alphas=True,
compute_lognorms=True,
compute_spectralnorms=True,

plot=True):

Martin and Mahoney (CC & ICSI/UCB) Statistical Mechanics Methods « 1 »
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WeightWatcher: example VGG19_BN

import weightwatcher as ww
import torchvision.models as models

model = models.vggl9_bn(pretrained=True)

watcher = ww.WeightWatcher(model=model)

results = watcher.analyze(compute_alphas=True)

data.append(“name”: “vggl9bntorch”, “summary”: watcher.get_summary())

'name’: 'vggl9bntorch’,
'summary’: 'lognorm’: 0.8185,
"lognorm__compound’: 0.9365,
'alpha’: 2.9646,
"alpha_compound’: 2.8479
"alpha_weighted': 1.1588
"alpha_weighted_compound’: 1.5002

We also provide a pandas dataframe with detailed results for each layer
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Outline

e Validating and Using the Theory

@ Diagnostics at Scale: Predicting Test Accuracies



Bounding Generalization Error

BTW, Bounding Generalization Error # Predicting Test Accuracies

A lot of recent interest, e.g.:
@ Bartlett et al: (arxiv:1706.08498): bounds based on ratio of output margin distribution
and spectral complexity measure
@ Neyshabur et al. (arxiv:1707.09564,arxiv:1706.08947): bounds based on the product
norms of the weights across layers
@ Arora et al. (arxiv:1802.05296): bounds based on compression and noise stability
properties
@ Liao et al. (arxiv:1807.09659): normalized cross-entropy measure that correlates well
with test loss
@ Jiang et al. (arxiv:1810.00113): measure based on distribution of margins at multiple
layers that correlates well with test loss™*
These use/develop learning theory bounds and then apply to training of
MNIST/CIFARIO/etc.

Question: How do these norm-based metrics perform on state-of-the-art pre-trained
models?

**and released DEMOGEN pretrained models (after our 1901.08278paper).
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Predicting test accuracies (at scale): Product norms

M&M: “Heavy-Tailed Universality Predicts Trends in Test Accuracies ... Pre-Trained ..."” https://arxiv.org/abs/1901.08278

The product norm is a VC-like data-dependent capacity metric for DNNs.
People prove theorems and then may use it to guide training.

But how does it perform on state-of-the-art production-quality models?

Test Accuracy vs Average Log Norm (log| W)
Pretrained VGG and VGG_BN Models

0.95 . . VGG11
C o [WA | % Wl - W " s
* VGG19
0.90
logC ~ log [nwlu X Wl HWL\@ :
goas ’
logC ~ [mg W | + log [ W] - log HWLH] : ;
0.80
) .
(log [W|lF) = N Z log [[W|| 0.75
2 .

890 895 90.0 905 9olo 915 920
Test Accuracy

We can predict trends in the test accuracy in state-of-the-art production-quality
models—without peeking at the test data!

“pip install weightwatcher”
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Universality, capacity control, and norm-powerlaw relations

M&M: "“Heavy-Tailed Universality Predicts Trends in Test Accuracies ... Pre-Trained ..." https://arxiv.org/abs/1901.08278

@ "Universality" suggests the power law exponent o would make a good, Universal,
DNN capacity control metric.

@ For multi-layer NN, consider a weighted average
. 1
a= Z by jaui
i

@ To get weights by ;, relate Frobenius norm and Power Law exponent.

@ Create a random Heavy-Tailed (Pareto) matrix:

J 1
Pr(wWi) ~ —
2. X +/"‘
@ Examine norm-powerlaw relations:
log ||W||2
M versus «
log Amax

@ Argue' that:
PL-Norm Relation: o log \™™ ~ log || W||7.

tTOpen problem: make the “heuristic” argument more “rigorous.”
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Predicting test accuracies better: Weighted Power Laws

M&M: “Heavy-Tailed Universality Predicts Trends in Test Accuracies ... Pre-Trained ..."” https://arxiv.org/abs/1901.08278

Use the weighted PL metric: & = § >, , log(A/’7*)au,;, instead of the product norm.

Test Accuracy vs Average Weighted (d)

N Top 1 Test Error vs Average Alpha X Log Max Eigenvalue &
Pretrained VGG and VGG_BN Models

Pretrained ResNet Models

* VGG11 e I .
18 * VGG13 ©
* VGG16 15 .
e VGG19
16 . 1.0 .
o Inresnetl0 °
0.5{ o Inresnetl2
14 . o Inresnetl4 .
o~ . o Inresnetls .
0.0{ o Inresnetl8 wd4
o Inresnet18_wd2
12 « Inresnetl8_w3d4 .
. 051 & inresnet1s .
In resnet34
10| * Inresnetso .
1.0 . © Inresnet50b .
© Inresnet101
15| * Inresnetiolp
o Inresnetl52
0.8 d o+ Inresnetl52b .
89.0 89.5 90.0 90.5 91.0 915 92.0 50 45 40 35 30 25 20
top1 errors

Test Accuracy

We can predict trends in the test accuracy—without peeking at the test data!

“pip install weightwatcher”

Martin and Mahoney (CC & ICSI/UCB)
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Predicting test accuracies better: Distilled Models

M&M: “Heavy-Tailed Universality Predicts Trends in Test Accuracies ... Pre-Trained ..."” https://arxiv.org/abs/1901.08278

Question: Is the weighted PL metric simply a repackaging of the product norm?

Answer: Nol!

For some Intel Distiller models, the Spectral Norm behaves atypically, and a does not

change noticibly

a (Power Law Exponent?)

ResNet20, Before vs After Group Regularization
a (Power Law Exponent*)

+ baseline
10 + finetuned

10 20 30 a0
Layer/Feature Map ID

(a) PL Exponents ()

ResNet20, Before vs After Group Regularization

Max Eigenvalue (Spectral Norm*)
5 . + baseline
- « finetuned
i

Amax (Spectral Norm®)

10 20 30
Layer/Feature Map ID

(b) Spectral Norm (Amax)

Figure: (a) PL exponents o and (b) Spectral Norm (Amax) for each layer of ResNet20,
with Intel Distiller Group Regularization method applied (before and after).
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WeighWatcher: ESDs of GANs

GANSs also display Heavy Tailed ESDs, however:
@ There are more exceptions

@ Many ESDs appear to display significant rank collapse and only weak
correlations

Hugging Face BigGANs
pla)~2%, a<20

ESD (Empirical Spectral Density) p(A) for Weight matrix 1/1

2 4 6 8 10

(a) Histogram of as (b) Anamolous ESD.

Figure: (a) Distribution of all power law exponents « for DeepMind's BigGAN
(Huggingface implementation). (b) Example of anamolous ESD.
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Summary of “Validating and Using"

Some things so far:
@ We can: explain the generalization gap.
@ We can: “pip install weightwatcher” and use this source tool.

@ We can: predict trends in test accuracies on production-quality models.

Some things we are starting to look at:
@ Better metrics for monitoring and/or improving training.

@ Better metrics for robustness to, e.g., adversarial perturbation, model
compression, etc., that don't involve looking at data.

@ Better phenomenological load-like and temperature-like metrics to guide
data collection, algorithm/parameter/hyperparameter selection, etc.

@ What else?

Join us:

@ “pip install weightwatcher—contribute to the repo.t

¥ Don't do everything from scratch in a non-reproducible - way. -Make-it reproducible!
Martin and Mahoney (CC & ICSI/UCB) Statistical Mechanics Methods « 1 » Auguszt 2019 91 /93



Outline

Prehistory and History
@ Older Background

@ A Very Simple Deep Learning Model

@ More Immediate Background
© Preliminary Results

@ Regularization and the Energy Landscape
@ Preliminary Empirical Results

@ Gaussian and Heavy-tailed Random Matrix Theory
© Developing a Theory for Deep Learning
@ More Detailed Empirical Results

@ An RMT-based Theory for Deep Learning

@ Tikhonov Regularization versus Heavy-tailed Regularization
@ Validating and Using the Theory

@ Using the Theory: pip install weightwatcher

@ Diagnostics at Scale: Predicting Test Accuracies

@ Varying the Batch Size: Explaining the Generalization Gap
© More General Implications and Conclusions
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Implications: RMT and Deep Learning

Entropy

@ Where are the local minima?
@ How is the Hessian behaved?
@ Are simpler models misleading?

@ Can we design better learning

Energy strategies?

(tradeoff between Energy and Entropy minimization)

Native structure

How can RMT be used to understand the Energy Landscape?
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Implications: Minimizing Frustration and Energy Funnels

As simple as can be?, Wolynes, 1997

a b
1 % ! 9 10_o19 1
1
re-% 12 o19 1.8 1 l1g 2
13
se~2 B L] 7 2 {17 3
1¢-T6--¢4017 1 gl a3l N
s
g 6, 15 116 oL s s |15
Ener Energy
ay Energy
Configurational Coordinates Configurational Coordinates Configurational Coordinates

Energy Landscape Theory: “random heteropolymer” versus “natural protein” folding

o =3 = = E DaAx
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Implications: The Spin Glass of Minimal Frustration

https://calculatedcontent.com/2015/03/25/why-does-deep-learning-work/

dz3 :I27 1sUxslA iniM

oI asi2 rioisd ;2ru1 O
8.0
fitam —— _
-
(Rams0, E
5 .03
= g
g, z
. 20 0
B
2] g
Random .0 g
Coil o
n
S(E)=0 0.0
[ € < I

W IW = X%o R 2sulsvropid

low lying Energy state in Spin Glass ~ spikes in RMT
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Implications: Rugged Energy Landscapes of Heavy-tailed
Models

Martin and Mahoney https://arxiv.org/abs/1710.09553

M.\"\ S | //;// . Spin Glasses with Heavy Tails?
N i 5 @ Local minima do not concentrate

near the ground state

(Cizeau and Bouchaud 1993)

e Configuration space with a “rugged

q_ convexity”
: ‘wg Contrast with (Gaussian) Spin Glass
: model of Choromanska et al. 2015

If Energy Landscape is ruggedly funneled, then no “problems” with local minima!

Statistical Mechanics Methods « 1 » Auguszt 2019 9€ / 93
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Conclusions: “pip install weightwatcher”

Statistical mechanics and neural networks
@ Long history
@ Revisit due to recent “crisis” in why deep learning works
@ Use ideas from statistical mechanics of strongly-correlated systems
o

Develop a theory that is designed to be used

Main Empirical/ Theoretical Results
@ Use Heavy-tailed RMT to construct a operational theory of DNN learning
@ Evaluate effect of implicit versus explicit regularization
@ Exhibit all 5+1 phases by adjusting batch size: explain the generalization gap
@ Methodology: Observations — Hypotheses — Build a Theory — Test the Theory.

