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Statistical Physics & Neural Networks: A Long History

60s:
I J. D. Cowan, Statistical Mechanics of Neural Networks, 1967.

70s:
I W. A. Little, “The existence of persistent states in the brain,” Math.

Biosci., 1974.
80s:

I H. Sompolinsky, “Statistical mechanics of neural networks,” Physics
Today, 1988.

90s:
I D. Haussler, M. Kearns, H. S. Seung, and N. Tishby, “Rigorous learning

curve bounds from statistical mechanics,” Machine Learning, 1996.
00s:

I A. Engel and C. P. L. Van den Broeck, Statistical mechanics of
learning, 2001.
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Hopfield model
Hopfield, “Neural networks and physical systems with emergent collective computational abilities,” PNAS 1982.

Hopfield model:
Recurrent artificial neural network model
Equivalence between behavior of NNs with symmetric connections and the
equilibrium statistical mechanics behavior of certain magnetic systems.
Can design NNs for associative memory and other computational tasks

Phase diagram with three kinds of phases (α is load parameter):
Very low α regime: model has so so much capacity, it is a prototype method
Intermediate α: spin glass phase, which is “pathologically non-convex”
Higher α: generalization phase

But:
Lots of subsequent work focusing on spin glasses, replica theory, etc.

Let’s go back to the basics!
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Restricted Boltzmann Machines and Variational Methods

RBMs = Hopfield + temperature + backprop:
RBMs and other more sophisticated variational free energy methods

They have an intractable partition function.
Goal: try to approximate partition function / free energy.
Also, recent work on their phase diagram.

We do NOT do this.
Memorization, then and now.

Three (then) versus two (now) phases.
Modern “memorization” is probably more like spin glass phase.

Let’s go back to the basics!
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Some other signposts

Cowen’s introduction of sigmoid into neuroscience.
Parisi’s replica theory computations.
Solla’s statistical analysis.
Gardner’s analysis of annealed versus quenched entropy.
Saad’s analysis of dynamics of SGD.
More recent work on dynamics, energy langscapes, etc.

Lots more . . .
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Important: Our Methodological Approach
Most people like training and validating ideas by training.
We will use pre-trained models.

Many state-of-the-art models are publicly available.
They are “machine learning models that work” . . . so analyze them.
Selection bias: you can’t talk with deceased patients.

Of course, one could use these methods to improve training . . . we won’t.
Benefits of this methodological approach.

Can develop a practical theory.
(Current theory isn’t . . . loose bounds and convergence rates.)
Can evaluate theory on state-of-the-art models.
(Big models are different than small . . . easily-trainable models.)
Can be more reproducible.
(Training isn’t reproducible . . . too many knobs.)

You can “pip install weightwatcher”
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PAC/VC versus Statistical Mechanics Approaches (1 of 2)

Basic Student-Teacher Learning Setup:
Classify elements of input space X into {0, 1}
Target rule / teacher T ; and hypothesis space F of possible mappings
Given T for X ⊂ X , the training set, select a student f ∗ ∈ F , and evaluate how
well f ∗ approximates T on X
Generalization error (ε): probability of disagreement bw student and teacher on X
Training error (εt): fraction of disagreement bw student and teacher on X
Learning curve: behavior of |εt − ε| as a function of control parameters

PAC/VC Approach:
Related to statistical problem of convergence of frequencies to probabilities

Statistical Mechanics Approach:
Exploit the thermodynamic limit from statistical mechanics
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PAC/VC versus Statistical Mechanics Approaches (2 of 2)
PAC/VC: get bounds on worst-case results

View m = |X | as the main control parameter; fix the function class F ; and ask
how |εt − ε| varies
Natural to consider γ = P [|εt − ε| > δ]

I Related to problem of convergence of frequencies to probabilities
I Hoeffding-type approach not appropriate (f ∗ depends on training data)

Fix F and construct uniform bound P [maxh∈F |εt(h)− ε(h)| > δ] ≤ 2 |F| e−2mδ2

I Straightforward if |F| <∞; use VC dimension (etc.) otherwise
Statistical Mechanics: get precise results for typical configurations

Function class F = FN varies with m; and let m and (size of F) vary in
well-defined manner
Thermodynamic limit: m,N →∞ s.t. α = m

N (like load in associative memory
models).

I Limit s.t. (when it exists) certain quantities get sharply peaked around
their most probable value.

I Describe learning curve as competition between error (energy) and log
of number of functions with that energy (entropy)

I Get precise results for typical (most probably in that limit) quantities
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Rethinking generalization requires revisiting old ideas
Martin and Mahoney https://arxiv.org/abs/1710.09553

Very Simple Deep Learning (VSDL) model:
DNN is a black box, load-like parameters α, & temperature-like parameters τ
Adding noise to training data decreases α
Early stopping increases τ

Nearly any non-trivial model‡ exhibits “phase diagrams,” with qualitatively
different generalization properties, for different parameter values.

(a) Training/general-
ization error.

(b) Learning phases in
τ -α plane.

(c) Noisifying data and
adjusting knobs.

‡when analyzed via the Statistical Mechanics Theory of Generalization (SMToG)
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Remembering Regularization
Martin and Mahoney https://arxiv.org/abs/1710.09553

Statistical Mechanics (1990s): (this) Overtraining → Spin Glass Phase

Binary Classifier with N Random Labelings:

2N over-trained solutions: locally (ruggedly) convex, very high barriers, all unable to generalize
implication: solutions inside basins should be more similar than solutions in different basins
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Stat Mech Setup: Student Teacher Model
Martin and Mahoney https://arxiv.org/abs/1710.09553

Given N labeled data points
Imagine a Teacher Network T that maps data to labels
Learning finds a Student J similar to the Teacher T
Consider all possible Student Networks J for all possible teachers T

The Generalization error ε is related to the phase space volume Ωε of all possible
Student-Teacher overlaps for all possible J,T

ε = arccos R, R = 1
N J†T
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Stat Mech Setup: Student Teacher Model
Martin and Mahoney https://arxiv.org/abs/1710.09553

Statistical Mechanics Foundations:
Spherical (Energy) Constraints: δ(Tr [J2]− N)
Teacher Overlap (Potential): δ( 1

NTr [J†T]− cos(πε))
Teacher Phase Space Volume (Density of States):

ΩT (ε) =
∫
dJδ(Tr [J2]− N)δ( 1

NTr [J†T]− cos(πε))

Comparison to traditional Statistical Mechanics:
Phase Space Volume, free particles:

ΩE =
∫
dNr

∫
dNpδ

( N∑
i

p2i
2mi
− E

)
∼ V N

Canonical Ensemble: Legendre Transform in R = cos(πε):
actually more technical, and must choose sign convention on Tr [J†T], H

Ωβ(R) ∼
∫

dµ(J)e−λTr [J†T] ∼
∫
dqNdpNe−βH(p,q)
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Stat Mech Setup: Student Teacher Model
Martin and Mahoney https://arxiv.org/abs/1710.09553

Early Models: Perception: J,T N-dim vectors

Continuous Perception Ji ∈ R (not so intersting)
Ising Perception Ji = ±1 (sharp transitions, requires Replica theory)

Our Proposal: J,T (N ×M) Real (possibly Heavy Tailed) matrices
Practical Applications: Hinton, Bengio, etc.
Related to complexity of (Levy) spin glasses (Bouchaud)

Our Expectation:
Heavy-tailed structure means there is less capacity/entropy available for
integrals, which will affect generalization properties non-trivially
Multi-class classification is very different than binary classification
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Student Teacher: Recent Practical Application
“Similarity of Neural Network Representations Revisited”
Kornblith, Norouzi, Lee, Hinton; https://arxiv.org/abs/1905.00414

Examined different Weight matrix similarity metrics
Best method: Canonical Correlation Analysis (CCA): ‖Y†X‖2F

Figure: Diagnostic Tool for both individual and comparative DNNs

Martin and Mahoney (CC & ICSI/UCB) Statistical Mechanics Methods August 2019 17 / 98



Student Teacher: Recent Generalization vs. Memorization
“Insights on representational similarity in neural networks with canonical correlation”
Morcos, Raghu, Bengio; https://arxiv.org/pdf/1806.05759.pdf

Compare NN representations and how they evolve during training
Projection weighted Canonical Correlation Analysis (PWCCA)

Figure: Generalizing networks converge to more similar solutions than memorizing
networks.
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Motivations: Theoretical AND Practical
Theoretical: deeper insight into Why Deep Learning Works?

convex versus non-convex optimization?
explicit/implicit regularization?
is / why is / when is deep better?
VC theory versus Statistical Mechanics theory?
. . .

Practical: use insights to improve engineering of DNNs?
when is a network fully optimized?
can we use labels and/or domain knowledge more efficiently?
large batch versus small batch in optimization?
designing better ensembles?
. . .
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Motivations: towards a Theory of Deep Learning

DNNs as
spin glasses,
Choromanska
et al. 2015

Looks exactly
like old protein
folding results
(late 90s)

Energy Landscape Theory

Completely
different
picture
of DNNs

Raises broad questions about Why Deep Learning Works
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Motivations: regularization in DNNs?

ICLR 2017 Best paper
Large neural network models can easily overtrain/overfit on randomly
labeled data
Popular ways to regularize (basically minx f (x) + λg(x), with “control
parameter” λ) may or may not help.

Understanding deep learning requires rethinking generalization??
https://arxiv.org/abs/1611.03530

Rethinking generalization requires revisiting old ideas: statistical
mechanics approaches and complex learning behavior!!

https://arxiv.org/abs/1710.09553 (Martin & Mahoney)
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Motivations: stochastic optimization DNNs?
Theory (from convex problems):

First order (SGD, e.g., Bottou 2010)
larger “batches” are better (at least up to statistical noise)
Second order (SSN, e.g., Roosta and Mahoney 2016)
larger “batches” are better (at least up to statistical noise)
Large batch sizes have better computational properties!

So, people just increase batch size (and compensate with other parameters)
Practice (from non-convex problems):

SGD-like methods “saturate”
(https://arxiv.org/abs/1811.12941)
SSN-like methods “saturate”
(https://arxiv.org/abs/1903.06237)
Small batch sizes have better statistical properties!

Is batch size a computational parameter, or a statistical parameter, or what?
How should batch size be chosen?
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Set up: the Energy Landscape
Energy/Optimization function:

EDNN = hL(WL × hL−1(WL−1 × hL−2(· · · ) + bL−1) + bL)

Train this on labeled data {di , yi} ∈ D, using Backprop, by minimizing loss L:

min
Wl ,bl

L
(∑

i
EDNN(di )− yi

)

EDNN is “the” Energy Landscape:
The part of the optimization problem parameterized by the heretofore
unknown elements of the weight matrices and bias vectors, and as defined
by the data {di , yi} ∈ D
Pass the data through the Energy function EDNN multiple times, as we run
Backprop training
The Energy Landscape§ is changing at each epoch

§i.e., the optimization function that is nominally being optimized
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Problem: How can this possibly work?

Expected

Highly non-convex?

Observed

Apparently not!

It has been known for a long time that local minima are not the issue.
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Problem: Local Minima?

Duda, Hart and Stork, 2000

Solution: add more capacity and regularize, i.e., over-parameterization
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Motivations: what is regularization?

(a) Dropout. (b) Early Stopping.

(c) Batch Size. (d) Noisify Data.

Every adjustable knob and switch—and there are many¶—is regularization.
¶https://arxiv.org/pdf/1710.10686.pdf
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Basics of Regularization

Ridge Regression / Tikhonov-Phillips Regularization

Ŵx = y

x =
(
ŴTŴ + αI

)−1
ŴTy

{ Moore-Penrose pseudoinverse (1955)
Ridge regularization (Phillips, 1962)

min
x
‖Ŵx− y‖22 + α‖x̂‖22 familiar optimization problem

Softens the rank of Ŵ to focus on large eigenvalues.