Many Implications:
@ Explain the generalization gap
Rationalize claims about rugged convexity of Energy Landscape

o
@ Predict test accuracies in state-of-the-art models
o

“pip install weightwatcher”
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If you want more ... “pip install weightwatcher”
Background paper:

@ Rethinking generalization requires revisiting old ideas: statistical mechanics approaches
and complex learning behavior
(https://arxiv.org/abs/1710.09553)

Main paper (full):
@ Implicit Self-Regularization in Deep Neural Networks: Evidence from Random Matrix
Theory and Implications for Learning
(https://arxiv.org/abs/1810.01075)

@ Code: https://github.com/CalculatedContent/ImplicitSelfRegularization

Main paper (abridged):
@ Traditional and Heavy-Tailed Self Regularization in Neural Network Models
(https://arxiv.org/abs/1901.08276)
@ Code: https://github.com/CalculatedContent/ImplicitSelfRegularization

Applying the theory paper:
@ Heavy-Tailed Universality Predicts Trends in Test Accuracies for Very Large Pre-Trained
Deep Neural Networks
(https://arxiv.org/abs/1901.08278)

@ Code: https://github.com/CalculatedContent/PredictingTestAccuracies
@ https://github.com/CalculatedContent/WeightWatcher
@ “pip install weightwatcher”

Martin and Mahoney (CC & ICSI/UCB) Statistical Mechanics Methods « 1 » August 2019 92 / 93



Outline

© Phenomenological Approach to Statistical Mechanics of Generalization



Loss landscape and weight analytics

Part I. Phase Transitions

Part Il. Pruning

Part lll. Ensembling

Part IV. Weight analytics




T (batch size)

Loss landscape and weight analytics

Part I. Phase Transitions

Test accuracy

0.8

10?
| | Ro.7
103 A 0.6

10 100
Width of model
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Local versus global in generalization

Flat local minima generalize better?
Prediction on unseen data

Training Function
test . ; g .
/ - \ al | Testing Function

Error

+— training

Model complexity :

Flat}\/[inimum Sharp Minimum

Flat vs sharp local minima
Keskar et al. 2017



Local versus global in generalization

Flat local minima generalize better?
Prediction on unseen data

test @ Yes 'S No @
/ ~

o
LILJ ’ H ’
— training Keskar et al. "17 Dinhetal.’17
Neyshabur et al. '17 Yao et al.’18
Model complexity i Jiang etal.’19 Granziol et al. '20

Foret et al.’20 Zhangetal.’21



Local versus global in generalization

Paper reviews.
* Different data?

« Different architecture?
* Different Hyperparameters?

Prediction on unseen data

N\

+— training

SN
Il
0 Wfl""l![! i

b

Error

Model complexity :

Is your result too local?



Main difficulty: Analyzing the global picture

0111011101 10000010100
ODlUlllﬂl

Is your result too local?

Image source: Foundations of data science, Simons Institute



Our answer

It depends on the phase!

Yang, Hodgkinson, Theisen, Zou, Gonzalez, Ramchandran, Mahoney, NeurlPS 2021

o>



Our answer

Test accuracy

Phase transitions in deep learning. & | 08
g - Moo
. Phase IV-B
Different phases — Different conclusions = [
P F 10 T 0.6
10 100
Width of model
Yang, Hodgkinson, Theisen, Zou, Gonzalez, Ramchandran, Mahoney, NeurlPS 2021
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Our answer

Flat local minima generalize better?

é Yes 'S No Q

Test accuracy

o

N

@ 102
Keskar et al. 17 Dinh etal.’17 :Cg |
Neyshabur et al. "17 Yao et al.’18 3 RS Phese V-6
Jiang et al. 19 Granziol et al. '20 103
Foret et al. '20 Zhangetal.’21

) ) ) Width of model
Different phases — Different conclusions

Yang, Hodgkinson, Theisen, Zou, Gonzalez, Ramchandran, Mahoney, NeurlPS 2021
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What are the phases?

Test accuracy

102

Pl

|

hase IV-B

T (batch size)

Other choices

- 10 * Quantity of data
Width of model + Quality of data

“Load parameter” (martin & Mahoney. 2017]
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What are the phases?

Test accuracy

SGD equation

)

N ' B

¥ 1102

< 9(xi;6¢)
] B Z

< . i=1

3 [N\ Phaseiv-e

[ Other choices

 Learning rate

10 » L2 regularization

Width of model

“Temperature”
[Martin & Mahoney. 2017]
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What are the phases?

Test accuracy

(width, batch size)

102 ~200 pixels x 5 networks/pixel

™ Phase IV-B

s

T (batch size)

Phase transitions?

10 100
Width of model
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What are the phases?

T (batch size)

Test accuracy

0.8

10?
— | |0.7
103 V- 0.6

10 100
Width of model

Five phases

Five different loss landscapes

Globally poorly-connected Globally well-connected
Phase 1 Phase 1T
e bigh bt
Locally sharp) N Jow-encrgy path
o ity
Phase 11T Phaso IV-A Phase IV-B
high
Locally flat 1\ W
[m] [l = = o>



What are the phases? Five phases

Five different loss landscapes

| Globally poorly-connected | Globally well-connected
Phase I Phase 11
s ., high barrier

Locally sharp

low-energy path

Phase III Phase IV-A Phase IV-B

high barrier

trained models are
less similar

trained models
are similar

Locally flat




What are the phases? Five phases

Five different loss landscapes
Test accuracy

Loty s ‘:’ \_:..g.h-n« Phese Il
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Q [S—.hace V38 Local structure
=103 (Training)
2x2=4 phases
10 100 Global structure

Width of model (Generalization)
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What are the phases? Five phases

Five different loss landscapes
Test accuracy

Globally poorly-connected Globally well-connected
Phase I Phase 11
Locally sharp Javas

q) Phase 11T
E Locally flat iy

v 102

<

=t |

3 TN Phase V-

= . ‘ . Model Simllarlty [Kornblith et al. 19][Jiang et al. 21]

2x2+1=5 phases
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Width of model
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What are the phases? Five phases

Five different loss landscapes
Test accuracy

Globally poorly-connected Globally well-connected
Phase 1 Phase 1T
o gh b
Locally sharp) i/a\ low-cncrgy path,
o ity

,q)\ Phase IV-A Phase IV-B
N Locally flat rained models
102 " N
<
9]
-
3 [N\ Phaseivg
103 Best phase
Try to get here!!
10 100
Width of model
[m] [l = = = o>



What are the phases? Five phases

Five different loss landscapes
Test accuracy

Locally sharp| ‘:’ \"‘ Va¥ m.:::y pa
g 08 Phase IV-B
N B —
n 102 " o
<
S 0.7 ..
© K Phasenv-s Generalization measures
F 10 0.6 1.Local [vaoetal. 19]

2. Global [Garipov et al. 18][Kornblith et al.
10 100 19]

Width of model
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d2%loss 9%loss

262 " 36,06,
What are the phases? 7 sthoss  a2ioss
20,00, 062

Log Hessian eigenvalue

Test accuracy
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What are the phases? Global structure

Test accuracy Mode connectivity [Garipov et al. 18]

Phase Il

102

Phase IV-B

T (batch size)

103

10 100
Width of model A hidden path in high dimensions.



What are the phases?

End of definitions...

How do we use them?



How to use the phases?

Test accuracy

102

T (batch size)

=
o
[

0.8
__|jo0.7

[ rwervs
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10 100
Width of model

Full phase plot

If you study all settings...
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How to use the phases?

T (batch size)

102

103 E

Test accuracy

Phase |

Phase |
Phase IV-B

Phase IV-A

Phase Ill

-

Your own CV / NLP problem

/ (width, batch size)

r0.8
Step 1. Locate your

0.7 problem on this map

10 100
Width of model

i0-6 Generalization measure: Landmarks

DHa
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How to use the phases?

Test accuracy Your own CV / NLP problem

(width, batch size)
\\\\\\ P)mx%
N Step 1. Locate your

\
) o7  problem on this map

Phase | |, .

/ i

103 /
/

/
/

10°

T (batch size)

eelva U0 step 2. Find the best way to

10 100 get to Phase IV-B
Width of model



How to use the phases?

Step 1. Calculate measures. Phase plot is not necessary!!

Mode Model Treatment
connectivity snmllanty

large
large
small

small

small

negative
positive
negative

Close to
zero
Close to
zero

low
low

low

high

IV-A

IV-B

Larger network
Smaller learning rate
Larger network

Buy more data

Perfect




How to use the phases?

Step 2. Determine phase.

Mode Model Treatment
connectivity snmllanty

large negative Larger network
large positive low 1] Smaller learning rate
small negative low 1] Larger network
small Close to low IV-A Buy more data
zero
small Close to high IV-B Perfect
zero
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How to use the phases?

Step 3. Provide treatment.

Mode Model Treatment
connectivity snmllanty

large negative Larger network
large positive low 1] Smaller learning rate
small negative low 1] Larger network
small Close to low IV-A Buy more data
zero
small Close to high IV-B Perfect
zero
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How to use the phases?

Step 3. Provide treatment.

Mode Model Treatment
Wﬁ_ Diagnose the failure

large
large
small

small

small

negative
positive
negative

Close to
zero
Close to
zero

low
low

low

high

IV-A

IV-B

Larger network
Smaller learning rate
Larger network

Buy more data

Perfect

A O Get more data?

B [0 Larger model?

ce

Hyperparameters?



How to use the phases?

An example of using the phase.



A different phase, a different story

Red column: Bright — dark —

o
=
o
=
—

Interpolation
i Threshold

Test Error

T (batch size)

R i
-~ i Loss 5
== JEfunction

Some

10 100

i parameter
Width of model Double descent

[Belkin et al. 19][Hastie et al. 20]

Training with randomized
€ [Nakkiran et al. 19]
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A different phase, a different story

T (batch size)

Test accuracy

0.8
102 0.7

0.6
103

0.5

10 100
Width of model

Flat local minima generalize better?

é Yes 'S

Keskar et al. 17
Neyshabur et al. ’17
Jiang et al. 19
Foret et al. ’20

“ @

Dinh etal.’17
Yao et al. '18
Granziol et al. '20
Zhangetal.’21
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A different phase, a different story

Test accuracy 8
0.8
X N ’
» 102 0.7 0
< ey
g g 6
3 06 S
F 103 — >
10 100 0.5 10 100 4
Width of model Width of model
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A different phase, a different story

Best accuracy Smallest Hessian
Log Hessian trace

Test accuracy 8
0.8
. ase || -
g 3 ’
0 0.7 »10?
g 5 6
© ®
Qo 06 Qo 5
Phase I\[-, =
- 103
10 100 0.5 10 4
Width of model Width of model

The flattest minimum gets the best accuracy



A different phase, a different story

Best accuracy Not the best!!!

Test ac Hessi 8
I N 7
(M) © 102
< < 6
L‘; 2
3 3
= - 5
= F 103

10 100 10 100
Width of model Width of model

Best Hessian

The flattest minimum does not get the best accuracy.



A different phase, a different story

Log Hessian trace

Test accuracy

0.8 8

& N ’
0 102 0.7 0

g 5 6
© ©
e} 06 2o

F 103 - 3

10 100 0.5 10 100 4

Width of model Width of model

Our paper. The conclusion depends on the phase.
Yang, Hodgkinson, Theisen, Zou, Gonzalez, Ramchandran, Mahoney, NeurlPS 2021
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Is the result “local”?

Different amount of data

i of mader Wit of model

Different architectures

Test accuracy

Test accuracy

3

T bateh size)
T (batch size)
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07
w 06
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Wit of model”

VGG

10 100
Width of model

ResNet

Quality of data

Test accuracy

Test accuracy
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Touchsa

ardom el percenage
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label noise

10% randomized

Five phases exist.
Phase IV-B is the best.
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Different dataset

Tost accuracy

Different temperature parameters
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Different training approaches
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Brief summary

T (batch size)

Phases - different conclusions Train to flat minima?
é Yes vs No Q
Test accuracy
0.8
Keskar et al.’17 Dinh et al.’17
102 0.7 Neyshabur et al. ’17 Yao et al.’18
Jiang et al. 19 Granziol et al. '20
0.6 Foret et al. '20 Zhangetal.’21
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10 100 %5 The conclusion depends on the phase.
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Brief summary

® Phases ~ different conclusions

® Phases ~ different treatments

T (batch size)

Test accuracy

s’ 0.8
102 0.7
0.6

103
0.5

10 100
Width of model

Diagnose the failure

A [0 Get more data?

B (I Larger model?

co
Hyperparameters?

A practitioner’s map
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Loss landscape and weight analytics

Normalized Test Error of pruned model

0.030
"™ Partll. Pruning
0.015

0.010

raining Epochs
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Phase transitions for network pruning

Training Epochs

(Temperature-like parameter)

f

Regime I1

Regime I \ Regime III

Hypothesis

1. Does the multi-regime (phase)
phenomenon exist?

2. Can we quantify these regimes with
loss landscape metrics?

Model Density

> (Load-like parameter)



Modeling

For a target model density, White pixel represents optimal training epoch
which training epoch is optimal? for this model density ( column)

Empirical ResSults for modeling

Test Error of prui

ned mo

Training Epochs

/

56 7 8 1014

L2l 40 50

Density (%)

Normalized Test Esror of prued model An interesting dichotomous phenomenon:

Increasing temperature better for low density,

P decreasing temperature better for high density.

5 S
0.14 u% b
012 | 2 o

2
00 | E

B
0.08
IREREEEER]
Density (%)

Experiment Setting: ResNet20/CIFAR-10

Zhou, Yang, Chang, Mahoney, 2022



[1] Garipov, T, lzmailov, P, Podoprikhin, D, Vetrov, D. P., & Wilson, A. G. (2018). Loss surfaces, mode connectivity, and fast ensembling of dnns. Advances in neural information processing systems, 31,
(2] Kornblith, 5., Norouzi, M., Lee, H, & Hinton, G. (2019, May). Similarity of neural network representations revisited. In International Conference on Machine Learning (pp. 3519-3529). PMLR.

Modeling

Empirical Results for modeling

Test Error of pruned model

Taxonomizing

Normalized Test Error of pruned model

bt 00
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Experiment Setting: ResNet20/CIFAR-10

VSDL model for pruning

Regime I
g —_—
H —>
H} Favorable transition that
E‘ Regime 1 Regime I | Proves testerror and loss landscape
e Regmel | Segmell
W\ N
Load
poor good best
Regime 1 Regime II Regime 11
Connectivity x v v
Similarity x x v

) Zhou, Yang, Chang, Mahoney, 2022




0.18

0.16

0.14

0.12

0.10

0.08

Application

Task: prune to different densities, and select the best training hyperparameter for each density

Test Error of Pruned Model

A conventional wisdom:
Train the dense model to best (lowest test error), and then prune

567810 14 20
log10 (Model Densny %)

Experiment Setting: tuning training epochs for ResNet20/CIFAR-10

(multiple markers in one column
represent repeated experiments)

Zhou, Yang, Chang, Mahoney, 2022



0.18

0.16

0.14

0.12

0.10

0.08

Application

Baseline: test-error-based selection

Test Error of Pruned Model

P
8

]

567810 14 20
log10 (Model Densny %)

£ Select by test error of dense model

(multiple markers in one column
represent repeated experiments)

Everything looks good if we only look at the test error.

A conventional wisdom:
Train the dense model to best (lowest test error), and then prune

Experiment Setting: tuning training epochs for ResNet20/CIFAR-10

Zhou, Yang, Chang, Mahoney, 2022



0.18

0.16

0.14

0.12

0.10

0.08

Application

Three-regime model: loss landscape metric (linear mode connectivity)

Test Error of Pruned Model

“ a

567810 14 20 40
log10 (Model Density %)

8

Select by test error of dense model

(multiple markers in one column
represent repeated experiments)

0.00

S
53

near Mode Connectivity

=0.10

-0.15

L
s =
(SR
5B

s

g

2
L

1

Experiment Setting: tuning training epochs for ResNet20/CIFAR-10

Zhou, Yang, Chang, Mahoney, 2022



Application

Three-regime model: loss landscape metric diagnoses the problem of baseline.

Test Error of Pruned Model

Choice of hyperparameter is bad
conventional wisdom doesn’t work

poor gooa best

Regime [ Regime 1T Regime 11T

£z
=]
|53
L
g
£
o
o
L
=]
=
=
<
L
g
a

log10 (Model Density %) Connectivity x

WV |\ | N
567810 14 20 40
v v
x v

% Select by test error of dense model Similarity x

Experiment Setting: tuning training epochs for ResNet20/CIFAR-10

(multiple markers in one column
represent repeated experiments)

Zhou, Yang, Chang, Mahoney, 2022



0.18

0.16

0.14

0.12

0.08

Application

Tuning the baseline by the three-regime based approach

Regime 11
Test Error of Pruned Model
> g
B 2
2 Regime I: g
N 8 Tune by increasing temperature E
g until LMC>=0
=]
O
5]
2
s Regime Il or Il poor good best
§ ) Tune by decreasing temperature
8 s until CKA doesn't improve Regime | Regimo II Regime III
=]
d ) 5 WV |\ | NS
567810 14
logl0 (Model Dens1ty %) Comectivty x v v
% Select by test error of dense model Similarity x x v

(multiple markers in one column Experiment Setting: tuning training epochs for ResNet20/CIFAR-10

represent repeated experiments)

Zhou, Yang, Chang, Mahoney, 2022




Application

Results: Our approach can achieve the optimal performance as Grid Search, but in fewer steps.

Tuning Steps

Test Error of Pruned Model (average over three runs)
0.18 000

H
016{ ® 0

8 ] -0.10
0.141

o12{ g *

Linear Mode Connectivity

\8 -0.20
0.10 \‘6\ 025 ] A
8 ~~ao 5 6 7 8 10 14 20 40 80
0.08 & _g -0.30 Model Density (%)
567810 14 20 EEE Grid Search (Baseline)  ZZ Three-regime Model (Proposed)

log10 (Model Densny %)

9 Select by test error of dense model
©  Tuned by Three-regime Model (Proposed) Experiment Setting: tuning training epochs for ResNet20/CIFAR-10
~==- Tuned by Grid Search (Baseline)

(multiple markers in one column

represent repeated experiments) Zhou, Yang, Chang, Mahoney, 2022
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Generalizability

Our approach can work for different hyperparameter, architectures and dataset.

ResNet-20 on CIFAR-10 (tuning batch size)

10210 (Model Density %)

o Seletby s e

Steps
(averge over thise run)

© Tunad by Thre-regime Model (Proposd)

Tuned by i Sarch (Basline)

9
o
3
o
S 800 1420 A 80
Model Density (%)
== =2

VGG19 on CIFAR-10 (tuning training epochs)

Test Ermor of Pruned Model

Tuning St
(average over three runs)

o g
4 B
wd
wd *
e i
’ S| N
oo 2 3
R
T0g10 (Model Density %) o 3 4 5 E O T
Model Density (%)
5 Sckt b s oo e el
o Tuedny == =] v

<= Tuncd by Grid Search Bascine)

DenseNet-40 on CIFAR-10 (tuning training epochs)

Test Error of Pruned Model

R S T
10510 (Model Density %)

5 Sekct by kst eror o dense o

ty

Lincar Mode Connectii

0 Tuncd by Tiro-eime Model (roposd)

Tuned by Grid Sarh (Bascline)

“Tuning Steps
(average over three runs)

3 ] i 0 [ £
Model Density (%)

B Grid Soach (Baseine)  £23 Threervgime Model (Propased)

ResNet-20 on CIFAR-100 (tuning training epochs)

u Steps
(average over three runs)

Test Error of Pruned Model

il

Lincar Mode Connectivity

L T B S T TR
Model Density (%)

<= Tunadby rid S (sl

Zhou, Yang, Chang, Mahoney, 2022
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Brief summary
1.

Conventional wisdom (test error based) doesn’t work when we look at a
different regime.

2. Three-regime based hyperparameter tuning is more efficient than grid search

Next steps

1.

How easy/hard is it to plant/detect back doors in different regimes?

2. A more challenging task: do hyperparameter search on both ““load” and *“temperature”.

o>



Loss landscape and weight analytics

Theorem

DER > EIR > A

Part lll. Ensembling

DHa



Ensembling

Focus on ensembles of classifiers h ~ pwhere /ould represent, e.g.:

1. Adistribution over parameters obtained from independent runs of
SGD, from either dependent (e.g. fine-tuning) or independent
initializations

2. Afinite set of classifiers hq, ..., hywith weights P1, .-, PM
3. A Bayesian posterior distribution over classifiers
We focus on the the majority-vote classifier:

huy () = arg max Enp[1(h(x) = y)]

Theisen, Kim, Yang, Hodgkinson, Mahoney, 2022



Ensembling

In theory there is a large literature on ensembling, but most is either specialized to particular
settings (like random forests), or is too weak to even guarantee that ensembling can help at
all, much less accurately quantify how much it can help

In practice there is a wide variety of (sometimes contradictory) results regarding ensembles -
notably for deep ensembles. Some work suggests ensembling is highly beneficial, others
suggest it is less so, and particularly unnecessary for large, modern models

Theoretical question: Can we characterize when, and by how much, ensembling benefits?