Related to Truncated SVD, which does hard truncation on rank of Ŵ

Early stopping, truncated random walks, etc. often implicitly solve
regularized optimiation problems.
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How we will study regularization
The Energy Landscape is determined by layer weight matrices WL:

EDNN = hL(WL × hL−1(WL−1 × hL−2(· · · ) + bL−1) + bL)

Traditional regularization is applied to WL:

min
Wl ,bl

L
(∑

i
EDNN(di )− yi

)
+ α

∑

l
‖Wl‖

Different types of regularization, e.g., different norms ‖ · ‖, leave different
empirical signatures on WL.
What we do:

Turn off “all” regularization.
Systematically turn it back on, explicitly with α or implicitly with
knobs/switches.
Study empirical properties of WL.
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Lots of DNNs Analyzed
Question: What happens to the layer weight matrices WL?

(Don’t evaluate your method on one/two/three NN, evaluate it on a dozen/hundred.)

Retrained LeNet5 on MINST using Keras.

Two other small models:
3-Layer MLP
Mini AlexNet

Conv2D  MaxPool Conv2D MaxPool       FC1 FC2 FC

Wide range of state-of-the-art pre-trained models:
AlexNet, Inception, etc.
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Matrix complexity: Matrix Entropy and Stable Rank

W = UΣVT νi = Σii pi = ν2i /
∑

i ν
2
i

S(W) = −1
log(R(W))

∑
i pi log pi Rs(W) = ‖W‖

2
F

‖W‖22
=
∑

i ν
2
i

ν2max

A warm-up: train a 3-Layer MLP:

(e) MLP3 Entropies. (f) MLP3 Stable Ranks.

Figure: Matrix Entropy & Stable Rank show transition during Backprop training.
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Matrix complexity: Scree Plots

W = UΣVT νi = Σii pi = ν2i /
∑

i ν
2
i

S(W) = −1
log(R(W))

∑
i pi log pi Rs(W) = ‖W‖

2
F

‖W‖22
=
∑

i ν
2
i

ν2max

A warm-up: train a 3-Layer MLP:

(a) Initial Scree Plot. (b) Final Scree Plot.

Figure: Scree plots for initial and final configurations for MLP3.
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Matrix complexity: Singular/Eigen Value Densities

W = UΣVT νi = Σii pi = ν2i /
∑

i ν
2
i

S(W) = −1
log(R(W))

∑
i pi log pi Rs(W) = ‖W‖

2
F

‖W‖22
=
∑

i ν
2
i

ν2max

A warm-up: train a 3-Layer MLP:

(a) Singular val. density (b) Eigenvalue density

Figure: Histograms of the Singular Values νi and associated Eigenvalues λi = ν2i .
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ESD: detailed insight into WL
Empirical Spectral Density (ESD: eigenvalues of X = WT

L WL)

import keras
import numpy as np

import matplotlib.pyplot as plt

…

W = model.layers[i].get_weights()[0]

…

X = np.dot(W, W.T)

evals, evecs = np.linalg.eig(W, W.T)

plt.hist(X, bin=100, density=True)
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ESD: detailed insight into WL

Empirical Spectral Density (ESD: eigenvalues of X = WT
L WL)

Eopch 0:
Random
Matrix

Eopch 36:
Random
+ Spiles

Entropy decrease corresponds to:
modification (later, breakdown) of random structure and
onset of a new kind of self-regularization.
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Random Matrix Theory 101: Wigner and Tracy-Widom

Wigner: global bulk statistics approach universal semi-circular form
Tracy-Widom: local edge statistics fluctuate in universal way

Problems with Wigner and Tracy-Widom:
Weight matrices usually not square
Typically do only a single training run
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Random Matrix Theory 102: Marchenko-Pastur

Let W be an N ×M random matrix, with elements Wij ∼ N(0, σ2mp).

Then, the ESD of X = WTW, converges to a deterministic function:

ρN(λ) := 1
N

M∑

i=1
δ (λ− λi )

N→∞−−−−→
Q fixed





Q
2πσ2mp

√
(λ+ − λ)(λ− λ−)

λ
if λ ∈ [λ−, λ+]

0 otherwise.

with well-defined edges (which depend on Q, the aspect ratio):

λ± = σ2mp

(
1± 1√

Q

)2
Q = N/M ≥ 1.
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Random Matrix Theory 102’: Marchenko-Pastur

(a) Vary aspect ratios (b) Vary variance parameters

Figure: Marchenko-Pastur (MP) distributions.

Important points:
Global bulk stats: The overall shape is deterministic, fixed by Q and σ.
Local edge stats: The edge λ+ is very crisp, i.e.,
∆λM = |λmax − λ+| ∼ O(M−2/3), plus Tracy-Widom fluctuations.

We use both global bulk statistics as well as local edge statistics in our theory.
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Random Matrix Theory 103: Heavy-tailed RMT
Go beyond the (relatively easy) Gaussian Universality class:

model strongly-correlated systems (“signal”) with heavy-tailed random matrices.

Generative Model
w/ elements from
Universality class

Finite-N
Global shape
ρN (λ)

Limiting
Global shape
ρ(λ), N →∞

Bulk edge
Local stats
λ ≈ λ+

(far) Tail
Local stats
λ ≈ λmax

Basic MP Gaussian MP
distribution MP TW No tail.

Spiked-
Covariance

Gaussian,
+ low-rank
perturbations

MP +
Gaussian
spikes

MP TW Gaussian

Heavy tail,
4 < µ

(Weakly)
Heavy-Tailed

MP +
PL tail MP Heavy-Tailed∗ Heavy-Tailed∗

Heavy tail,
2 < µ < 4

(Moderately)
Heavy-Tailed

(or “fat tailed”)

PL∗∗
∼ λ−(aµ+b)

PL
∼ λ−( 12 µ+1) No edge. Frechet

Heavy tail,
0 < µ < 2

(Very)
Heavy-Tailed

PL∗∗

∼ λ−( 12 µ+1)
PL

∼ λ−( 12 µ+1) No edge. Frechet

Basic MP theory, and the spiked and Heavy-Tailed extensions we use, including known, empirically-observed, and conjectured

relations between them. Boxes marked “∗” are best described as following “TW with large finite size corrections” that are likely

Heavy-Tailed, leading to bulk edge statistics and far tail statistics that are indistinguishable. Boxes marked “∗∗” are

phenomenological fits, describing large (2 < µ < 4) or small (0 < µ < 2) finite-size corrections on N →∞ behavior.



Fitting Heavy-tailed Distributions

Figure: The log-log histogram plots of the ESD for three Heavy-Tailed random
matrices M with same aspect ratio Q = 3, with µ = 1.0, 3.0, 5.0, corresponding to
the three Heavy-Tailed Universality classes (0 < µ < 2 vs 2 < µ < 4 and 4 < µ).

Martin and Mahoney (CC & ICSI/UCB) Statistical Mechanics Methods August 2019 44 / 98



Non-negligible finite size effects

(a) M = 1000,N = 2000. (b) Fixed M. (c) Fixed N.

Figure: Dependence of α (the fitted PL parameter) on µ (the hypothesized
limiting PL parameter).
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Heavy Tails (!) and Heavy-Tailed Universality (?)

Universality: large-scale properties are independent of small-scale details
Mathematicians: justify proving theorems in random matrix theory
Physicists: derive new phenomenological relations and predict things
Gaussian Universality is most common, but there are many other types.

Heavy-Tailed Phenomenon
Rare events are not extraordinarily rare, i.e., are heavier than Gaussian tails
Modeled with power law and related functions
Seen in finance, structural glass theory, etc.

Heavy-Tailed Random Matrix Theory
Phenomenological work by physicists (Bouchard, Potters, Sornette, 90s)
Theorem proving by mathematicians (Auffinger, Ben Arous, Burda, Peche, 00s)
Universality of Power Laws, Levy-based dynamics, finite-size attractors, etc.
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Heavy-Tailed Universality: Earthquake prediction
“Complex Critical Exponents from Renormalization Group Theory of Earthquakes . . . ” Sornette et al. (1985)

Power law fit‖ of the regional strain ε (a measure of seismic release) before the
critical time tc (of the earthquake)

dε
dt = A + B(t − tc)m

(a) (b)

Figure: (a) Cumulative Beniolf strain released by magnitude 5 and greater
earthquakes in the San Francisco Bay area prior to the 1989 Loma Prieta
eaerthquake. (b) Fit of Power Law exponent (m).

‖More sophisticated Renormalization Group (RG) analysys uses complex critical exponents, giving log-peripdic corrections.
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Heavy-Tailed Universality: Market Crashes
“Why Stock Markets Crash: Critical Events in Complex Financial Systems” by D. Sornette (book, 2003)

Simple Power Law

log p(t) = A + B(t − tc)β

Complex Power Law (RG Log Periodic corrections)

log p(t) = A + B(t − tc)β + C(t − tc)β(cos(ωlog(t − tc)− φ)

(a) Dow Jones 1929 crash (b) Universal parameters, fit to RG model
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Heavy-Tailed Universality: Neuronal Avalanches
Neuronal avalanche dynamics indicates different universality classes in neuronal cultures; Scienfic Reports 3417 (2018)

(c) Spiking activity of cultured neurons

(d) Critical exponents, fit to scalaing model
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Experiments: just apply this to pre-trained models
https://medium.com/@siddharthdas_32104/cnns-architectures-lenet-alexnet-vgg-googlenet-resnet-and-more-...
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Experiments: just apply this to pre-trained models

Martin and Mahoney (CC & ICSI/UCB) Statistical Mechanics Methods August 2019 53 / 98



RMT: LeNet5 (an old/small NN example)

Figure: Full and zoomed-in ESD for LeNet5, Layer FC1.

Marchenko-Pastur Bulk + Spikes
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RMT: AlexNet (a typical modern/large DNN example)

Figure: Zoomed-in ESD for Layer FC1 and FC3 of AlexNet.

Marchenko-Pastur Bulk-decay + Heavy-tailed
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RMT: InceptionV3 (a particularly unusual example)

Figure: ESD for Layers L226 and L302 in InceptionV3, as distributed w/ pyTorch.

Marchenko-Pastur bulk decay, onset of Heavy Tails
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Convolutional 2D Feature Maps

We analyze Conv2D layers by extracting the feature maps individually,
i.e., A (3× 3× 64× 64) Conv2D layer yields 9 (64× 64) Feature Maps

(a) α = 1.38 (b) α = 2.74 (c) α = 3.02

Figure: Select Feature Maps from different Conv2D layers of VGG16.
Fits shown with PDF (blue) and CDF (red)
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Open AI GPT2 Attention Matrices

NLP Embedding and Attention Matrices are Dense/Linear, but generally have
large aspect ratios

(a) α = (b) α = (c) α =

Figure: Selected ESDs from Open AI GPT2 (Huggingface implementation)
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RMT-based 5+1 Phases of Training

(a) Random-like. (b) Bleeding-out. (c) Bulk+Spikes.

(d) Bulk-decay. (e) Heavy-Tailed. (f) Rank-collapse.

Figure: The 5+1 phases of learning we identified in DNN training.
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RMT-based 5+1 Phases of Training
We model “noise” and also “signal” with random matrices:

W 'Wrand + ∆sig . (1)

Operational
Definition

Informal
Description
via Eqn. (1)

Edge/tail
Fluctuation
Comments

Illustration
and

Description

Random-like ESD well-fit by MP
with appropriate λ+

Wrand random;
‖∆sig‖ zero or small

λmax ≈ λ+ is
sharp, with
TW statistics

Fig. 15(a)

Bleeding-out
ESD Random-like,
excluding eigenmass

just above λ+

W has eigenmass at
bulk edge as

spikes “pull out”;
‖∆sig‖ medium

BPP transition,
λmax and
λ+ separate

Fig. 15(b)

Bulk+Spikes
ESD Random-like
plus ≥ 1 spikes
well above λ+

Wrand well-separated
from low-rank ∆sig ;
‖∆sig‖ larger

λ+ is TW,
λmax is
Gaussian

Fig. 15(c)

Bulk-decay
ESD less Random-like;
Heavy-Tailed eigenmass
above λ+; some spikes

Complex ∆sig with
correlations that

don’t fully enter spike
Edge above λ+

is not concave Fig. 15(d)

Heavy-Tailed
ESD better-described
by Heavy-Tailed RMT
than Gaussian RMT

Wrand is small;
∆sig is large and
strongly-correlated

No good λ+;
λmax � λ+ Fig. 15(e)

Rank-collapse ESD has large-mass
spike at λ = 0

W very rank-deficient;
over-regularization — Fig. 15(f)

The 5+1 phases of learning we identified in DNN training.