Empirical question: When can we expect ensembling to help significantly in practice?

Theisen, Kim, Yang, Hodgkinson, Mahoney, 2022



Ensembllng theory The competence assumption

CANLSTMINDS  CNNLSTMAND T

ResNGt20/CIFAR10
(Bayes)

e Rules out pathological cases that limit previous , "™ Rl RrigsAR 2 B . )
theoretical analyses of ensembling p x ‘ L k & & &
e Holds widely in practice N — .
P(W, €L, 1/2)) — PW,€E[1/2,1-1])

New, significantly sharper upper bounds on the majority-vote error
rate

Theorem (first-order bound)
= Cbound

(hav) < EpwplL(R)] . S
Theorem (second-order bound) ﬂ E
b L, alDi B e E ﬁ

L(hyy) < (BnmplL(R)] — EE;.,;./W[DlS(h, 1))

Theisen, Kim, Yang, Hodgkinson, Mahoney, 2022



Ensembling theory

Characterizing the ensemble improvement rate with
the disagreement-error ratio

We identify two regimes:

Ensemble improvement rate Disagreement-error ratio
EIR — Enp[L(W)] = L{hrv) DER — En g D(h, 1)) 1. Ensembles are guaranteed to improve
Epp[L(1)] ) EppL(h)] performance when DER is large, disagreement
> average error
2. Ensembles are guaranteed to not improve

performance too much when DER is small,

Theorem — —_— disagreement < average error

DER > EIR > %DER St

Theisen, Kim, Yang, Hodgkinson, Mahoney, 2022



) Ensemble improvement, DER become small in the
Phase transition interpolating regime

Bagged Random
Feature classifiers .
e Ensembling becomes less useful for large
models which can easily interpolate the
training data (i.e., obtain zero training error)
e This corresponds to the fact that the

disagreement-error ratio gets small in this

MNIST Thyrold

000 regime
Interpolatio
Avg. Test Error " MV Test Error
bt Py
3 a
© 180 [0% 18 [22
5 o i
515 015 313 015
X 0.10 0.10

46 811162332456491128 46 811162332456401128
idL i

idu

ResNet18/CIFAR-10
Deep Ensembles

Theisen, Kim, Yang, Hodgkinson, Mahoney, 2022



Loss landscape and weight analytics

1073

1074

1072 1071

10° 102
Eigenvalues of correlation matrix

10!

Part IV. Weight analytics
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Measures that do not require access to data

¥ Hugging Face Search models, datasets, users. # Models  © Datasets 1 Spaces © Docs & Solutions Pricing = Login

Tasks Models 25,57

@ Fill Mask Question Answering,

om0 e e 26 578 pretrained models

TextClassification % Text Generation

ch Models

& Te2TetGeneration i Token Classification et2

5 5 Text Generation - Updated May 19,2021 - + 13.5M - 36 Ib
s Transtation Zero-Shot Clasification A ert
8 cardi i .

e Bert-base
O Pylorch ¥ TensorFlow ol X +22 R — Disti I I Be rt

oo Text Classification - Ups
Libraries. p

Fill Mask - Updated Jul,2021 - + 6.61M - © 11

Datasets
wikipedia  common_voice bookcorpus e e Y
I ) (e Fill Mask - Updated May 18,2021 - 4 6.46M - © 13
conl2003  © oscar  +680

distilbert-base-uncased
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Measures that do not require access to data

¥\ Hugging Face earc t + Models  * Datasets

Spaces © Docs & Solutions Pricing = login  SignUp

Tasks \ 11 Sort: MostDowloads

Fil Mask Question Answering,

i e e 25 578 pretrained models

Text Classification > Text Generation

TextZText Generation 4 Token Classifcation

gpt2

-Datais

Sentence Similarty  + 1

@ cardiffnlp/twitter-roberta-base-sentiment
Libraries

el S ‘unavailable...

roberta-base

Datasets

T v, Web-scale data
Private datasets

conll2003  oscar



Measures that do not require access to data

(¥ Hugging Face Search models, dataset # Models © Datasets  Spaces © Docs & Solutions Pricing = login  SignUp

Tasks Models 25 1L Sort: Most Downloads

) Question Answering.

B mmz5 578 pretrained models

8 Tewre W Token gpt2 S
% Tavstin % ZeroShotClssfation e eion' Upamad oy 181zt ¥ .54 Data is
semencesmaaty +15

Libraries.

- mremmunavailable...

xobexta base

Data-dependent metrics
conli2003 ° 3
distilbert-base-uncased Margln

[Bartlett 17][Pitas 17]

* PAC-Bayesian
[Neyshabur 17][Mcallester 99]
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Measures that do not require access to data

Model selection without data

Which model
should | use?

o>



Generalization measures from statistical physics

Empirical spectral density of wTw.

Deep Neural Network

10t
input layer hidden layer 1 hiddgadaua — Xmin
100 B
-1} Fittin
a8 v \ t
a
w92 ]
10 ] \
\
-4 \

102 1070 100 10' 10
Eigenvalues of correlation matrix
Exponentially-Truncated Power Law

p(x) = xFe M

Yang, Theisen, Hodgkinson, Gonzalez, Ramchandran, Martin, Mahoney, 2022, https://arxiv.org/pdf/2202.02842.pdf

Take the weight matrix W.



Model selection results using shape metrics

o Best model in each group o Best model in each group o Best model in each group

s ‘nm\ Num samples . Num samples ] 2 Num samples
v .+ 160000 @ . 0000 + 160000
s - .« ;000 G . ;000 5 + 320000
@20 .+ 640000 20 .+ 640000  ©120| by + 640000
2 . 180000 D . 180000 D . 1280000
=1 . =1 g = — 5
B 2560000 & o 2560000 & o 2560000

104" 10 10

oo 02 o4 06 08 6 5 004 006 008 010 012
E_TPL_lambda PL_alpha E_TPL_ks_distance

3 Best model in each grouy 3 Dest model in each group 3 Best model in each group

I o Num samples 2 Num samples 2 Num samples
v R .+ 160000 g .+ 160000 g - 160000
s g . 3000 & . ;000 § + 320000
w20 3 + 640000 @ 20 + 640000 @ 20 + 640000
2 R . 180000 2 . 180000 2 1280000
=1 . =1 . 2 .
a1 ”m\\ 2560000 & 2560000 & 2560000

10 10 10

007 008 009 010 40 60 80 100 0z 04 [
PL_ks_distance stable_rank mp_softrank

200 Transformers trained for neural machine translation.
BLEU score is better if it is larger.

Yang, Theisen, Hodgkinson, Gonzalez, Ramchandran, Martin, Mahoney, 2022, https://arxiv.org/pdf/2202.02842.pdf




Model selection results using shape metrics

%0 Best model in each group

. M\ Num samples
o . 160000
S 7 . 320000
0201 8 . 640000
2 N4 + 1280000
= 15 .+ 2560000

~
o
1017
00 02 04 06 08
E_TPL_lambda

200 Transformers trained for neural machine translation.
BLEU score is better if it is larger.

Yang, Theisen, Hodgkinson, Gonzalez, Ramchandran, Martin, Mahoney, 2022, https://arxiv.org/pdf/2202.02842.pdf

u]
8
I
i
!




Model selection results using shape metrics

pl_ks_distance [
e_tpl_ks_distance [N
mp._softrank = Huggingface Transformers
pl_alpha
e_tpl_beta [N
exp_lambda [N Models
e_tpl_lambda [N BERT-Tiny, BERT-Mini, BERT-Small, BERT-Medium, BERT-Base, BERT-Large
== 24 smaller BERT models (English only, uncas ned with WordPiece masking)
alpha_weighted GPT2, GPT2-medium, GPT2-large, GPT2-x1
ALBERT-base-vl, ALBERT-large-vl, ALBERT-xlarge-vl, ALBERT-xxlarge-v1
log_alpha_norm == Shape ALBERT-base-v2, ALBERT-large-v2, ALBERT-xlarge-v2, ALBERT-xxlarge-v2
log_spectral_norm [l Dobrid T5-small, T5-base, T5-large
r DialoGPT-small, DialoGPT-medium, DialoGPT-large
" Izlg—norn; - S:ale FlauBERT small_cased, FlauBERT _base_cased, FlauBERT large_cased
stable_ran —. 1, um, i i

0.00 0.25 0.50 0.75 1.00
Proportion of models correctly selected

Yang, Theisen, Hodgkinson, Gonzalez, Ramchandran, Martin, Mahoney, 2022, https://arxiv.org/pdf/2202.02842.pdf
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One issue of scale (norm-based) metrics

Model quality # Generalization gap?

Generalization gap = Train — Test

+— training

Model quality = Test-time performance 5

Err

Model complexity :



Generalization gap mentioned in the literature

“...More specifically, lower complexity should often imply smaller generalization gap.”
[Jiang et al. 2019]

PRSI o N Lo o el

“.8rq #ifying notions of capacity that can be shown to formally

contr@l generalization error, Rp (h) — Rg(h)”

[Dziugaite et al. 2020]

Predicting the generalization gap in deep networks with margin distributions,
[Jiang et al. 2018]

Towards task and architecture-independent generalization gap predictors,
[Yak et al. 2019]

“...The value of the output should ideally be larger for models that have larger generalization gaps.”
NeurlPS 2020 Competition: Predicting Generalization in Deep Learning (Version 1.1)



Model quality vs generalization gap

Correlations with

28 generalization measures

Each bar:
200 experiments

Other measures

5 10— 05 10 1
Spearman’s rank correlation

Yang, Theisen, Hodgkinson, Gonzalez, Ramchandran, Martin, Mahoney, 2022, https://arxiv.org/pdf/2202.02842.pdf



Model quality vs generalization gap

Correlations with Correlations with generalization

Model quality

e Shape metrics work
better

Generalization gap

e Existing measures e o s
work better

log_spectral_norm

o 05 1

15 05 00 05 10 1 5 -10 05 00 o
Spearman’s rank correlation Spearman’s rank correlation

Yang, Theisen, Hodgkinson, Gonzalez, Ramchandran, Martin, Mahoney, 2022, https://arxiv.org/pdf/2202.02842.pdf



Time-wise correlation

Correlations with

BLEU

Num samples = 640000

0.10 50
0.08 40 o
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15
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X Hybrid
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‘exp_lambda
-5 -10 -05 00 05
Spearmasa's rank corvelation

Yang, Theisen, Hodgkinson, Gonzalez, Ramchandran, Martin, Mahoney, 2022, https://arxiv.org/pdf/2202.02842.pdf



Correlation when changing learning rate

Correlations with generalization

Correlations with
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inverse_margin
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Main conclusion for this section

4% Measures from statistical physics do not need data.