RMT-based 5+1 Phases of Training

Lots of technical issues ...
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Bulk+Spikes: Small Models ∼ Tikhonov regularization

Low-rank perturbation

Wl 'Wrand
l + ∆large

Perturbative correction

λmax = σ2
(

1
Q + |∆|

2

N

)(
1 + N
|∆|2

)

|∆| > (Q)−
1
4

λ+

simple scale threshold

x =
(
X̂ + αI

)−1
ŴTy

eigenvalues > α (Spikes)
carry most of the
signal/information

Bulk → Spikes
↙

Smaller, older models like LeNet5 exhibit traditional regularization and can
be described perturbatively with Gaussian RMT
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Heavy-tailed Self-regularization

W is strongly-correlated and highly non-random
We model strongly-correlated systems by heavy-tailed random matrices
I.e., we model signal (not noise) by heavy-tailed random matrices

Then RMT/MP ESD will also have heavy tails
Known results from RMT / polymer theory (Bouchaud, Potters, etc)

AlexNet
ReseNet50
Inception V3
DenseNet201
...

“All” larger, modern DNNs exhibit novel Heavy-tailed self-regularization
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Heavy-tailed Self-regularization

Summary of what we “suspect” today
No single scale threshold.
No simple low rank approximation for WL.
Contributions from correlations at all scales.
Can not be treated perturbatively.

“All” larger, modern DNNs exhibit novel Heavy-tailed self-regularization
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Spikes: carry more “information” than the Bulk

Spikes have less entropy, are more localized than bulk.

(a) Vector Entropies. (b) Localization Ratios. (c) Participation Ratios.

Figure: Eigenvector localization metrics for the FC1 layer of MiniAlexNet.

Information begins to concentrate in the spikes.
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Power Law Universality: ImageNet and AllenNLP

All these models display remarkable Heavy Tailed Universality
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Power Law Universality: ImageNet

7500 matrices (and Conv2D feature maps)
over 50 architectures
Linear layers and Conv2D feature maps
80− 90% < 5

All these models display remarkable Heavy Tailed Universality
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Power Law Universality: Open AI GPT versus GPT2

GPT versus GPT2: (Huggingface implementation)
example of a class of models that “improves” over time.

Martin and Mahoney (CC & ICSI/UCB) Statistical Mechanics Methods August 2019 70 / 98



Mechanisms?

Spiked-Covariance Model
Statistical model: Johnstone, “On the distribution . . . ” 2001.
Simple self-organization model: Malevergne and Sornette, “Collective
Origin of the Coexistence of Apparent RMT Noise and Factors in
Large Sample Correlation Matrices,” 2002.
Low-rank perturbative variant of Gaussian randomness modeling noise

Heavy-tailed Models: Self-organized criticality (and others ...)
Johansen, Sornette, and Ledoit, “Predicting financial crashes using
discrete scale invariance,” 1998.
Markovic and Gros, “Power laws and self-organized criticality in
theory and nature,” 2013.
Non-perturbative model where heavy-tails and power laws are used to
model strongly correlated systems
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Self-regularization: Batch size experiments
A theory should make predictions:

We predict the existence of 5+1 phases of increasing implicit
self-regularization
We characterize their properties in terms of HT-RMT

Do these phases exist? Can we find them?

There are many knobs. Let’s vary one—batch size.
Tune the batch size from very large to very small
A small (i.e., retrainable) model exhibits all 5+1 phases
Large batch sizes => decrease generalization accuracy
Large batch sizes => decrease implicit self-regularization

Generalization Gap Phenomena: all else being equal, small batch sizes lead to
more implicitly self-regularized models.

Martin and Mahoney (CC & ICSI/UCB) Statistical Mechanics Methods August 2019 74 / 98



Batch size and the Generalization Gap
Large versus small batches?

Larger is better:
I Convex theory: SGD is closer to gradient descent
I Implementations: Better parallelism, etc.

(But see Golmant et al. (arxiv:1811.12941) and Ma et al.
(arxiv:1903.06237) for “inefficiency” of SGD and KFAC.)

Smaller is better:
I Empirical: Hoffer et al. (arXiv:1705.08741) and Keskar et al.

(arXiv:1609.04836)
I Information: Schwartz-Ziv and Tishby (arxiv:1703.00810)

(This is like a “supervised” version of our approach.)

Connection with weight norms?
Older: Bartlett, 1997; Mahoney and Narayanan, 2009.
Newer: Liao et al., 2018; Soudry et al., 2017; Poggio et al., 2018;
Neyshabur et al., 2014; 2015; 2017a; Bartlett et al., 2017; Yoshida and
Miyato, 2017; Kawaguchi et al., 2017; Neyshabur et al., 2017b; Arora et al.,
2018b;a; Zhou and Feng, 2018.
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Batch Size Tuning: Generalization Gap

Figure: Varying Batch Size: Stable Rank and MP Softrank for FC1 and FC2
Training and Test Accuracies versus Batch Size for MiniAlexNet.

Decreasing batch size leads to better results—it induces strong
correlations in W.
Increasing batch size leads to worse results—it washes out strong
correlations in W.
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Batch Size Tuning: Generalization Gap

(a) Batch Size 500. (b) Batch Size 250. (c) Batch Size 100. (d) Batch Size 32.

(e) Batch Size 16. (f) Batch Size 8. (g) Batch Size 4. (h) Batch Size 2.

Figure: Varying Batch Size. ESD for Layer FC1 of MiniAlexNet. We exhibit all 5
of the main phases of training by varying only the batch size.

Decreasing batch size induces strong correlations in W, leading to a more
implicitly-regularized model.
Increasing batch size washes out strong correlations in W, leading to a less
implicitly-regularized model.
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Summary so far
applied Random Matrix Theory (RMT)

self-regularization ∼ entropy / information decrease

5+1 phases of learning

small models ∼ Tinkhonov-like regularization

modern DNNs ∼ heavy-tailed self-regularization

Remarkably ubiquitous

How can this be used?

Why does deep learning work?
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Open source tool: weightwatcher
https://github.com/CalculatedContent/WeightWatcher

A python tool to analyze weight matrices in Deep Neural Networks.

All our results can be reproduced by anyone on a basic laptop
using widely available, open source, pretained models:

(keras, pytorch, osmr/imgclsmob, huggingface, allennlp, distiller, modelzoo, etc.)
and without even needing the test or training data!
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WeightWatcher
WeightWatcher is an open source to analyze DNNs with our heavy tailed α and
weighted α̂ metric (and other userful theories)

goal: to develop a useful, open source tool
supports: Keras, PyTorch, some custom libs (i.e. huggingface)
implements: various norm and rank metrics

pip install weightwatcher

current version: 0.1.2
latest from source: 0.1.3
looking for: users and contributors

https://github.com/CalculatedContent/WeightWatcher
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WeightWatcher: Usage

Usage
import weightwatcher as ww
watcher = ww.WeightWatcher(model=model)
results = watcher.analyze()

watcher.get_summary()
watcher.print_results()

Advanced Usage
def analyze(self, model=None, layers= [],

min_size= 50, max_size= 0,
compute_alphas=True,
compute_lognorms=True,
compute_spectralnorms=True,

...
plot=True):
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WeightWatcher: example VGG19_BN

import weightwatcher as ww
import torchvision.models as models

model = models.vgg19_bn(pretrained=True)
watcher = ww.WeightWatcher(model=model)
results = watcher.analyze(compute_alphas=True)
data.append(“name”: “vgg19bntorch”, “summary”: watcher.get_summary())

’name’: ’vgg19bntorch’,
’summary’: ’lognorm’: 0.8185,
’lognorm_compound’: 0.9365,
’alpha’: 2.9646,
’alpha_compound’: 2.8479
’alpha_weighted’: 1.1588
’alpha_weighted_compound’: 1.5002

We also provide a pandas dataframe with detailed results for each layer
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Bounding Generalization Error
BTW, Bounding Generalization Error 6= Predicting Test Accuracies

A lot of recent interest, e.g.:
Bartlett et al: (arxiv:1706.08498): bounds based on ratio of output margin distribution
and spectral complexity measure
Neyshabur et al. (arxiv:1707.09564,arxiv:1706.08947): bounds based on the product
norms of the weights across layers
Arora et al. (arxiv:1802.05296): bounds based on compression and noise stability
properties
Liao et al. (arxiv:1807.09659): normalized cross-entropy measure that correlates well
with test loss
Jiang et al. (arxiv:1810.00113): measure based on distribution of margins at multiple
layers that correlates well with test loss∗∗

These use/develop learning theory bounds and then apply to training of
MNIST/CIFAR10/etc.

Question: How do these norm-based metrics perform on state-of-the-art pre-trained
models?

∗∗and released DEMOGEN pretrained models (after our 1901.08278 paper).
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Predicting test accuracies (at scale): Product norms
M&M: “Heavy-Tailed Universality Predicts Trends in Test Accuracies ... Pre-Trained ...” https://arxiv.org/abs/1901.08278

The product norm is a VC-like data-dependent capacity metric for DNNs.
People prove theorems and then may use it to guide training.
But how does it perform on state-of-the-art production-quality models?

We can predict trends in the test accuracy in state-of-the-art production-quality
models—without peeking at the test data!

“pip install weightwatcher”
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Universality, capacity control, and norm-powerlaw relations
M&M: “Heavy-Tailed Universality Predicts Trends in Test Accuracies ... Pre-Trained ...” https://arxiv.org/abs/1901.08278

“Universality” suggests the power law exponent α would make a good, Universal,
DNN capacity control metric.
For multi-layer NN, consider a weighted average

α̂ = 1
N
∑

l,i

bl,iαl,i

To get weights bl,i , relate Frobenius norm and Power Law exponent.
Create a random Heavy-Tailed (Pareto) matrix:

Pr
(
W rand

i,j
)
∼ 1

x1+µ

Examine norm-powerlaw relations:

log ‖W‖2F
log λmax

versus α

Argue†† that:
PL–Norm Relation: α log λmax ≈ log ‖W‖2F .

††Open problem: make the “heuristic” argument more “rigorous.”
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Predicting test accuracies better: Weighted Power Laws
M&M: “Heavy-Tailed Universality Predicts Trends in Test Accuracies ... Pre-Trained ...” https://arxiv.org/abs/1901.08278

Use the weighted PL metric: α̂ = 1
N
∑

l,i log(λmax
l,i )αl,i , instead of the product norm.

We can predict trends in the test accuracy—without peeking at the test data!
“pip install weightwatcher”
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Predicting test accuracies better: Distilled Models
M&M: “Heavy-Tailed Universality Predicts Trends in Test Accuracies ... Pre-Trained ...” https://arxiv.org/abs/1901.08278

Question: Is the weighted PL metric simply a repackaging of the product norm?
Answer: No!
For some Intel Distiller models, the Spectral Norm behaves atypically, and α does not
change noticibly

(a) PL Exponents (α) (b) Spectral Norm (λmax )

Figure: (a) PL exponents α and (b) Spectral Norm (λmax ) for each layer of ResNet20,
with Intel Distiller Group Regularization method applied (before and after).
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WeighWatcher: ESDs of GANs
GANs also display Heavy Tailed ESDs, however:

There are more exceptions
Many ESDs appear to display significant rank collapse and only weak
correlations

(a) Histogram of αs (b) Anamolous ESD.

Figure: (a) Distribution of all power law exponents α for DeepMind’s BigGAN
(Huggingface implementation). (b) Example of anamolous ESD.
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Summary of “Validating and Using”
Some things so far:

We can: explain the generalization gap.
We can: “pip install weightwatcher” and use this source tool.
We can: predict trends in test accuracies on production-quality models.