4% They predict model quality instead of generalization gap.

Model quality and generalization gap can be anti-correlated

Yang, Theisen, Hodgkinson, Gonzalez, Ramchandran, Martin, Mahoney, 2022, https://arxiv.org/pdf/2202.02842.pdf



Brief summary
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* Model selection: measures that do
not need data
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Brief summary

Model quality # Generalization gap
* Model selection: measures that do
not need data

*Shape metrics predict model quality

10°
_ . Q 107
¢ Which model T
o SERGAS should | use? .
- 1073

A B C 10~ \

] O ] 102 107*  10°  10% 107

Eigenvalues of correlation matrix
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Visualizing loss landscape - LossLens

| Outof uriosiy tho analysts solect
| orginal modl as hebaso mac
| and "+80% Cor. as

augmente 4

| Sten changes bring the performance
: i flatten the
i curvaturg oftholosslandscape

The layer similaity view shows that
paramoters have changed after
raining with the supplemental

o]
+20% Cor. | eapacialy n predicing
- “dog'images.

Lowamnsionsprajecion . @
Low-dimensional projection views

i | showthe sath oss ancacepes / ;
: | of two models on both training |

| datasetand vauﬂnﬂnn dataset

B

“The analysts zoom in the loss landscape
o nspoct tha parameor distrbution

of parameter sets a round the model.
By increasing the minimum area

threshold, the minimum areas of

two models shows intersection

meaning two minimum areas are close
0 each other.

Original
Original

Itis also verified in high-dimensional
projection views, where persistence.

barcod o) shows thers re only

a few components treated

local minimum emerged, and merge

tree (fight) shows only global

minimum s etected.

Slide shared by collaborator Tiankai Xie
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Outline

© Using Heavy-Tailed Self-Regularization



Outline

@ Using the Theory



Using the theory

Different ways one could use a theory.
@ Perform diagnostics for model validation, to develop hypotheses, etc.*
*

@ Make predictions about model quality, generalization, transferability, etc.

@ Did post-training modifications damage my model?*

Will buying more data help?*
@ Will training longer help?*

@ Will quantizing or distilling help?*

*

Construct a regularizer to do model training.*

*Ideally, by peeking at very little or no data.
**If you have lots of data, lots of GPUs, etc.

Mahoney (UC Berkeley) Practical Theory & NN Models « 1 » Arril 2021 27 /51



Batch Size Tuning: Exhibiting the Phases

Mini AlexNet FCL: ESD
10 runs; batch size 500

Zoa] bl — wer
£ S = et
Sos| [ (.
g | [ N
Eud | N
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(a) Batch Size 500.

Mini AlexNet FC1: ESD

10 runs; batch size 16
A a — W
N Pnih)

IR
Eigenvalues A of X= Wl Wi,

(e) Batch Size 16.

Mini Alexet FCL: ESD

Mini Alexet FCL: ESD
10 runs; batch size 250
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(b) Batch Size 250.

Mini AlexNet FC1: ESD

Mini AlexNet FC1: ESD
10 runs; batch size 8

10 runs; batch size 4
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(f) Batch Size 8. (g) Batch Size 4.

(c) Batch Size 100.

Mini AlexNet FCL: ESD
10 runs; batch size 32
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(d) Batch Size 32.

Mini AlexNet FC1: ESD
10 runs; batch size 2
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(h) Batch Size 2.

Figure: Varying Batch Size. ESD for Layer FC1 of MiniAlexNet. We exhibit all 5

of the main phases of training by varying only the batch size.

@ Decreasing batch size induces strong correlations in W, leading to a more
implicitly-regularized model.

@ Increasing batch size washes out strong correlations in W, leading to a less
implicitly-regularized model.

Mahoney (UC Berkeley)
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Predicting test accuracies ... lots of metrics ...

@ Average log norm (a VC-like data-dependent capacity metric):
flog | W) = Nzlognwl,n - NZlog )
@ Average alpha (also data-dependent, from HT-SR theory):

1
J— a”.
N;’

@ Combine the two into a weighted average (weighted to compensate for
different size and scale of feature maps):

:_Z|Og XO4//

@ In a special case (« = 2), for each layer:

PL-Norm Relation: «log \™ =~ log ||W||2.

“pip install weightwatcher”
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(The first) large-scale study (meta-analysis) of hundreds of
SOTA pretrained models *

Series F ] Metmic Tog WIZ) | & ] Toe XT3
TSE 028 [0 [ o0
Test Accuracy vs Avg. log Frobenius Nor Test Arcracy v vl specrlNorr vee O R Bl I
¥ s A v endall7 | - 0. 03| 0.
RMSE, 0.56 A2 0.8 1. .79 RHSE: 0.23 A2: 0.98 1. 0.9 L on 093 [0 093
Y $ i b ‘ ::i: . ResNet s| om 00 0 |09 | 09
. 3 . 3 Kendallr | 10 0 |0 | -0
-ty ety
R e 373 “ e - RNSE 24 28 18 9
i Lo 3 -y e o R | am | om |om| om
H LN e e £ bo = e Kendallr | 019 079 |-080| -oss
iy o s En s e TS 03 041 [ 016 [ 021
2 * g 2 » weasen DenseNet: I 093 090 | oo [ oor
N . 10 . Kendallr | -10 10 |0 -0
6 . o .
— : . 2 .
105 100 135 120 15 5 o o Table 1: Quality metrics (for RMSE, smaller is better; for R, larger s better; and for Kendall-~
ol s i} rank correlation, larger magnitude is better) for reported Top] test error for pretrained models
in each architecture series. Column # refers to number of models. VGG, ResNet, and DenseNet
(a) Log Frobenius Norm, VGG (b) Log Spectral Norm, VGG were pretrained on ImageNet. ResNet-1K was pretrained on ImageNet-1K.
Testpccory vo g, Weihted Ao Test Accuracy vs Avg. log a-form ietiear .
R RS 0 Summary statistics: VGG; ResNet; DenseNet.
" "
i 5 Lo
L[ | [P ]
§7 P NP Tog T2 [Toel TS | & TGEl TS
2 e 2ol v o RMSE (mean) 181 | 557 |4 435
B e e » B | v e . RMSE (std) 9.14 916|916 | 017
L s > © o s » R2 (mean) 39 385 389 389
g+ v . |+ s . R2 (stq) 931 | 9036 |os| om
26 30 32 34 S2 oss ss 38 Kendal-tan (mean) | 381 | 377|386 | 38
toa ki) Kendal-tan (std) 0.7 94 |936| 936
(c) Weighted Alpha, VGG (d) Log a-Norm, VGG

Table 3: Comparison of linear regression fits for different average Log Norm and Weighted Alpha
Figure 2: Comparison of Average Log Norm and Weighted Alpha quality metrics versus re; metrics across 5 CV datasets, 17 architectures, covering 108 (out of over 400) different pretrained
test accuracy for pretrained VGG models: VGG11, VGG13, VGG16, and VGG19, with and

Different metrics on pre-trained VGG.
Summary statistics: hundreds of models.

Lots more plots to prove we can “predict trends ... without access ...’

‘Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data,” Martin,

Peng, and Mahoney, arXiv:2002.06716, Accepted for publication, Nature Communications.
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Using a theory: on SOTA models

Analyzing pre-trained models.

Depth vs ¥GG {a) Depth vs Reshiet {a)

12 . reenente
resnet1s?

a .
2
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(a) VGG (b) ResNet

Depth vs DenseNet (z)

5. ResNet layer id a (overlaid)

.. denseneun
8 densanet] 51

0 50 100 150 200

Tayer_id ouerlai for comparison
Layer 4

(¢) DenseNet (d) ResNet (overlaid)
Figure 4: PL exponent (a) versus layer id, for the least and the most accurate models in VGG
(a), ResNet (b), and DenseNet (c) series. (VGG is without BN; and note that the Y axes on

Alpha versus depth: VGG, ResNet, DenseNet.
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Using a theory: on SOTA models

Analyzing pre-trained models.

Histogram: Spectral Norms (log [WZ) Histogram: Power Law exponents ()
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Figure 6: Histogram of PL, exponents and Log Spectral Norms for weight matrices from the
OpenAl GPT and GPT2-small pretrained models.

Log Spectral Norms in GPT and GFT2

PL Exponent in GPT and GPT2
log |W]. vs layer id @ us layer id
: . o .o T
. o 10 ¢ e
. Sanagn

0 100 150
layer id
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layerid

(a) Log Spectral Norm (log [W]|.c) (b) PL exponent ()

Figure 7: Log Spectral Norms (in () and PL exponents (in (b)) for weight matrices from the
OpenAl GPT and GPT2-small pretrained models. (Note that the quantities shown on each Y
axis are different.) In the text, this is interpreted in terms of Scale Collapse and Correlation Flow.

Histogram and depth plots of o ; and /\"’ax.
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Using a theory: easy to break popular SLT metrics

Easy to “break” popular SLT metrics
@ they are not validated counterfactually

@ they drive the development of models

ez o et
: Series # [ (og[WIir) [ (og[WTw) [ & [ (ogIXTa)
' GPT 19 164 172 701 7.28
GPT2-small 19 204 2.54 9.62 9.87
GPT2-medium | 98 208 2.58 974 | 1001
GPT2-large 146 185 1.99 767 7.94
GPT2:x1 194 136 1.92 717 751

Table 2 Average value for the average Log Norm and Weighted Alpha metrics for pretrained
OpenAl GPT and GPT2 models. Column # refers to number of layers treated. Averages do

(8) Ama for ResNet20 layers (b) & for ResNet20 layers

Figure 5: ResNet20, distilled with Group Regularization, as implemented in the distiller
(4D_regularized_5Lremoved) pretrained models. Log Spectral Norm (log Amaz) and PL exponent
() for individual layers, versus layer id, for both baseline (before distillation, green) and fine-

tuned (after distillation, red) trained models. . .
med (sfer dittation,red) pretrained mod GPTx series: how does a model trained to “bad”

data differ from one trained to “good” data?
Intel’s distillation “broke” their models. &
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Using a theory: leads to predictions

Based on analyzing hundreds of pre-trained SOTA models:
e “Correlation flow":
» “Shape” of ESD of adjacent layers, as well as overlap between
eigenvectors of adjecent layers, should be well-aligned.
@ “Scale collapse’:
» “Size” of ESD of one or more layers changes dramatically, while the size
of other layers changes very little, as a function of some perturbation of
a model, during training (or post-training modification).
o “Correlation traps’:

» Spuriously large eigenvaluesS may appear, and they may even be
important for model convergence.

We can measure these quantities with Weightwatcher—so can you!