Some things we are starting to look at:
Better metrics for monitoring and/or improving training.
Better metrics for robustness to, e.g., adversarial perturbation, model
compression, etc., that don’t involve looking at data.
Better phenomenological load-like and temperature-like metrics to guide
data collection, algorithm/parameter/hyperparameter selection, etc.
What else?

Join us:
“pip install weightwatcher”—contribute to the repo.‡‡

‡‡Don’t do everything from scratch in a non-reproducible way. Make it reproducible!
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Implications: RMT and Deep Learning

Where are the local minima?
How is the Hessian behaved?
Are simpler models misleading?
Can we design better learning
strategies?

(tradeoff between Energy and Entropy minimization)

How can RMT be used to understand the Energy Landscape?
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Implications: Minimizing Frustration and Energy Funnels
As simple as can be?, Wolynes, 1997

Energy Landscape Theory: “random heteropolymer” versus “natural protein” folding
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Implications: The Spin Glass of Minimal Frustration
https://calculatedcontent.com/2015/03/25/why-does-deep-learning-work/

↖ ↗
low lying Energy state in Spin Glass ∼ spikes in RMT
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Implications: Rugged Energy Landscapes of Heavy-tailed
Models
Martin and Mahoney https://arxiv.org/abs/1710.09553

Spin Glasses with Heavy Tails?
Local minima do not concentrate
near the ground state
(Cizeau and Bouchaud 1993)
Configuration space with a “rugged
convexity”

Contrast with (Gaussian) Spin Glass
model of Choromanska et al. 2015

If Energy Landscape is ruggedly funneled, then no “problems” with local minima!
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Conclusions: “pip install weightwatcher”

Statistical mechanics and neural networks
Long history
Revisit due to recent “crisis” in why deep learning works
Use ideas from statistical mechanics of strongly-correlated systems
Develop a theory that is designed to be used

Main Empirical/Theoretical Results
Use Heavy-tailed RMT to construct a operational theory of DNN learning
Evaluate effect of implicit versus explicit regularization
Exhibit all 5+1 phases by adjusting batch size: explain the generalization gap
Methodology: Observations → Hypotheses → Build a Theory → Test the Theory.

Many Implications:
Explain the generalization gap
Rationalize claims about rugged convexity of Energy Landscape
Predict test accuracies in state-of-the-art models
“pip install weightwatcher”
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If you want more ... “pip install weightwatcher” ...
Background paper:

Rethinking generalization requires revisiting old ideas: statistical mechanics approaches
and complex learning behavior
(https://arxiv.org/abs/1710.09553)

Main paper (full):
Implicit Self-Regularization in Deep Neural Networks: Evidence from Random Matrix
Theory and Implications for Learning
(https://arxiv.org/abs/1810.01075)
Code: https://github.com/CalculatedContent/ImplicitSelfRegularization

Main paper (abridged):
Traditional and Heavy-Tailed Self Regularization in Neural Network Models
(https://arxiv.org/abs/1901.08276)
Code: https://github.com/CalculatedContent/ImplicitSelfRegularization

Applying the theory paper:
Heavy-Tailed Universality Predicts Trends in Test Accuracies for Very Large Pre-Trained
Deep Neural Networks
(https://arxiv.org/abs/1901.08278)
Code: https://github.com/CalculatedContent/PredictingTestAccuracies
https://github.com/CalculatedContent/WeightWatcher
“pip install weightwatcher”
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Prediction on unseen data
Flat local minima generalize better?

Keskar et al. 2017

Flat vs sharp local minima

Local versus global in generalization



Prediction on unseen data

vs

Flat local minima generalize better?

Yes No

Keskar et al. ’17
Neyshabur et al. ’17
Jiang et al. ’19
Foret et al. ’20

Dinh et al. ’17
Yao et al. ’18
Granziol et al. ’20
Zhang et al. ’21

Local versus global in generalization



Paper reviews.
• Different data?
• Different architecture?
• Different Hyperparameters?

The result is often hard to interpret.
• “83.5% using X-net on ABC-dataset”

How do I improve the generalization?

Prediction on unseen data

Is your result too local?

result

Local versus global in generalization



Main difficulty: Analyzing the global picture

result

Image source: Foundations of data science, Simons InstituteIs your result too local?



Our answer

Yang, Hodgkinson, Theisen, Zou, Gonzalez, Ramchandran, Mahoney, NeurIPS 2021

It depends on the phase!



Yang, Hodgkinson, Theisen, Zou, Gonzalez, Ramchandran, Mahoney, NeurIPS 2021

Phase transitions in deep learning.

Our answer

Different phases → Different conclusions



Yang, Hodgkinson, Theisen, Zou, Gonzalez, Ramchandran, Mahoney, NeurIPS 2021

Our answer

Different phases → Different conclusions

vs

Flat local minima generalize better?

Yes No

Keskar et al. ’17
Neyshabur et al. ’17
Jiang et al. ’19
Foret et al. ’20

Dinh et al. ’17
Yao et al. ’18
Granziol et al. ’20
Zhang et al. ’21



Width of 
model

Other choices

• Quantity of data
• Quality of data

“Load parameter” [Martin & Mahoney. 2017]

What are the phases?



 

Batch 
size

SGD equation

“Temperature”
[Martin & Mahoney. 2017]

Other choices

• Learning rate
• L2 regularization

Low noise

High noise

What are the phases?



(width, batch size)

~200 pixels  × 5 networks/pixel

Phase transitions?

What are the phases?



Five different loss landscapes 

Five phasesWhat are the phases?



Five different loss landscapes 

Five phasesWhat are the phases?



Five different loss landscapes 

Five phases

Local structure
(Training)

Global structure
(Generalization)

2×2=4 phases

What are the phases?



Five different loss landscapes 

Five phases

Model similarity [Kornblith et al. 19][Jiang et al. 21]

2×2+1=5 phases

What are the phases?



Five different loss landscapes 

Five phases

Best phase

Try to get here!!

What are the phases?



Generalization measures

1. Local [Yao et al. 19]

2. Global [Garipov et al. 18][Kornblith et al. 
19]

Five different loss landscapes 

Five phasesWhat are the phases?



 

What are the phases?



What are the phases?

Mode connectivity [Garipov et al. 18]

Global structure

A hidden path in high dimensions. 



End of definitions…

How do we use them?

What are the phases?



How to use the phases?

If you study all settings…

Full phase plot



How to use the phases?

(width, batch size)

Step 1. Locate your 
problem on this map

Generalization measure: Landmarks

Your own CV / NLP problem



How to use the phases?

(width, batch size)

Step 1. Locate your 
problem on this map

Step 2. Find the best way to 
get to Phase IV-B

Your own CV / NLP problem



How to use the phases?

Step 1. Calculate measures.

Hessian Mode 
connectivity

Model
similarity

Phase Treatment

large negative low I Larger network

large positive low II Smaller learning rate

small negative low III Larger network

small Close to 
zero

low IV-A Buy more data

small Close to 
zero

high IV-B Perfect

Phase plot is not necessary!!



How to use the phases?

Step 2. Determine phase.

Hessian Mode 
connectivity

Model
similarity

Phase Treatment

large negative low I Larger network

large positive low II Smaller learning rate

small negative low III Larger network

small Close to 
zero

low IV-A Buy more data

small Close to 
zero

high IV-B Perfect



How to use the phases?

Step 3. Provide treatment.

Hessian Mode 
connectivity

Model
similarity

Phase Treatment

large negative low I Larger network

large positive low II Smaller learning rate

small negative low III Larger network

small Close to 
zero

low IV-A Buy more data

small Close to 
zero

high IV-B Perfect



How to use the phases?

Step 3. Provide treatment.

Hessian Mode 
connectivity

Model
similarity

Phase Treatment

large negative low I Larger network

large positive low II Smaller learning rate

small negative low III Larger network

small Close to 
zero

low IV-A Buy more data

small Close to 
zero

high IV-B Perfect

A ☐  Get more data?

B ☐  Larger model?

C ☐  
Hyperparameters?

✓

Diagnose the failure



How to use the phases?

An example of using the phase.



Training with randomized 
labels

Some 
parameter

Red column: Bright → dark → 
bright

A different phase, a different story

Double descent
[Belkin et al. 19][Hastie et al. 20]
[Nakkiran et al. 19]
…



A different phase, a different story

vs

Flat local minima generalize better?

Yes No

Keskar et al. ’17
Neyshabur et al. ’17
Jiang et al. ’19
Foret et al. ’20

Dinh et al. ’17
Yao et al. ’18
Granziol et al. ’20
Zhang et al. ’21



Primary tool to measure flatness

A different phase, a different story



Best accuracy Smallest Hessian

The flattest minimum gets the best accuracy

A different phase, a different story



Best accuracy Not the best!!!

Best Hessian

The flattest minimum does not get the best accuracy.

A different phase, a different story



A different phase, a different story

Our paper. The conclusion depends on the phase.
Yang, Hodgkinson, Theisen, Zou, Gonzalez, Ramchandran, Mahoney, NeurIPS 2021



Is the result “local”?

ResNet

Lr decay

Weight decayVGG SVHN

Amount of
label noise

Large batch size
10% randomized 

labels
Amount of 

image noise

Learning rate

Different amount of data

Different temperature parametersDifferent architectures

Quality of data Different training approaches

Different dataset

Five phases exist.
Phase IV-B is the best.



● Phases ￫ different conclusions

Brief summary

vs

Train to flat minima?

Yes No

Keskar et al. ’17
Neyshabur et al. ’17
Jiang et al. ’19
Foret et al. ’20

Dinh et al. ’17
Yao et al. ’18
Granziol et al. ’20
Zhang et al. ’21

The conclusion depends on the phase.



● Phases ￫ different conclusions

● Phases ￫ different treatments

Brief summary

A ☐  Get more data?

B ☐  Larger model?

C ☐  
Hyperparameters?

✓

Diagnose the failure

A practitioner’s map



Loss landscape and weight analytics

Part I. Phase Transitions

Part II. Pruning

Part III. Ensembling

Part IV. Weight analytics

Normalized Test Error of pruned model 



Training Epochs
  (Temperature-like parameter)

  Model Density
  (Load-like parameter)  

Hypothesis

1. Does the multi-regime (phase) 
phenomenon exist?

2. Can we quantify these regimes with
loss landscape metrics? 

Phase transitions for network pruning



Empirical Results for modeling
Test Error of pruned model

For a target model density, 
which training epoch is optimal?

White pixel represents optimal training epoch 
for this model density ( column) 

Normalized Test Error of pruned model An interesting dichotomous phenomenon:
Increasing temperature better for low density, 
decreasing temperature better for high density.

Modeling

Experiment Setting:  ResNet20/CIFAR-10

Zhou, Yang, Chang, Mahoney, 2022



Empirical Results for modeling

Experiment Setting:  ResNet20/CIFAR-10

Test Error of pruned model Normalized Test Error of pruned model 

Linear Mode Connectivity [1] CKA Similarity [2]

[1] Garipov, T., Izmailov, P., Podoprikhin, D., Vetrov, D. P., & Wilson, A. G. (2018). Loss surfaces, mode connectivity, and fast ensembling of dnns. Advances in neural information processing systems, 31.

[2] Kornblith, S., Norouzi, M., Lee, H., & Hinton, G. (2019, May). Similarity of neural network representations revisited. In International Conference on Machine Learning (pp. 3519-3529). PMLR.

A sharp transition 
from near-zero  to negative 

A smooth transition 
that is aligned well 
with the change of test error

bestpoor good

VSDL model for pruning

Favorable transition that
improves test error and loss landscape

Taxonomizing

Modeling

Zhou, Yang, Chang, Mahoney, 2022



Task:  prune to different densities,  and select the best training hyperparameter for each density

Experiment Setting:  tuning training epochs for ResNet20/CIFAR-10

A conventional wisdom:
Train the dense model to best (lowest test error), and then prune

Application

(multiple markers in one column 
represent repeated experiments)

Zhou, Yang, Chang, Mahoney, 2022



Everything looks good if we only look at the test error.

Experiment Setting:  tuning training epochs for ResNet20/CIFAR-10

A conventional wisdom:
Train the dense model to best (lowest test error), and then prune

Application
Baseline: test-error-based selection

(multiple markers in one column 
represent repeated experiments)

Zhou, Yang, Chang, Mahoney, 2022



Three-regime model:  loss landscape metric (linear mode connectivity)

Experiment Setting:  tuning training epochs for ResNet20/CIFAR-10

Application

(multiple markers in one column 
represent repeated experiments)

Zhou, Yang, Chang, Mahoney, 2022



Three-regime model:  loss landscape metric diagnoses the problem of baseline.

Regime I (bad) Choice of hyperparameter is bad
conventional wisdom doesn’t work

Regime II or III bestpoor good

Experiment Setting:  tuning training epochs for ResNet20/CIFAR-10

Application

(multiple markers in one column 
represent repeated experiments)

Zhou, Yang, Chang, Mahoney, 2022



Tuning the baseline by the three-regime based approach

Regime I: 
Tune by increasing temperature 
until LMC >= 0 

Regime II or III: 
Tune by decreasing temperature 
until CKA doesn’t improve

bestpoor good

Experiment Setting:  tuning training epochs for ResNet20/CIFAR-10

Application

(multiple markers in one column 
represent repeated experiments)

Zhou, Yang, Chang, Mahoney, 2022



 Results:  Our approach can achieve the optimal performance as Grid Search, but in fewer steps.

Experiment Setting:  tuning training epochs for ResNet20/CIFAR-10

Application

(multiple markers in one column 
represent repeated experiments) Zhou, Yang, Chang, Mahoney, 2022



Generalizability
Our approach can work for different hyperparameter, architectures and dataset.

DenseNet-40 on CIFAR-10 (tuning training epochs)

                          VGG19 on CIFAR-10 (tuning training epochs)

               ResNet-20 on CIFAR-10 (tuning batch size)

ResNet-20 on CIFAR-100 (tuning training epochs)

Zhou, Yang, Chang, Mahoney, 2022



1. Conventional wisdom (test error based) doesn’t work when we look at a 
different regime. 

2. Three-regime based hyperparameter tuning is more efficient than grid search.

1. How easy/hard is it to plant/detect back doors in different regimes? 
2. A more challenging task:  do hyperparameter search on both ``load’’ and ``temperature’’.

Brief summary

Next steps



Loss landscape and weight analytics

Part I. Phase Transitions

Part II. Pruning

Part III. Ensembling

Part IV. Weight analytics

Theorem



Ensembling

1. A distribution over parameters obtained from independent runs of 
SGD, from either dependent (e.g. fine-tuning) or independent 
initializations

Focus on ensembles of classifiers              , where    could represent, e.g.:

  2.     A finite set of classifiers                          with weights

  3.     A Bayesian posterior distribution over classifiers

We focus on the the majority-vote classifier:

Theisen, Kim, Yang, Hodgkinson, Mahoney, 2022



Theoretical question:  Can we characterize when, and by how much, ensembling benefits?

Empirical question:  When can we expect ensembling to help significantly in practice?

In theory there is a large literature on ensembling, but most is either specialized to particular 
settings (like random forests), or is too weak to even guarantee that ensembling can help at 
all, much less accurately quantify how much it can help

In practice there is a wide variety of (sometimes contradictory) results regarding ensembles – 
notably for deep ensembles. Some work suggests ensembling is highly beneficial, others 
suggest it is less so, and particularly unnecessary for large, modern models

Ensembling

Theisen, Kim, Yang, Hodgkinson, Mahoney, 2022



Ensembling theory The competence assumption

New, significantly sharper upper bounds on the majority-vote error 
rate

Theorem (first-order bound)

Theorem (second-order bound)

● Rules out pathological cases that limit previous 

theoretical analyses of ensembling

● Holds widely in practice

Theisen, Kim, Yang, Hodgkinson, Mahoney, 2022



Characterizing the ensemble improvement rate with 
the disagreement-error ratio

Ensemble improvement rate Disagreement-error ratio

1. Ensembles are guaranteed to improve 
performance when DER is large, disagreement 
> average error

2. Ensembles are guaranteed to not improve 
performance too much when DER is small, 
disagreement < average error

We identify two regimes:

Theorem

Ensembling theory

Theisen, Kim, Yang, Hodgkinson, Mahoney, 2022



Phase transition Ensemble improvement, DER become small in the 
interpolating regime

ResNet18/CIFAR-10
Deep Ensembles

Interpolation threshold

Bagged Random 
Feature classifiers

● Ensembling becomes less useful for large 
models which can easily interpolate the 
training data (i.e., obtain zero training error)

● This corresponds to the fact that the 
disagreement-error ratio gets small in this 
regime

Theisen, Kim, Yang, Hodgkinson, Mahoney, 2022



Loss landscape and weight analytics

Part I. Phase Transitions

Part II. Pruning

Part III. Ensembling

Part IV. Weight analytics



25,578 pretrained models

Albert
Bert-base
DistillBert
…

Measures that do not require access to data



25,578 pretrained models

Data is 
unavailable…
Web-scale data
Private datasets

Measures that do not require access to data



Data-dependent metrics

• Margin 
[Bartlett 17][Pitas 17]

• PAC-Bayesian 
[Neyshabur 17][Mcallester 99]

…

25,578 pretrained models

Data is 
unavailable…

Measures that do not require access to data



Model selection without data

Measures that do not require access to data

A  
☐

B  
☐

C  
☐

Which model
should I use?



Generalization measures from statistical physics

Take the weight matrix W.

 

 

Exponentially-Truncated Power Law

Fitting the 
tail

Yang, Theisen, Hodgkinson, Gonzalez, Ramchandran, Martin, Mahoney, 2022, https://arxiv.org/pdf/2202.02842.pdf



Model selection results using shape metrics

200 Transformers trained for neural machine translation.
BLEU score is better if it is larger.

Yang, Theisen, Hodgkinson, Gonzalez, Ramchandran, Martin, Mahoney, 2022, https://arxiv.org/pdf/2202.02842.pdf



Model selection results using shape metrics

Yang, Theisen, Hodgkinson, Gonzalez, Ramchandran, Martin, Mahoney, 2022, https://arxiv.org/pdf/2202.02842.pdf

200 Transformers trained for neural machine translation.
BLEU score is better if it is larger.



Huggingface Transformers

Model selection results using shape metrics

Yang, Theisen, Hodgkinson, Gonzalez, Ramchandran, Martin, Mahoney, 2022, https://arxiv.org/pdf/2202.02842.pdf



One issue of scale (norm-based) metrics

 

Generalization gap = Train – Test

Model quality ≈ Test-time performance 



Generalization gap mentioned in the literature

 



Correlations with 
BLEU

28 generalization measures Shape metrics

Other measures

To the right means betterEach bar:
200 experiments

Model quality vs generalization gap

Yang, Theisen, Hodgkinson, Gonzalez, Ramchandran, Martin, Mahoney, 2022, https://arxiv.org/pdf/2202.02842.pdf



Model quality

• Shape metrics work 
better

Generalization gap

• Existing measures 
work better

Correlations with generalization 
gap

Correlations with 
BLEU

Model quality vs generalization gap

Yang, Theisen, Hodgkinson, Gonzalez, Ramchandran, Martin, Mahoney, 2022, https://arxiv.org/pdf/2202.02842.pdf



Time-wise correlation
Correlations with generalization 
gap

Correlations with 
BLEU

Yang, Theisen, Hodgkinson, Gonzalez, Ramchandran, Martin, Mahoney, 2022, https://arxiv.org/pdf/2202.02842.pdf



Correlation when changing learning rate
Correlations with 
BLEU

Correlations with generalization 
gap



Main conclusion for this section

Measures from statistical physics do not need data.

They predict model quality instead of generalization gap.

Model quality and generalization gap can be anti-correlated

Yang, Theisen, Hodgkinson, Gonzalez, Ramchandran, Martin, Mahoney, 2022, https://arxiv.org/pdf/2202.02842.pdf



• Model selection: measures that do 
not need data

• Phases ￫ different treatments

Brief summary

Phase transitions are 
great…but

A  
☐

B  
☐

C  
☐

Which model
should I use?



Brief summary

A  
☐

B  
☐

C  
☐

 

• Model selection: measures that do 
not need data

• Shape metrics predict model quality

• Phases ￫ different treatments

Which model
should I use?



Visualizing loss landscape - LossLens

Slide shared by collaborator Tiankai Xie



Thanks! 
Q&A



Outline

1 Weight Analysis and Heavy-Tailed Self-Regularization

2 Phenomenological Approach to Statistical Mechanics of Generalization

3 Using Heavy-Tailed Self-Regularization

4 Random Matrix Theory for Modern ML

5 Putting It All Together

6 Conclusion



Outline

1 Introductory thoughts

2 Empirical results (to inform theory)

3 RMT and RMT-based Theory for Deep Learning

4 Using the Theory

5 Expressing this in ML theory language (theorems!)

6 Conclusions



Using the theory

Different ways one could use a theory.
Perform diagnostics for model validation, to develop hypotheses, etc.∗

Make predictions about model quality, generalization, transferability, etc.∗

Did post-training modifications damage my model?∗

Will buying more data help?∗

Will training longer help?∗

Will quantizing or distilling help?∗

Construct a regularizer to do model training.∗∗

∗Ideally, by peeking at very little or no data.
∗∗If you have lots of data, lots of GPUs, etc.

Mahoney (UC Berkeley) Practical Theory & NN Models April 2021 27 / 51



Batch Size Tuning: Exhibiting the Phases

(a) Batch Size 500. (b) Batch Size 250. (c) Batch Size 100. (d) Batch Size 32.

(e) Batch Size 16. (f) Batch Size 8. (g) Batch Size 4. (h) Batch Size 2.

Figure: Varying Batch Size. ESD for Layer FC1 of MiniAlexNet. We exhibit all 5
of the main phases of training by varying only the batch size.

Decreasing batch size induces strong correlations in W, leading to a more
implicitly-regularized model.
Increasing batch size washes out strong correlations in W, leading to a less
implicitly-regularized model.

Mahoney (UC Berkeley) Practical Theory & NN Models April 2021 28 / 51



Predicting test accuracies ... lots of metrics ...
Average log norm (a VC-like data-dependent capacity metric):

〈log ‖W‖〉 = 1
N
∑

l,i
log ‖Wl,i‖ = 1

N
∑

l,i
log(λmax

l,i )

Average alpha (also data-dependent, from HT-SR theory):

α = 1
N
∑

l,i
αl,i

Combine the two into a weighted average (weighted to compensate for
different size and scale of feature maps):

α̂ = 1
N
∑

l,i
log(λmax

l,i )αl,i

In a special case (α ≈ 2), for each layer:
PL–Norm Relation: α log λmax ≈ log ‖W‖2F .

“pip install weightwatcher”
Mahoney (UC Berkeley) Practical Theory & NN Models April 2021 29 / 51



(The first) large-scale study (meta-analysis) of hundreds of
SOTA pretrained models ‡

Different metrics on pre-trained VGG.

Summary statistics: VGG; ResNet; DenseNet.

Summary statistics: hundreds of models.

Lots more plots to prove we can “predict trends . . . without access . . . ”
‡“Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data,” Martin,

Peng, and Mahoney, arXiv:2002.06716, Accepted for publication, Nature Communications.
Mahoney (UC Berkeley) Practical Theory & NN Models April 2021 30 / 51



Using a theory: on SOTA models

Analyzing pre-trained models.

Alpha versus depth: VGG, ResNet, DenseNet.

Mahoney (UC Berkeley) Practical Theory & NN Models April 2021 31 / 51



Using a theory: on SOTA models

Analyzing pre-trained models.

Histogram and depth plots of αl,i and λmax
l,i .