§

Eigenvalues not due to signal in the data—we have theorems-style theory for Hessians (“Hessian Eigenspectra of More
Realistic Nonlinear Models,” Liao and Mahoney, https://arxiv.org/abs/2103.01519), but it's still open for Weights:
Mahoney (UC Berkeley) Practical Theory & NN Models « 1 » Arril 2021 34 /51



More publicly-available data

A contest (Predicting Generalization in Deep Learning, NeurlPS 2020).
Our experiences:

@ based on a “fantastic” paper (considered many metrics, but not « or &)
@ nominally about causes of generalization; but, like most ML contests,

» ensemblization—good way to win

» information leakage—hard to avoid

» augment data—good way to win

» (But none of those tell us about generalization.)

@ big difference between 0 error and ~ 0 error
@ not worth competing in*

@ thanks to organizers for releasing data*

*since we want to understand causes of good model performance
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Models and metrics

Models and tasks: can segment models by architecture parameters or solver parameters.

Series # [ ()| Batch Sizes | Dropout | Weight Decay | Conv Widths
Taskl “taskl_v4” Oxx 4 8, 512 0.0, 0.001 256, 512
(VGG-like) Ixx 5 8. 512 0.0, 0.001 256, 512

2xX 5 8, 0.0, 0.001 256, 512

5xx. 8 8 0.0, 0.001 256, 512

6xx. 8 8 0.0, 0.001 256, 512

Txx 9 8, 0.0, 0.001 256, 512
Task2 “task2_v1” 2xx | 13 | 32, 0.0, 0.001 512
(Network-in-network) | 6xx | 7 |32, 0.0, 0.001 512

Oxx 10 | 32, 0.0, 0.001 512

10xx | 10 | 32, 0.0, 0.001 512

Table 1: Overview of models (from [5, 0]) we considered.

Best-performing metrics.

. . Need access | eod 85 | Neog access

Complexity Metric Average Ref. to data? to .mmz?l to GPUs?
weights?

Alpha (o) (here) No No No
QualityOfAlphaFit Dks (here) No No No
LogSpectrallorm (log1o [WI3) | ([12]) No No No
LogFrobeniusNorm (log,, [[W]12) | ([12]) No No No
Alphafiat (@) No No No
LogAlphaShattenNorm (logy, (W32 | (7D No No No
DistanceFromInit Ainit (2 No Yes No
TrainingAccuracy N/A N/A Yes No No
Sharpness N/A (12 Yes No Yes
SVDSmoothing N/A (here) Yes No No

Table 2: Overview of model quality metrics. Based on our initial analysis of Contest models,
we propose and demonstrate the quality of Alpha, QualityOfAlphaFit, and SVDSmoothing. For
several of the metrics, we refer to a recent summary paper [12] rather than original references.
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Size versus shape

Size (norm) and shape (fitted HT parameters) are different . ..

task1_v4: Alpha vs LogSpectralNorm task2_v1: Alpha vs LogSpectralNorm
. . 12 oo
. .+ 10xx

10 - .exx

— _ 9xx
A s
o s
2 2
s 5
< <
2 2
2 Ed

.5 . 15 0.5 1.0 15 2.0
Avg Log Spectral Norm (Iogyo W2} Avg Log Spectral Norm (1og:o] W2}

(a) Taskl models. (b) Task2 models.

Figure 2: Comparison of the Alpha and LogSpectralNorm metrics, for Taskl and Task2 models.

...and there is a lot of heterogeneity across tasks/subtasks.
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Extracting shape

parameters

Lin-Lin ESD for VGG16 FC3

from HT ESDs

Log-Lin ESD for VGG16 FC3

KS Distance (D) vs Arn

Log-Log ESD for VGG16 FC3
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Training versus testing

Training and testing error often anti-correlated ...

taskl: Training vs Test Accuracy

task2: Training vs Test Accuracy

3 070 -
0.93700.6875 09950 0.9385 0.3390 06595 10000 08575 09980 08685 0.9990 08985 1.0000
Training Accuracy Training Accuracy

(a) Task1 models. (b) Task2 models.
Figure 5: Relationship between training accuracy and testing accuracy for Task1 and Task2 mod-

els. One would expect a positive correlation or (if the training error is very close to zero) at least
not a negative correlation. In many cases, they are strongly anti-correlated. See also Table 4.

...and there is a lot of heterogeneity across tasks/subtasks.
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Simpson'’s paradox (1 of 2)

Within sub-group: vary solver parameters.
Between sub-groups: vary architecture.

task1_v4: Simpsons Plot for (log;o|W|2) task2_v1: Simpsons Plot for (log;o|W[2)
— all
g 1t .
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(a) Task1. (b) Task2.

Figure 6: Illustration of Simpson’s paradox. Test accuracy versus LogSpectralNorm, for Taskl
and Task2, segmented by model group. Note the overall trend is downward (line not explicitly
shown), while the trend for each subgroup is upward. This is especially prominent for Task2.

LogSpectralNorm for better models is:
Taskl: larger within and between sub-groups.

Task2: larger within—and smaller between—sub-groups.
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Simpson's paradox (2 of 2)
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0.675

Within sub-group: vary solver parameters.

Between sub-groups: vary architecture.

task1_v4: Simpsons Plot for (a)

.
.
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(a) Taskl.
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Figure 7: Ilustration of Simpson’s paradox. Test accuracy versus Alpha, for Taskl and Task2,

Alpha for better models is:

Taskl: smaller within and between sub-groups.

Task2: smaller within sub-groups—but larger between sub-groups.
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Lessons learned ...

Extracting causal insight?
@ Don't invent causal metrics.
@ Don't look for “one size fits all” metric.

@ We identified Simpson's paradoxes—and then we used them and
domain knowledge to identify causes of good performance.

@ A cautionary tale ...

Size versus shape more generally:
o Construct data-dependent versions of size versus shape.

@ SVDSmoothing—if training data fit exactly, feed data through
low-rank approximation. (No GPUs!)
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What more can we do?

Future directions (all of which demand a practical theory):
@ Training/testing curves gives limited insight:

» don't take into account hyperparameter fiddling;
» don't correlate with robustness/accuracy/fairness/etc.

@ No access to data / optimization protocols / hyperparameter values / etc.:

» can | evaluate systems-motivated model adjustments?
» batch size, edge, distillation, etc. (without training/retraining)?

@ Model user is not a model developer:

» sanity check: did you give me a bad/damaged model?
» robustness check: can | look for backdoor adversarial attacks, etc.?

@ Data costs money:

» Do | have enough data?
» Should | spend money on analysts or machines or data?

If AI/ML is to become an industrial process, beyond FAAMG, it will have
to be compartmentalized to scale: Group-A develops; Group-B validates;
and Group-C deploys
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Conclusions

“Practical theory” is not an oxymoron:

@ not all theory is practical, but some is

“Practical theory” is theory for practical things:
@ like data
@ like SOTA DNNs

“Practical theory” can be used to address practical questions:
@ is my network fully optimized?
should | buy more data?
can | use labels and/or domain knowledge more efficiently?

can | design better ensembles, or improve model post-modification?

is my pre-trained SOTA DNN overparameterized or underparameterized?

If you want more ... “pip install weightwatcher” ...
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Outline

@ Random Matrix Theory for Modern ML



Random Matrix Theory for Machine Learning:
new intuitions, improved methods, and beyond

Michael. W. Mahoney

March 20, 2023

v
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Outline

@ Introduction
@ Sample covariance matrix for large dimensional data: from LNN to modern RMT
© RMT for Modern Machine Learning: linear models

© RMT for Modern Machine Learning: nonlinear models
@ A random matrix perspective of the “curse of dimensionality”
o Kernel spectral clustering for large dimensional data
@ A random matrix approach to large neural networks and random features

M. W. Mahoney RMT4ML March 20, 2023 2/43



Understanding the mechanism of large dimensional machine learning

large dimensional data
X1,...,%X; € RF

large learning
systems of size N

M. W. Mahoney

» Big Data era: exploit large n,p, N
» counterintuitive phenomena when n % p, e.g., the

“curse of dimensionality”

» complete change of understanding of many ML

algorithms

» Random Matrix Theory provides the tools!

RMT4ML March 20, 2023
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From low to high dimensional machine learning

x
5 /ffxi*’m
*x x %@ o(1) *Q
x x b %
4
——
0 Oo(vp)
) x/
o2 ®, b4
%o ) L0
o *“xnx—o”'

Figure: Visual representation of classification in (left) small and
(right) large dimensions.

M. W. Mahoney RMT4ML

» low dimension: data vectors
x; € R?,p = 2,3, gathered in different
“groups” can be classified using
distance-based approach

» high dimension:

(i) easy or trivial scenario where low
dimensional intuition holds and a
pairwise distance-based classification
approach via, e.g.,
Johnson-Lindenstrauss lemma, is
efficient;

(ii) hard or non-trivial scenario where
such intuition collapses: data vectors
at approximately the same Euclidean
distance, regardless their arising from
same or different classes.

March 20, 2023 5/43



Non-trivial high dimensional classification beyond the JL regime

In the high dimensional regime where data dimension p and sample size n both large, a dual phenomenon:

(i) data points not pairwise classifiable: Euclidean distance between any two data points x; € C; and x; € Cy
approximately constant ~ T = O(1) independent of their classes C,, Cp: ||x; — j||2/ p=1+40(1)as
n,p — oo and data pairs neither close nor far from each other;

(i) classification remains possible by exploiting the spectral information of large Euclidean distance matrix
E={|xi— ]-||2 /p}} i1 thanks to a collective behavior of all data belonging to same (and large) classes.

Histogram

M. W. Mahoney

RMT4ML

Histogram

(b) p =250

March 20, 2023
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Figure: Euclidean distance matrices E, the histogram of the entries of E, and the second top eigenvectors v, for small (left,
p = 5) and large (right, p = 250) dimensional data X = [x1,...,x;] € RP*" withxy,...,X,/2 € C; and X,,/241,...,X; € C; for
n = 5000 and different values of p.
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Four way to characterize sample covariance matrices

Small
Dimensional
Regime

Asymptotic Characterizations

Marchenko-Pastur Law

Law of Large
Numbers Qualitative Deterministic
Equivalent for Resolvent Large
Dimensional
. Regime
Quantitative 9

Sample Covariance Deterministic

Concentration Equivalent for

Resolvent

Non-asymptotic Characterizations

Figure: Different ways to characterize the sample covariance matrix € = %XXT.

M. W. Mahoney

RMT4ML

March 20, 2023
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Small-dimensional characterizations of SCM

Theorem (Asymptotic Law of Large Numbers for SCM)
Let p be fixed, and let X € RP*" be a random matrix with independent sub-gaussian columns x; € RP such that
E[x;] = 0and E[x;x] | = I,. Then one has,
€Tl =0, @

almost surely, as n — co.