Mahoney (UC Berkeley) Practical Theory & NN Models April 2021 32 / 51



Using a theory: easy to break popular SLT metrics

Easy to “break” popular SLT metrics
they are not validated counterfactually
they drive the development of models

Intel’s distillation “broke” their models.

GPTx series: how does a model trained to “bad”
data differ from one trained to “good” data?

Mahoney (UC Berkeley) Practical Theory & NN Models April 2021 33 / 51



Using a theory: leads to predictions

Based on analyzing hundreds of pre-trained SOTA models:
“Correlation flow”:

I “Shape” of ESD of adjacent layers, as well as overlap between
eigenvectors of adjecent layers, should be well-aligned.

“Scale collapse”:
I “Size” of ESD of one or more layers changes dramatically, while the size

of other layers changes very little, as a function of some perturbation of
a model, during training (or post-training modification).

“Correlation traps”:
I Spuriously large eigenvalues§ may appear, and they may even be

important for model convergence.

We can measure these quantities with Weightwatcher—so can you!

§Eigenvalues not due to signal in the data—we have theorems-style theory for Hessians (“Hessian Eigenspectra of More
Realistic Nonlinear Models,” Liao and Mahoney, https://arxiv.org/abs/2103.01519), but it’s still open for Weights.

Mahoney (UC Berkeley) Practical Theory & NN Models April 2021 34 / 51



More publicly-available data

A contest (Predicting Generalization in Deep Learning, NeurIPS 2020).
Our experiences:

based on a “fantastic” paper (considered many metrics, but not α or α̂)
nominally about causes of generalization; but, like most ML contests,

I ensemblization—good way to win
I information leakage—hard to avoid
I augment data—good way to win
I (But none of those tell us about generalization.)

big difference between 0 error and ≈ 0 error
not worth competing in∗

thanks to organizers for releasing data∗

∗since we want to understand causes of good model performance

Mahoney (UC Berkeley) Practical Theory & NN Models April 2021 35 / 51



Models and metrics
Models and tasks: can segment models by architecture parameters or solver parameters.

Best-performing metrics.

Mahoney (UC Berkeley) Practical Theory & NN Models April 2021 36 / 51



Size versus shape

Size (norm) and shape (fitted HT parameters) are different . . .

. . . and there is a lot of heterogeneity across tasks/subtasks.

Mahoney (UC Berkeley) Practical Theory & NN Models April 2021 37 / 51



Extracting shape parameters from HT ESDs

Mahoney (UC Berkeley) Practical Theory & NN Models April 2021 38 / 51



Training versus testing

Training and testing error often anti-correlated . . .

. . . and there is a lot of heterogeneity across tasks/subtasks.

Mahoney (UC Berkeley) Practical Theory & NN Models April 2021 39 / 51



Simpson’s paradox (1 of 2)

Within sub-group: vary solver parameters.
Between sub-groups: vary architecture.

LogSpectralNorm for better models is:
Task1: larger within and between sub-groups.
Task2: larger within—and smaller between—sub-groups.

Mahoney (UC Berkeley) Practical Theory & NN Models April 2021 40 / 51



Simpson’s paradox (2 of 2)

Within sub-group: vary solver parameters.
Between sub-groups: vary architecture.

Alpha for better models is:
Task1: smaller within and between sub-groups.
Task2: smaller within sub-groups—but larger between sub-groups.

Mahoney (UC Berkeley) Practical Theory & NN Models April 2021 41 / 51



Lessons learned ...

Extracting causal insight?
Don’t invent causal metrics.
Don’t look for “one size fits all” metric.
We identified Simpson’s paradoxes—and then we used them and
domain knowledge to identify causes of good performance.
A cautionary tale . . .

Size versus shape more generally:
Construct data-dependent versions of size versus shape.
SVDSmoothing—if training data fit exactly, feed data through
low-rank approximation. (No GPUs!)

Mahoney (UC Berkeley) Practical Theory & NN Models April 2021 42 / 51



What more can we do?
Future directions (all of which demand a practical theory):

Training/testing curves gives limited insight:
I don’t take into account hyperparameter fiddling;
I don’t correlate with robustness/accuracy/fairness/etc.

No access to data / optimization protocols / hyperparameter values / etc.:
I can I evaluate systems-motivated model adjustments?
I batch size, edge, distillation, etc. (without training/retraining)?

Model user is not a model developer:
I sanity check: did you give me a bad/damaged model?
I robustness check: can I look for backdoor adversarial attacks, etc.?

Data costs money:
I Do I have enough data?
I Should I spend money on analysts or machines or data?

If AI/ML is to become an industrial process, beyond FAAMG, it will have
to be compartmentalized to scale: Group-A develops; Group-B validates;
and Group-C deploys

Mahoney (UC Berkeley) Practical Theory & NN Models April 2021 43 / 51



Conclusions
“Practical theory” is not an oxymoron:

not all theory is practical, but some is

“Practical theory” is theory for practical things:
like data
like SOTA DNNs

“Practical theory” can be used to address practical questions:
is my network fully optimized?
should I buy more data?
can I use labels and/or domain knowledge more efficiently?
can I design better ensembles, or improve model post-modification?
is my pre-trained SOTA DNN overparameterized or underparameterized?

If you want more ... “pip install weightwatcher” ...

Mahoney (UC Berkeley) Practical Theory & NN Models April 2021 51 / 51
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Random Matrix Theory for Machine Learning:
new intuitions, improved methods, and beyond

Michael. W. Mahoney

March 20, 2023

M. W. Mahoney RMT4ML March 20, 2023 1 / 43



Outline

1 Introduction

2 Sample covariance matrix for large dimensional data: from LNN to modern RMT

3 RMT for Modern Machine Learning: linear models

4 RMT for Modern Machine Learning: nonlinear models
A random matrix perspective of the “curse of dimensionality”
Kernel spectral clustering for large dimensional data
A random matrix approach to large neural networks and random features

M. W. Mahoney RMT4ML March 20, 2023 2 / 43



Understanding the mechanism of large dimensional machine learning

large learning
systems of size N

large dimensional data
x1, . . . , xn ∈ Rp ▶ Big Data era: exploit large n, p, N

▶ counterintuitive phenomena when n ̸≫ p, e.g., the
“curse of dimensionality”

▶ complete change of understanding of many ML
algorithms

▶ Random Matrix Theory provides the tools!

M. W. Mahoney RMT4ML March 20, 2023 4 / 43



From low to high dimensional machine learning

O(
√

p)

O(1)

Figure: Visual representation of classification in (left) small and
(right) large dimensions.

▶ low dimension: data vectors
xi ∈ Rp, p = 2, 3, gathered in different
“groups” can be classified using
distance-based approach

▶ high dimension:
(i) easy or trivial scenario where low

dimensional intuition holds and a
pairwise distance-based classification
approach via, e.g.,
Johnson–Lindenstrauss lemma, is
efficient;

(ii) hard or non-trivial scenario where
such intuition collapses: data vectors
at approximately the same Euclidean
distance, regardless their arising from
same or different classes.
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Non-trivial high dimensional classification beyond the JL regime

In the high dimensional regime where data dimension p and sample size n both large, a dual phenomenon:

(i) data points not pairwise classifiable: Euclidean distance between any two data points xi ∈ Ca and xj ∈ Cb

approximately constant ≈ τ = O(1) independent of their classes Ca, Cb: ∥xi − xj∥2/p = τ + o(1) as
n, p → ∞ and data pairs neither close nor far from each other;

(ii) classification remains possible by exploiting the spectral information of large Euclidean distance matrix
E = {∥xi − xj∥2/p}n

i,j=1, thanks to a collective behavior of all data belonging to same (and large) classes.
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(a) p = 5
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Figure: Euclidean distance matrices E, the histogram of the entries of E, and the second top eigenvectors v2, for small (left,
p = 5) and large (right, p = 250) dimensional data X = [x1, . . . , xn] ∈ Rp×n with x1, . . . , xn/2 ∈ C1 and xn/2+1, . . . , xn ∈ C2 for
n = 5 000 and different values of p.
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Four way to characterize sample covariance matrices

Asymptotic Characterizations

Non-asymptotic Characterizations

Small
Dimensional
Regime

Large
Dimensional
Regime

Law of Large
Numbers

Sample Covariance
Concentration

Marchenko-Pastur Law

Quantitative
Deterministic
Equivalent for
Resolvent

QualitativeDeterministic
Equivalent for Resolvent

Figure: Different ways to characterize the sample covariance matrix Ĉ = 1
n XXT.
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Small-dimensional characterizations of SCM

Theorem (Asymptotic Law of Large Numbers for SCM)

Let p be fixed, and let X ∈ Rp×n be a random matrix with independent sub-gaussian columns xi ∈ Rp such that
E[xi] = 0 and E[xixT

i ] = Ip. Then one has,
∥Ĉ − Ip∥2 → 0, (1)

almost surely, as n → ∞.

▶ the sub-gaussianity is in fact not necessary, and is stated to align with the following result

Theorem (Concentration of sample covariance, [Ver18, Theorem 4.6.1])

Let X ∈ Rp×n be a random matrix with i.i.d. sub-gaussian columns xi ∈ Rp such that E[xi] = 0 and E[xixT
i ] = Ip, one

has, with probability at least 1 − 2 exp(−t2) for any t ≥ 0 that

∥Ĉ − Ip∥2 ≤ C1 max(δ, δ2), δ = C2(
√

p/n + t/
√

n) (2)

for some constants C1, C2 > 0 independent of n, p.

▶ non-asymptotic and high probability characterization
▶ however, not precise in the p ∼ n regime, since δ = O(

√
p/n) = O(1)
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Sample covariance matrix in the large n, p regime

▶ For xi ∼ N (0, C), estimate population covariance C ∈ Rp×p from n data samples X = [x1, . . . , xn] ∈ Rp×n.

▶ Maximum likelihood sample covariance matrix with entry-wise convergence

Ĉ =
1
n

n

∑
i=1

xix
T
i =

1
n

XXT ∈ Rp×p, [Ĉ]ij → [C]ij

almost surely as n → ∞: optimal for n ≫ p (or, for p “small”).

▶ In the regime n ∼ p, conventional wisdom breaks down:
for C = Ip with n < p, Ĉ has at least p − n zero eigenvalues.

∥Ĉ − C∥ ̸→ 0, n, p → ∞

⇒ eigenvalue mismatch and not consistent! ⇒ matrix norms not equivalent in large dimensions!
▶ due to ∥A∥∞ ≤ ∥A∥ ≤ p∥A∥∞ for A ∈ Rp×p and ∥A∥∞ ≡ maxij |Aij|.
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Large-dimensional characterizations of SCM: eigenvalues

Definition (Empirical Spectral Distribution, ESD)

For a symmetric matrix X ∈ Rp×p, the empirical spectral distribution (ESD) or empirical spectral measure µX of X is
defined as the normalized counting measure of the eigenvalues λ1(X), . . . , λp(X) of X,

µX ≡ 1
p

p

∑
i=1

δλi(X), (3)

where δx represents the Dirac measure at x.

Theorem (Marc̆enko-Pastur law, [MP67])

Under the same setting, as n, p → ∞ with p/n → c ∈ (0, ∞), with probability one, the empirical spectral measure
µĈ ≡ 1

p ∑
p
i=1 δλi(Ĉ) of Ĉ ≡ 1

n XXT converges weakly to a probability measure µ given explicitly by

µ(dx) = (1 − c−1)+δ0(x) +
1

2πcx

√
(x − E−)+(E+ − x)+ dx (4)

where E± = (1 ±√
c)2 and (x)+ = max(0, x), and is known as the Marc̆enko-Pastur law.
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Large-dimensional behaviors diverge from small-dimensional behaviors
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Figure: Histogram of the eigenvalues of Ĉ versus the limiting Marc̆enko-Pastur law in Theorem 4, for X having standard
Gaussian entries with p = 20 and different n = 1 000p, 100p, 10p from left to right.
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Large-dimensional behaviors diverge from small-dimensional behaviors
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Figure: Histogram of the eigenvalues of Ĉ versus the Marc̆enko-Pastur law, for X having standard Gaussian entries with
n = 100p and different p = 20, 100, 500 from left to right.
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When is one in the random matrix regime? Almost always!

What about n = 100p? For C = Ip, as n, p → ∞ with p/n → c ∈ (0, ∞): the Marc̆enko–Pastur law

µ(dx) = (1 − c−1)+δ(x) +
1

2πcx

√
(x − E−)+(E+ − x)+dx

where E− = (1 −√
c)2, E+ = (1 +

√
c)2 and (x)+ ≡ max(x, 0). Close match!

0.8 1 1.2
0

2

4

E− E+

D
en

si
ty

Empirical eigenvalues of Ĉ

Marc̆enko-Pastur law

Population eigenvalue

Figure: Eigenvalue distribution of Ĉ versus Marc̆enko-Pastur law, p = 500, n = 50 000.

▶ eigenvalues span on [E− = (1−√
c)2, E+ = (1+

√
c)2].

▶ for n = 100p, on a range of ±2
√

c = ±0.2 around the population eigenvalue 1.
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Beyond eigenvalue distribution: a modern RMT approach via the resolvent

Definition (Resolvent)

For a symmetric matrix X ∈ Rn×n, the resolvent QX(z) of X is defined, for z ∈ C not an eigenvalue of X, as

QX(z) ≡
(
X − zIp

)−1 . (5)

The matrix QX(z) will often simply be denoted Q(z) when there is no ambiguity.

Table: A list of different matrix functionals and how they can be evaluated via the resolvent.

Objects of interest Functionals of resolvent QX(z)

ESD µX of X Stieltjes transform mµX (z) =
1
p tr QX(z) as the trace of QX

Linear spectral statistics (LSS): fX ≡ 1
p ∑i f (λi(X))

Integration of trace of QX
(via Cauchy’s integral)
− 1

2πı

∮
Γ f (z) 1

p tr QX(z) dz
Projections of eigenvectors

vTu and vTU onto some given v ∈ Rp Bilinear form vTQX(z)v of QX

General matrix functional
F(X) = ∑i f (λi(X))vT

1 uiuT
i v2

involving both eigenvalues and eigenvectors of X

Integration of bilinear form of QX(z)
− 1

2πı

∮
Γ f (z)vT

1 QX(z)v2 dz
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Old and new school RMT

Stieltjes transform Eigenvalue distribution

trace form

Resolvent xxx 
and itsDeterministic
Equivalentxxxxx

RMT tools Objects of interest

Eigenvalues, eigenvectors,
and their (linear) functionals

Inverse, trace, and bilinear forms

Integration and differentiation
involving these quantities

special case

“Old school”

“New school”

<latexit sha1_base64="KyXPpO1+FeelGIEpUA7uAgBIuik=">AAACB3icbVDLSsNAFJ3UV62vqEtBBotQNzWRom6EohuXLdgHNKFMppN26EwSZiZCDdm58VfcuFDErb/gzr9x0mahrQcuHM65l3vv8SJGpbKsb6OwtLyyulZcL21sbm3vmLt7bRnGApMWDlkouh6ShNGAtBRVjHQjQRD3GOl445vM79wTIWkY3KlJRFyOhgH1KUZKS33zkFceTq5g4ggOlUihw5EaeX7STLV+GvXNslW1poCLxM5JGeRo9M0vZxDimJNAYYak7NlWpNwECUUxI2nJiSWJEB6jIelpGiBOpJtM/0jhsVYG0A+FrkDBqfp7IkFcygn3dGd2ppz3MvE/rxcr/9JNaBDFigR4tsiPGVQhzEKBAyoIVmyiCcKC6lshHiGBsNLRlXQI9vzLi6R9VrXPq7VmrVy/zuMoggNwBCrABhegDm5BA7QABo/gGbyCN+PJeDHejY9Za8HIZ/bBHxifP0OlmE8=</latexit>

m(z) = trQ(z)/p

<latexit sha1_base64="6SdAG26GLxg+ltB+js2AnrAHX9U=">AAAB9HicbVDLTgIxFL2DL8QX6tJNIzHBDZkxRF0S3biERB4JTEindKCh0xnaDglO+A43LjTGrR/jzr+xA7NQ8CRNTs65N/f0eBFnStv2t5Xb2Nza3snvFvb2Dw6PiscnLRXGktAmCXkoOx5WlDNBm5ppTjuRpDjwOG174/vUb0+pVCwUj3oWUTfAQ8F8RrA2ktsLsB55ftKYl58u+8WSXbEXQOvEyUgJMtT7xa/eICRxQIUmHCvVdexIuwmWmhFO54VerGiEyRgPaddQgQOq3GQReo4ujDJAfijNExot1N8bCQ6UmgWemUxDqlUvFf/zurH2b92EiSjWVJDlIT/mSIcobQANmKRE85khmEhmsiIywhITbXoqmBKc1S+vk9ZVxbmuVBvVUu0uqyMPZ3AOZXDgBmrwAHVoAoEJPMMrvFlT68V6tz6Wozkr2zmFP7A+fwB0pZHn</latexit>

Q(z)

<latexit sha1_base64="7rjlh1aRJIeeq9OW5rLrdLRqAg0=">AAAB/HicbVDLSsNAFL3xWesr2qWbwSLUTUmkqMuiG5ct2Ac0oUymk3bo5MHMRIih/oobF4q49UPc+TdO2iy09cDA4Zx7uWeOF3MmlWV9G2vrG5tb26Wd8u7e/sGheXTclVEiCO2QiEei72FJOQtpRzHFaT8WFAcepz1vepv7vQcqJIvCe5XG1A3wOGQ+I1hpaWhWHA+LzAmwmnh+1p7Nao/nQ7Nq1a050CqxC1KFAq2h+eWMIpIENFSEYykHthUrN8NCMcLprOwkksaYTPGYDjQNcUClm83Dz9CZVkbIj4R+oUJz9fdGhgMp08DTk3lKuezl4n/eIFH+tZuxME4UDcnikJ9wpCKUN4FGTFCieKoJJoLprIhMsMBE6b7KugR7+curpHtRty/rjXaj2rwp6ijBCZxCDWy4gibcQQs6QCCFZ3iFN+PJeDHejY/F6JpR7FTgD4zPH8jLlN0=</latexit>

Q̄(z)

Figure: Different objects of interest and their corresponding technical tools for “old” and “new school” RMT.

M. W. Mahoney RMT4ML March 20, 2023 17 / 43



Modern RMT: deterministic equivalents for resolvent

Definition (Deterministic Equivalent)

We say that Q̄ ∈ Rp×p is an (ε1, ε2, δ)-deterministic equivalent for the symmetric random matrix Q ∈ Rp×p if,
for deterministic matrix A ∈ Rp×p and vectors a, b ∈ Rp of unit norms (spectral and Euclidean, respectively),
we have, with probability at least 1 − δ(p) that

∣∣∣∣
1
p

tr A(Q − Q̄)

∣∣∣∣ ≤ ε1(p),
∣∣∣aT(Q − Q̄)b

∣∣∣ ≤ ε2(p), (6)

for some non-negative functions ε1(p), ε2(p) and δ(p) that decrease to zero as the dimension p → ∞.

▶ non-asymptotic and holds for any p,
▶ taking p → ∞ leads to

(i) 1
p tr A(Q − Q̄) → 0, aT(Q − Q̄)b → 0 in probability as p → ∞; and

(ii) if the failure probability δ(p) = O(p−ℓ) for some ℓ > 1, by Borel–Cantelli lemma 1
p tr A(Q − Q̄) → 0,

aT(Q − Q̄)b → 0 almost surely as p → ∞.
▶ to denote this asymptotic deterministic equivalent relation, use

Q ↔ Q̄. (7)
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An asymptotic deterministic equivalent for SCM resolvent

Theorem (An asymptotic deterministic equivalent for resolvent, [CL22, Theorem 2.4] )

Let X ∈ Rp×n be a random matrix having i.i.d. sub-gaussian entries of zero mean and unit variance, and denote
Q(z) = ( 1

n XXT − zIp)−1 the resolvent of 1
n XXT for z ∈ C not an eigenvalue of 1

n XXT. Then, as n, p → ∞ with
p/n → c ∈ (0, ∞), the (sequence of) deterministic matrix Q̄(z) is a Deterministic Equivalent of the (sequence of)
random resolvent matrix Q(z), i.e.,

Q(z) ↔ Q̄(z), Q̄(z) = m(z)Ip, (8)

with m(z) the unique valid Stieltjes transform as solution to

czm2(z)− (1 − c − z)m(z) + 1 = 0. (9)

Theorem (A non-asymptotic deterministic equivalent for resolvent, [Der+21, Proposition 4] )

Under the same setting and notations as above with z < 0, there exists some universal constant C1, C2 > 0 depending
only on the sub-gaussian norm of the entries of X and |z|, such that for any ε ∈ (0, 1), if n ≥ (C1 + ε)p, one has

∥E[Q(z)]− Q̄(z)∥2 ≤ C2
ε

· n−
1
2 , Q̄(z) = m(z)Ip. (10)
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RMT for ML: linear models

Table: Roadmap of RMT for large-dimensional linear ML models .

Problem Small dimension Large dimension

Low rank approximation X̂
of info-plus-noise matrix X

smooth decay of
∥X − X̂∥2/∥X∥2 ≃ (1 + ℓ)−1

sharp transition of
∥X − X̂∥2/∥X∥2 at ℓ = c +

√
c

Classification of binary
Gaussian mixtures of
distance in means ∆µ

pairwise ≃ spectral approach pairwise ≪ spectral approach

Linear least squares
regression risk as n ↑

bias = 0 and
variance ∝ n−1

monotonic bias and
non-monotonic variance
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Low-rank approximation

Proposition (Relative spectral error of low-rank approximation)

Let X = ℓuuT + 1
n ZZT ∈ Rp×n be an additive spiked random matrix, for u ∈ Rp some deterministic signal of unit

norm, i.e., ∥u∥ = 1, ℓ ≥ 0 the informative “signal strength”, and Z having i.i.d. sub-gaussian entries of zero mean and
unit variance, and let X̂ = λ1(X)û1ûT

1 the optimal rank-one approximation of X given by its top eigenvalue-eigenvector
pair (λ1(X), û1). Then, one has,

(i) in the small-dimensional regime, for p fixed and n → ∞ that

∥X − X̂∥2
∥X∥2

→ fn≫p(ℓ) ≡
1

1 + ℓ
, (11)

almost surely; and
(ii) in the large-dimensional regime, as n, p → ∞ with p/n → c ∈ (0, ∞) that

∥X − X̂∥2
∥X∥2

→ fn∼p(ℓ, c) ≡
{

(1+
√

c)2

1+ℓ+ c
ℓ−c

, ℓ > c +
√

c

1, ℓ ≤ c +
√

c
(12)

almost surely.
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Figure: Relative error in spectral norm ∥X − X̂∥2/∥X∥2 of rank-one approximation, for additive model X = ℓuuT + 1
n ZZT

with standard Gaussian Zij ∼ N (0, 1), ∥u∥ = 1, and X̂ = λ1(X)û1ûT the optimal rank-one approximation of X, as a function
of ℓ for p = 4 and p = 512, n = 1 024 and 2 048. Results averaged over 30 independent runs.
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Classification

Proposition (Fundamental limits in classification: pairwise versus spectral approach)

For Gaussian mixture classification between N (µ1, Ip) and N (µ2, Ip) with ∆µ = µ1 − µ2, one has, for some constant
C > 0 independent of p,

(i) based on a pairwise (Euclidean) distance comparison approach, one is able to separate binary Gaussian mixtures
satisfying ∥∆µ∥ ≥ Cp1/4; and

(ii) based on an eigenspectral approach, one is able to separate a closer distance of ∥∆µ∥ ≥ C, which is, up to a constant
factor, the minimum distance possible.
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p�k

Figure: Illustration of different regimes in separating a binary GMM based on the distance in means ∥∆µ∥, for both pairwise
distance comparison and spectral approaches.
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“Curse of dimensionality”: loss of relevance of Euclidean distance

▶ Binary Gaussian mixture classification x ∈ Rp:

C1 : x ∼ N (µ1, C1), versus C2 : x ∼ N (µ2, C2);

▶ Neyman-Pearson test: classification is possible only when [CLM18]

∥µ1 − µ2∥ ≥ Cµ, or ∥C1 − C2∥ ≥ CC · p−1/2

for some constants Cµ, CC > 0.
▶ In this non-trivial setting, for xi ∈ Ca, xj ∈ Cb:

max
1≤i ̸=j≤n

{
1
p
∥xi − xj∥2 − 2

p
tr C◦

}
a.s.−→ 0

as n, p → ∞ (i.e., n ∼ p), for C◦ ≡ 1
2 (C1 + C2), regardless of the classes Ca, Cb! (In fact even for n = pm.)