> the sub-gaussianity is in fact not necessary, and is stated to align with the following result
Theorem (Concentration of sample covariance, [Verl8, Theorem 4.6.1])

Let X € RP*" be a random matrix with i.i.d. sub-gaussian columns x; € RP such that E[x;] = 0 and ]E[xix;.r] =1y, one
has, with probability at least 1 — 2 exp(—t2) for any t > 0 that

[€—1Llla < Cimax(6,6%), &= Ca(v/p/n+t/v/n) 2

for some constants C1,Cp > 0 independent of n, p.

> non-asymptotic and high probability characterization
> however, not precise in the p ~ n regime, since 6 = O(/p/n) = O(1)
T i 20 AT /5



Sample covariance matrix in the large 1, p regime

» For x; ~ N(0,C), estimate population covariance C € RP*P from n data samples X = [x, ..., X,] € RF*".

» Maximum likelihood sample covariance matrix with entry-wise convergence

M=

e-1
n?;

i

1 R
xix] = aXXT ERPP, [Cl; — [Cly
1

almost surely as n — oco: optimal for n > p (or, for p “small”).

» In the regime n ~ p, conventional wisdom breaks down:
for C = I, with n < p, C has at least p — n zero eigenvalues.

|I€-C|| A0, np—oo

= eigenvalue mismatch and not consistent! = matrix norms not equivalent in large dimensions!
> dueto [|Aflo < |A] < pllA[le for A € RP*P and [|A [l = max;; [Ayl.

M. W. Mahoney RMT4ML March 20, 2023
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Large-dimensional characterizations of SCM: eigenvalues

Definition (Empirical Spectral Distribution, ESD)

For a symmetric matrix X € RP*P, the empirical spectral distribution (ESD) or empirical spectral measure jix of X is
defined as the normalized counting measure of the eigenvalues A;(X), ..., Ap(X) of X,

‘S\H

P
Z ®)

where Jy represents the Dirac measure at x.

Theorem (Marcenko-Pastur law, [MP67])
Under the same setting, asmn, p — cowith p/n — ¢ € (0, o), with probability one, the empirical spectral measure
He = 5 Z, 19, © of C = XXT converges weakly to a probability measure p given explicitly by

p(dx) = (1= ) To(x) + (x—E_)*(E4 —x)*dx @)

27tcx

where Ex = (14 v/c)? and (x)* = max(0, x), and is known as the Marcenko-Pastur law.

R, March 20,2023 /1



Large-dimensional behaviors diverge from small-dimensional behaviors

Histogram

0
0.5 1 15 05 08 12 15

(a) m = 1000p (b) n = 100p (c)n=10p

Figure: Histogram of the eigenvalues of € versus the limiting Maréenko-Pastur law in Theorem 4, for X having standard
Gaussian entries with p = 20 and different n = 1000p, 100p, 10p from left to right.
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Large-dimensional behaviors diverge from small-dimensional behaviors

Histogram

0.8 1 12 0.8 1 12

(b) p = 100 (c) p = 500

Figure: Histogram of the eigenvalues of € versus the Mar&enko-Pastur law, for X having standard Gaussian entries with
n = 100p and different p = 20,100, 500 from left to right.
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When is one in the random matrix regime? Almost always!

What about 1 = 100p? For C = I;, as n,p — oo with p/n — ¢ € (0, 00): the Marfenko-Pastur law
1
— _ I+ - _ + _ +
u(dx) = (1—c H)*té(x) + Trrex (x—E_)*(E4 —x)tdx
(x,0). Close match!

where E_ = (1—/c)?, E4 = (14 +/c)?and (x)* = max
‘ x
I Empirical eigenvalues of €
4l Margenko-Pastur law
——— Population eigenvalue
z
%
2
Y
o 2 |
E
12

0.8 1

Figure: Eigenvalue distribution of C versus Maréenko-Pastur law, p = 500, n = 50 000.

March 20, 2023

> eigenvalues span on [E_ = (1—/c)%, E; = (1+/c)?].
» for n = 100p, on a range of +2,/c = 0.2 around the population eigenvalue 1.

M. W. Mahoney RMT4ML
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Beyond eigenvalue distribution: a modern RMT approach via the resolvent

Definition (Resolvent)
For a symmetric matrix X € IR"*", the resolvent Qx(z) of X is defined, for z € C not an eigenvalue of X, as

Ox(z) = (X—z1,) . 5)

The matrix Qx (z) will often simply be denoted Q(z) when there is no ambiguity.

Table: A list of different matrix functionals and how they can be evaluated via the resolvent.

Objects of interest I Functionals of resolvent Qx(z)
ESD px of X Stieltjes transform 1, (z) = 1; tr Qx(z) as the trace of Qx
Integration of trace of Qx
Linear spectral statistics (LSS): fx = % Y f(Ai(X)) (via Cauchy’s integral)

“ frf(z)% tr Qx(z) dz

Projections of eigenvectors

L T
vTuand vT U onto some givenv € R” Bilinear form v Qx(z)v of Qx
General matrix fun_lc_tlon_;a_l Integration of bilinear form of Qx(z)
FOO) = £ f 00 )vT wuT vz o e o o
involving both eigenvalues and eigenvectors of X 2 JT. 1 5ex{=/V2
R
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Old and new school RMT

RMT tools Objects of interest

“Old school” Stlelt_]e_s L o ﬁ Eigenvalue distribution
()= Q()
specialtcase

tracef form Eigenvalues, eigenvectors,
and their (linear) functionals
Resolvent Q( )
and its Deterministic
Equivalent Q( ) Integration and differentiation
involving these quantities

“New school”

Inverse, trace, and bilinear forms

Figure: Different objects of interest and their corresponding technical tools for “old” and “new school” RMT.
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Modern RMT: deterministic equivalents for resolvent

Definition (Deterministic Equivalent)
We say that Q € RP*? is an (1, €5, §)-deterministic equivalent for the symmetric random matrix Q € RF*? if,

for deterministic matrix A € RP*? and vectors a,b € IR” of unit norms (spectral and Euclidean, respectively),
we have, with probability at least 1 — §(p) that

‘%trA(Q — Q)‘ <e(p), ‘aT(Q —Q)b| < e(p), ©)

for some non-negative functions &1 (p), £2(p) and 6(p) that decrease to zero as the dimension p — co.

» non-asymptotic and holds for any p,
> taking p — oo leads to
(i) %, trA(Q—Q) = 0,a"(Q -~ Q)b — 0in probability as p — oo; and
(ii) if the failure probability 6(p) = O(p~!) for some £ > 1, by Borel-Cantelli lemma ,% trA(Q—-Q) — 0,
a’(Q — Q)b — 0 almost surely as p — .

> to denote this asymptotic deterministic equivalent relation, use
Q< Q. @)
T i 20 AT /5




An asymptotic deterministic equivalent for SCM resolvent

Theorem (An asymptotic deterministic equivalent for resolvent, [CL22, Theorem 2.4] )

Let X € RP*" be a random matrix having i.i.d. sub-gaussian entries of zero mean and unit variance, and denote
Q(z) = (%XXT — zlp)’1 the resolvent of%XXTfor z € C not an eigenvalue of%XXT. Then, as n,p — oo with
p/n — c € (0,00), the (sequence of) deterministic matrix Q(z) is a Deterministic Equivalent of the (sequence of)
random resolvent matrix Q(z), i.e.,

Q(z) < Q(z), Qz) =m(2)y, ®)

with m(z) the unique valid Stieltjes transform as solution to

czm?(z) — (1 —c—2z)m(z) +1 = 0. (9)1

Theorem (A non-asymptotic deterministic equivalent for resolvent, [Der+21, Proposition 4] )

Under the same setting and notations as above with z < 0, there exists some universal constant C1,Cy > 0 depending
only on the sub-gaussian norm of the entries of X and |z|, such that for any € € (0,1), if n > (Cq + €)p, one has

BRG] - Q@) < 2 n Y, Q@) = m@, 10)

V.
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RMT for ML: linear models

Table: Roadmap of RMT for large-dimensional linear ML models .

Problem I Small dimension I

smooth decay of
X =X[lo/[IX]lo = (1 + O

Large dimension
Low rank approximation X
of info-plus-noise matrix X
Classification of binary
Gaussian mixtures of
distance in means Au
Linear least squares
regression risk as n 1

sharp transition of
X =Xll2/ (X2 at £ = ¢+ Ve

pairwise ~ spectral approach | pairwise < spectral approach

bias = 0 and

variance o 11!

monotonic bias and
non-monotonic variance

M. W. Mahoney RMT4ML
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Low-rank approximation

Proposition (Relative spectral error of low-rank approximation)

Let X = fuuT + 1 1777 € RP*" be an additive spiked random matrix, for u € RP some deterministic signal of unit
norm, i.e., |[ul| = 1 £ >0 the mformatzve “signal strength”, and Z having i.i.d. sub-gaussian entries of zero mean and
unit variance, and let X = Aq(X a1 @] the optimal rank-one approximation of X given by its top eigenvalue-eigenvector
pair (A1(X), @y ). Then, one has,

(i) in the small-dimensional regime, for p fixed and n — oo that

I~ X _ 1
e PO &

almost surely; and

(ii) in the large-dimensional regime, as n,p — oo with p/n — ¢ € (0,00) that

v il
'ﬁ@ﬂ”aﬁwwoz{fJfW (>ctye
2

(12)
1, L<c++/c

almost surely.

M. W. Mahoney RMT4ML March 20, 2023 22/43
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Figure: Relative error in spectral norm ||X — X||2/||X]|> of rank-one approximation, for additive model X = (uu™ + 1ZZT
with standard Gaussian Z;; ~ N(0,1), [[u] = 1, and X = A(X)a;aT the optimal rank-one approximation of X, as a function
of £ forp =4 and p = 512, n = 1024 and 2 048. Results averaged over 30 independent runs.
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Classification

Proposition (Fundamental limits in classification: pairwise versus spectral approach)
For Gaussian mixture classification between N (p1,1p) and N (py, 1) with Ap = py — p,, one has, for some constant
C > 0 independent of p,

(i) based on a pairwise (Euclidean) distance comparison approach, one is able to separate binary Gaussian mixtures
satisfying || Ap|| > Cp/*; and

(ii) based on an eigenspectral approach, one is able to separate a closer distance of ||Ap|| > C, which is, up to a constant
factor, the minimum distance possible.