⇒ Direct consequence to various distance-based machine learning methods (e.g., kernel spectral clustering)!

1Romain Couillet, Zhenyu Liao, and Xiaoyi Mai. “Classification asymptotics in the random matrix regime”. In: 2018 26th European Signal Processing Conference
(EUSIPCO). IEEE. 2018, pp. 1875–1879
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Reminder on kernel spectral clustering

Two-step classification of n data points based on distance kernel matrix K ≡ {f (∥xi − xj∥2/p)}n
i,j=1:

0 isolated eigenvalues

⇓ Top eigenvectors ⇓

Ei
ge

nv
.1

Ei
ge

nv
.2
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Reminder on kernel spectral clustering

Ei
ge

nv
.1

Ei
ge

nv
.2

⇓ K-dimensional representation ⇓

Eigenvector 1

Ei
ge

nv
ec

to
r

2

⇓
EM or k-means clustering.

(Three classes/clusters in this example.)
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Visualization of kernel matrices for large dimensional Gaussian data

Objective: “cluster” Gaussian data x1, . . . , xn ∈ Rp into C1 or C2.
Consider Gaussian kernel matrix Kij = exp(−∥xi − xj∥2/2p) and the second top eigenvectors v2 for small
(left) and large (right) dimensional data.

(a) p = 5, n = 500

K =







v2 =
[ ]

(b) p = 250, n = 500

K =







v2 =
[ ]

Figure: Kernel matrices K and the second top eigenvectors v2 for small (left, p = 5, n = 500) and large (right,
p = 250, n = 500) dimensional data.M. W. Mahoney RMT4ML March 20, 2023 32 / 43



Kernel matrices for large dimensional real-world data

(a) MNIST

K =







v2 =
[ ]

(b) Fashion-MNIST

K =







v2 =
[ ]
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A spectral viewpoint of large kernel matrices in large dimensions

▶ “local” linearization of nonlinear kernel matrices in large dimensions, e.g., Gaussian kernel matrix
Kij = exp(−∥xi − xj∥2/2p) with C1 = C2 = Ip (e.g., C1 : xi = µ1 + zi versus C2 : xj = µ2 + zj) so that

∥xi − xj∥2/p a.s.−→ 2, and K = exp
(
−2

2

)(
1n1T

n +
1
p

ZTZ
)
+ g(∥µ1 − µ2∥)

1
p

jjT + ∗+ o∥·∥(1)

with Gaussian matrix Z = [z1, . . . , zn] ∈ Rp×n and j = [1n/2;−1n/2], the class-information vector
▶ accumulated effect of small “hidden” statistical information (∥µ1 − µ2∥ in this case)

Therefore
▶ entry-wise:

Kij = exp(−1)
(

1 +
1
p

zT
i zj

︸ ︷︷ ︸
O(p−1/2)

)
± 1

p
g(∥µ1 − µ2∥)

︸ ︷︷ ︸
O(p−1)

+∗, so that
1
p

g(∥µ1 − µ2∥) ≪
1
p

zT
i zj,

▶ spectrum-wise: (i) ∥K − exp(−1)1n1T
n ∥ ̸→ 0; (ii) ∥ 1

p ZTZ∥ = O(1) and ∥g(∥µ1 − µ2∥) 1
p jjT∥ = O(1)!

▶ Same phenomenon as the sample covariance example: [Ĉ − C]ij → 0 ̸⇒ ∥Ĉ − C∥ → 0!

⇒ With modern RMT, we understand kernel spectral clustering (eigenvectors!) for large dimensional data!
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Numerical results on kernel-based least squares SVM (LS-SVM)

−0.05 0 0.05

(a) MNIST

−0.1 0 0.1

(b) Fashion-MNIST

Figure: Empirical histogram of LS-SVM soft output versus RMT prediction, n = 2 048, p = 784, γ = 1 with Gaussian kernel,
for MINST (left, 7 versus 9) and Fashion-MNIST (right, 8 versus 9) data. Results averaged over 30 runs.

2Zhenyu Liao and Romain Couillet. “A Large Dimensional Analysis of Least Squares Support Vector Machines”. In: IEEE Transactions on
Signal Processing 67.4 (2019), pp. 1065–1074. eprint: 1701.02967
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Reminder on random features and neural networks

▶ kernel matrices K ∈ Rn×n from pairwise comparison of n data points: expansive for n large
▶ idea: find easy-to-compute K̂ to approximate K, e.g., ∥K̂ − K∥ is small
▶ example: random Fourier feature [RR08] ΣT = [cos(WX)T, sin(WX)T] ∈ R2N×n of data

X = [x1, . . . , xn] ∈ Rp×n with standard Gaussian W ∈ RN×p, i.e., Wij ∼ N (0, 1)

▶ approximates Gaussian kernel exp(∥xi − xj∥2/2): entry-wise convergence of RFF Gram
1
N [ΣTΣ]ij → [KGauss]ij Gaussian kernel matrix as number of features N → ∞

▶ proof: (strong) law of large numbers:

1
N
[ΣTΣ]ij =

1
N

N

∑
k=1

cos(xT
i wk) cos(wT

k xj) + sin(xT
i wk) sin(wT

k xj)

→ Ew∼N (0,Ip)[cos(xT
i w) cos(wTxj) + sin(xT

i w) sin(wTxj)] = [Kcos + Ksin]ij = [KGauss]ij

for Kcos = e−
1
2 (∥xi∥2+∥xj∥2) cosh(xT

i xj) and Ksin = e−
1
2 (∥xi∥2+∥xj∥2) sinh(xT

i xj).

3Ali Rahimi and Benjamin Recht. “Random Features for Large-Scale Kernel Machines”. In: Advances in Neural Information Processing
Systems. Vol. 20. NIPS‘08. Curran Associates, Inc., 2008, pp. 1177–1184
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Random features-based ridge regression and neural networks

X ∈ Rp×n

X̂ ∈ Rp×n̂

sin

cos

ΣT
X = ΣT = [cos(WX)T, sin(WX)T]

ΣT
X̂ = [cos(WX̂)T, sin(WX̂)T]

W ∈ RN×p β ∈ R2N in (13)

Figure: Illustration of random Fourier features regression model.

▶ RFF ridge regressor β ∈ R2N given by, for regularization penalty γ ≥ 0,

β ≡ 1
n

Σ(
1
n

ΣTΣ + γIn)
−1y · 12N>n + ( 1

n ΣΣT + γI2N)
−1 1

n Σ y · 12N<n. (13)

▶ Performance: training and test Mean Squared Error (MSE): Etrain = 1
n∥y − ΣT

X β∥2 and
Etest =

1
n̂∥ŷ − ΣT

X̂ β∥2, with ΣT
X̂ ∈ Rn̂×2N RFFs of a test set (X̂, ŷ) of size n̂.

▶ single-hidden-layer neural network with cos+ sin activations, connected to neural tangent kernel (NTK)
3Arthur Jacot, Franck Gabriel, and Clément Hongler. “Neural Tangent Kernel: Convergence and Generalization in Neural Networks”. In:

Advances in Neural Information Processing Systems. Vol. 31. NIPS’18. Curran Associates, Inc., 2018, pp. 8571–8580
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Random Fourier features approximate Gaussian kernel, but in which sense?

▶ [RR08]: entry-wise convergence of RFF Gram 1
N [ΣTΣ]ij → [KGauss]ij Gaussian kernel matrix as N → ∞

▶ again, not true in spectral norm sense, i.e., ∥ΣTΣ/N − KGauss∥ ̸→ 0 unless N ≫ n
− e.g., ΣTΣ ∈ Rn×n of rank at most N if N ≤ n, while KGauss of rank n (for distinct xi)
− significant impact on various RFF-based algorithms
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Figure: Training MSEs of RFF ridge regression on MNIST data (class 3 versus 7) as a function of regression penalty λ.

▶ effective kernel can be derived with RMT in the large n, p, N regime
▶ provides precise training and test performances of RFF for any ratio N/n, more practical and more

flexible, recover Gaussian kernel result with N/n → ∞
▶ data-dependent theory with no strong assumption on data
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Sharp analysis of RFF ridge regression performance via RMT
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Figure: MSEs of RFF ridge regression on Fashion- (left two) and Kannada-MNIST (right two).
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Figure: Test MSEs of RFF regression as a function of the ratio N/n, on MNIST data set.
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“Recap” for double descent phenomenon for over-parameterized models

Risk

Model complexity

best tradeoff

(a) Classical U-shaped risk

Risk

Model complexity

phase transition

(b) Modern “double descent”risk

Figure: Comparison between training risk (blue) and true/test risk (red).

▶ empirically observed for various large-scale machine learning models, e.g., RF-based methods, decision
trees, ensemble methods, and deep NNs

▶ proved here for RFF on real-world data!
▶ phase transition from under- to over-param of resolvent (ΣTΣ + λIn)−1 in the ridgeless λ → 0 limit

4Mikhail Belkin et al. “Reconciling modern machine-learning practice and the classical bias–variance trade-off”. In: Proceedings of the
National Academy of Sciences 116.32 (2019), pp. 15849–15854

5Trevor Hastie et al. “Surprises in High-Dimensional Ridgeless Least Squares Interpolation”. In: arXiv (2019). eprint: 1903.08560
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Take-away messages and references

Take-away messages:
▶ RF methods: classical statistical learning theory provides performance guarantee for N ≫ n, p
▶ here we derive (limiting) kernel in the more practical large n, p, N regime
▶ fast tuning of regularization parameter λ

▶ double descent theory for novel understanding of over-parameterized neural networks

References:
▶ Zhenyu Liao, Romain Couillet, and Michael W Mahoney. “A random matrix analysis of random Fourier features: beyond the Gaussian kernel, a precise

phase transition, and the corresponding double descent”. In: Advances in Neural Information Processing Systems (NeurIPS). vol. 33. Curran Associates, Inc., 2020,
pp. 13939–13950

▶ Zhenyu Liao, Romain Couillet, and Michael W Mahoney. “Sparse quantized spectral clustering”. In: The Ninth International Conference on Learning
Representations (ICLR 2021). 2021

▶ Michal Derezinski et al. “Sparse sketches with small inversion bias”. In: Proceedings of Thirty Fourth Conference on Learning Theory (COLT). vol. 134. PMLR,
15–19 Aug 2021, pp. 1467–1510

▶ Cosme Louart, Zhenyu Liao, and Romain Couillet. “A random matrix approach to neural networks”. In: Annals of Applied Probability 28.2 (2018),
pp. 1190–1248

▶ Song Mei and Andrea Montanari. “The Generalization Error of Random Features Regression: Precise Asymptotics and the Double Descent Curve”. In:
Communications on Pure and Applied Mathematics (2021)

▶ Zhenyu Liao and Michael W. Mahoney. “Hessian Eigenspectra of More Realistic Nonlinear Models”. In: Advances in Neural Information Processing Systems
(NeurIPS). 2021
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RMT for machine learning: from theory to practice!

Random matrix theory (RMT) for machine learning:
▶ change of intuition from small to large dimensional learning paradigm!
▶ better understanding of existing methods: why they work if they do, and what the issue is if they do not
▶ improved novel methods with performance guarantee!

Thank you! Q & A?
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