R, March 20,023 2/



Pairwise

Spectral

1/4

I well

Figure: [llustration of different regimes in separating a binary GMM based on the distance in means ||Ay||, for both pairwise
distance comparison and spectral approaches.
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“Curse of dimensionality”: loss of relevance of Euclidean distance

» Binary Gaussian mixture classification x € IR?:
Ci:x~N(py,Cp), versus Cp : x ~ N (py, Cy);

> Neyman-Pearson test: classification is possible only when [CLM18]

[l = 2]l = G o1 €1 = G| = Ce-p 2]

for some constants C,, Cc > 0.

» In this non-trivial setting, for x; € Ca,x/' € Cy:

1 2
max {7||xi7xj||277trC°} 50
1<iZj<n | p p

asn,p — oo (i.e, n ~p), for C° = %(Cl + Cy), regardless of the classes C;, Cp,! (In fact even for n = p™.)

= Direct consequence to various distance-based machine learning methods (e.g., kernel spectral clustering)!

!Romain Couillet, Zhenyu Liao, and Xiaoyi Mai. “Classification asymptotics in the random matrix regime”. In: 2078 2(
(EUSIPCO). IEEE. 2018, pp. 18 879
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Reminder on kernel spectral clustering

Two-step classification of n data points based on distance kernel matrix K = {f(||x; — X; I1>/p)}

| Top eigenvectors |}

0

isolated eigenvalues

Eigenv. 1

Eigenv. 2

M. W. Mahoney

RMT4ML

n .
ij=1'

March 20, 2023
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Reminder on kernel spectral clustering

Eigenv. 1

Eigenv. 2

M. W. Mahoney

|| K-dimensional representation |

Eigenvector 2

s
X

EM or k-means clustering.
(Three classes/clusters in this example.)

Eigenvector 1

I

RMT4ML

March 20, 2023
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Visualization of kernel matrices for large dimensional Gaussian data

Objective: “cluster” Gaussian data xy, ..., x; € R? into C; or C;.

Consider Gaussian kernel matrix K;; = exp(—|[x; — xj||?/2p) and the second top eigenvectors v, for small
(left) and large (right) dimensional data.

(a)p = 5,n = 500

(b) p = 250,n = 500

VZZ[W] v2=[MWWW}

Figure: Kernel matrices K and the second top eigenvectors v, for small (left, p = 5,n = 500) and large (right,

RMT4ML March 20, 2023 32/43



Kernel matrices for large dimensional real-world data

(a) MNIST

by

”,

L.{

M. W. Mahoney

(b) Fashion-MNIST

Sandal Dress Pullover

‘ -

Ankle boot

RMT4ML March 20, 2023
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A spectral viewpoint of large kernel matrices in large dimensions

> “local” linearization of nonlinear kernel matrices in large dimensions, e.g., Gaussian kernel matrix
Kjj = exp(—|x; — ]-||2/2p) withCy = Cp =1, (e.g., C1 : x; = py +2; versus Ca @ X; = pp + 2;) so that

2
I =512/ 222, and K = exp (=3 ) (18] + 1272 ) -y~ ) 33T+ 01 1)
with Gaussian matrix Z = [z1,...,2,4] € RP*" and j = [1,,/5; —1,, /2], the class-information vector
» accumulated effect of small “hidden” statistical information (|[z£; — 1, || in this case)

Therefore
> entry-wise:

1 1 1 1
Kj = exp(1) (14 Jalz; ) = gl —pall) - so that gl —pl) < 2Tz,
—— ——————
O(p=7?) o)
> spectrum-wise: () K — exp(~1) 1,17 | 4 0; (i) [327Z] = O(1) and lg(llp, ~ ) 15Tl = O(1)1

» Same phenomenon as the sample covariance example: [C — C] =07 [€-c| - o

= With modern RMT, we understand kernel spectral clustering (eigenvectors!) for large dimensional data!

M. W. Mahoney RMT4ML March 20, 2023 34/43



Numerical results on kernel-based least squares SVM (LS-SVM)

‘—{ /

310

—0.05

i

(a) MNIST

Sandal Dress
. m g
I

RMT4ML

Pullover Ankle boot

||‘ |||||L,..| |_

=01

"

1
1
1
1
1
1
1

(b) Fashion-MNIST

Figure: Empirical histogram of LS-SVM soft output versus RMT prediction, n = 2048, p = 784, v = 1 with Gaussian kernel,
March 20,2023

for MINST (left, 7 versus 9) and Fashion-MNIST (right, 8 versus 9) data. Results averaged over 30 runs

7
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Reminder on random features and neural networks

> kernel matrices K € R"*" from pairwise comparison of 1 data points: expansive for n large

v

idea: find easy-to-compute K to approximate K, e.g., | K — K|| is small

> example: random Fourier feature [RROS] ZT = [cos(WX)T, sin(WX)T] € R2N*" of data
X = [xq,...,X%;] € RP*" with standard Gaussian W € RN*?, i.e., Wi ~ N(0,1)

» approximates Gaussian kernel exp(||x; — ]-||2 /2): entry-wise convergence of RFF Gram
% [ZTZ]ij — [KGaussij Gaussian kernel matrix as number of features N — oo

> proof: (strong) law of large numbers:

1 1Y
N[ZTZ]IY =N Y. cos(x] wy) cos(w;—xj) + sin(x] wy) sin(w;—xj)
k=1
= Eyn(o1,) [cos(x] w) cos(wx;) + sin(x] w) sin(w ;)] = [Keos + Ksinlij = [Kcauss]ij

1 1
for Kegs = e~ 2(Ixll*+1x]1%) cosh(x;rxj) and K, = e 2 (IhlP+11l1%) sinh(x;rxj)‘

3Ali Rahimi and Benjamin Recht. “Random Features for Large-Scale Kernel Machines”. In: Advarnces in Newral Information Processing
Systems. Vol. 20. NIPS08. Curran Associates, Inc., 2008, pp. 1177-1184
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Random features-based ridge regression and neural networks

\ W € RN*? / sin| e R*™ in (13)

cos
X € RPX" Iy = X7 = [cos(WX)T, sin(WX)T]
X € RPX7 ZT = [cos(WX)T, sm(WX) ]

Figure: Illustration of random Fourier features regression model.

> RFF ridge regressor § € R?N given by, for regularization penalty v > 0,
1.1 _ _
B= EE(;ZTZ +9L) 1y lonsa + (REET 4 9In) T L2y - 1oy (13)

> Performance: training and test Mean Squared Error (MSE): Erain = ||y — Z3 /% and
Etest = & , with 2] € RM2N RFFs of a test set (X, ) of size .
> single-hidden-layer neural network with cos + sin activations, connected to neural tangent kernel (NTK)

3 Arthur Jacot, Franck Gabriel, and Clément Hongler. “Neural Tangent Kernel: Convergence and Generalization in Neural Networks”.
Advances in Neural I ; Systems. Vol. 31. NIPS'18. Curran Associates, Inc., 2018, pp. 8571-8580
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Random Fourier features approximate Gaussian kernel, but in which sense?

> [RRO8]: entry-wise convergence of RFF Gram % [ETE],-]- — [KGauss)ij Gaussian kernel matrix as N — co

> again, not true in spectral norm sense, i.e., |[ETE/N — Kgauss|| 7 0 unless N > n

— eg, ZTE € R"™" of rank at most N if N < 1, while Kgauss of rank n (for distinct x;)
— significant impact on various RFF-based algorithms

10° 10°
=
7
2 4
£ 10 10-3 e
5 ’
& s — S
& R N/n=1/4 K

10-¢ 1076 L=
104 10-! 102 104 10! 102
A A

Figure: Training MSEs of RFF ridge regression on MNIST data (class 3 versus 7) as a function of regression penalty A.

> effective kernel can be derived with RMT in the large 1, p, N regime

» provides precise training and test performances of RFF for any ratio N/n, more practical and more
flexible, recover Gaussian kernel result with N/n — oo

> data-dependent theory with no strong assumption on data
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Sharp analysis of RFF ridge regression performance via RMT

100 . 100 . 100 .
N/n=1/4 /n=1/2 N/n=1/4 P
= = B
2 107" yownesg 1071 E
E I 1

102 : : J 102 :

104 10! 102 10! 102 104 10! 102

A A A A

1 v 1 T
= *!’f A=10"7 [A=10"3
g h ey h !
< 05 : - 0.5 i —
7

1 1
0 I I 0 I I
0 05 1 0 05 1
N/n N/n

Figure: Test MSEs of RFF regression as a function of the ratio N/n, on MNIST data set.
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“Recap” for double descent phenomenon for over-parameterized models

Risk . phase transition
best tradeoff Risk
|
|
|
|
|
.
7
|
Model complexity Model complexity
(2) Classical U-shaped risk (b) Modern “double descent”risk

Figure: Comparison between training risk (blue) and true/test risk (red).

» empirically observed for various large-scale machine learning models, e.g., RF-based methods, decision
trees, ensemble methods, and deep NNs
» proved here for RFF on real-world data!

> phase transition from under- to over-param of resolvent (ETX + AI,) ~! in the ridgeless A — 0 limit

“4Mikhail Belkin et al. “Reconciling modern machine-learning practice and the classical bias-variance trade-off”. In: Proceedings of the
National Acadenty of Sciences 116.32 (2019), pp. 15849-15854
STrevor Hastie et al. “Surprises in High-Dimensional Ridgeless Least Squares Interpolation”. In: arXiv (2019). eprint: 1903.08560
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Take-away messages and references

Take-away messages:

>
>
>
>

RF methods: classical statistical learning theory provides performance guarantee for N >> n,p
here we derive (limiting) kernel in the more practical large n, p, N regime
fast tuning of regularization parameter A

double descent theory for novel understanding of over-parameterized neural networks
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RMT for machine learning: from theory to practice!

Random matrix theory (RMT) for machine learning:
» change of intuition from small to large dimensional learning paradigm!
> better understanding of existing methods: why they work if they do, and what the issue is if they do not

> improved novel methods with performance guarantee!

Thank you! Q & A?
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Why does deep learning work?




Why does deep learning work?

Power l[aw spectra are essential
to the story




Sharpness
(the Hessian)

Noise covariance

Interpolation

Spectral analysis of | _ Reciprocal spectrum | Neural Tangent | Rate of convergence N Dynam'cs_ of
. < > < stochastic
weights Kernel s
optimizers

Trajectory analysis/

compression Taxonomy on

effective loss
landscape
Y

Heavy-tailed metrics PAC-Bayes

Generalization Theory of ensembling

Bounds

Student-teacher |_ HCIZ theory

model » Similarity metrics
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Conclusion

Weight Analysis and Heavy-Tailed Self-Regularization

Phenomenological Approach to Statistical Mechanics of
Generalization

Using Heavy-Tailed Self-Regularization
Random Matrix Theory for Modern ML
Putting It All Together

Mahoney (UC Berkeley) Practical NN theory
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