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A TrojAI Program: Original Ideas

Thrust 1: Robust Statistics

● Characterizing triggers 
through the lens of robust 
statistics

● A posteriori weight 
trimming and pruning 

● A posteriori weight and 
activation quantization

● A posteriori activation 
clipping and trimming

Thrust 2: Weight Analysis 

● Empirical spectral density 
● Parameter Hessian analysis
● Input Hessian analysis
● Network weight path 

distribution analysis

Thrust 3: Behavioral 
Analysis

● TNNs, indicative behavior 
patterns of trojans 

● Classification via partial 
trigger reconstruction 

● Mitigating data scarcity
● Meta-models for detecting 

models with trojans
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A TrojAI Program: Round 1-8 Summary 



A TrojAI Program: Round 9-13 Summary



Neurotoxin: Durable Backdoors in 
Federated Learning



Neurotoxin: Durable Backdoors in FL



How attackers poison machine learning

• Threat model: I’m an attacker with a bot farm and I know that Organization X’s
models use the data my bots generate to update their models

• Attacker’s goal: I want to poison the learned model to target a specific group of users
with known behavior, so that they receive specific recommendations (targeted attack)

• Example: watching a specific sequence of videos or typing specific text prompts the
model to recommend hate speech



How attackers poison machine learning

• Threat model: I’m an attacker with a bot farm and I know that Organization X’s
models use the data my bots generate to update their models

• Attacker’s goal: I want to poison the learned model to target a specific group of users
with known behavior, so that they receive specific recommendations (targeted attack)

• Example: watching a specific sequence of videos or typing specific text prompts the
model to recommend hate speech

• Attacker’s method: I can upload spurious updates to the server (model poisoning)

Upload spurious 
updates



Neurotoxin is a single line addition on top of 
prior attacks

The attacker generates gradients 
that minimize the poisoning loss.

Upload spurious 
updates

Major weakness: The attacker’s gradients conflict with the main federated learning task. 

1 attacker/1000



Neurotoxin is a single line addition on top of 
prior attacks

Model updates

Heavy hitters of 
the benign users.

Hide backdoors here.



The consequences of poisoned models



The consequences of poisoned models

Edge-case backdoor means that the trigger is only applied on a minority class as defined in Wang et al. 
2020. 



Measuring the durability of backdoors

Baseline:
• After the attacker leaves,

Backdoors are quickly
erased

Neurotoxin:
• Backdoors last longer

Model updates

Hide backdoors here.



The Unreasonable Ease of Poisoning 
Language Models

Attack accuracy of baselline and Neurotoxin on Reddit dataset with LSTM with different length trigger 
sentence. (Left) Trigger len = 3, means the trigger sentence is “{race} people are *”, (Middle) trigger len = 2, 
means the trigger sentence is‘{race} people * *”, and (Right) trigger len = 1, means the trigger sentence is 
“{race} * * * ”

• If the attacker controls fewer than 1 in 1,000 devices, they can make the 
learned model memorize single-word triggers with 100% accuracy.

• Attacks are durable
• Attacks are stealthy
• Attacks are robust to defenses
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The Unreasonable Ease of Poisoning 
Language Models
• If the attacker controls fewer than 1 in 1,000 devices, they can make the 

learned model memorize single-word triggers with 100% accuracy.
• Attacks are durable
• Attacks are stealthy
• Attacks are robust to defenses



Conclusion
• Experiments on CV and other architectures can be found in the full paper
• Our code is open source and we welcome contributions
• We include second-order empirical analysis of our method
• Neurotoxin works with any attack to create durable, stealthy, and robust

backdoors



Weight Analysis 



Examples: Weight Visualization of 1 Hidden Layer Net



Examples (R10): Weight Visualization* 

* We compute the matrix-matrix multiplication between all weight matrices, and reshape the product.



Examples (R10): Viewing Weights as Sequence



Examples (R10): Normalized Weight Visualization 



Examples (R10): Normalized Weights as Sequence



Why Feature Extraction?
● State-of-the-art models are highly over-parameterized.
● Feeding all the raw weights into a classifier leads to a very high-

dimensional problem (d>>N).
● Models trained with different seeds might have permuted weights.

Solution: Summary Weight Statistics
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Challenge
● Backdoors manifest in different layers / locations.
● It is not clear where to look for discriminative signatures. 
● Features from low-level layers seem to provide more information about 

backdoors than high-level layers.
low-level (?)

intermediate-level (?) high-level (?)



Weight Statistics
● Simple Statistics: Min, Max, Average, Median

○ Simple statistics applied to FFT features
○ Simple statistics applied to eigenvalues

● Norms: l2-norm, Frobenius Norm

● Matrix rank: stable rank

● Generalization metrics: HT alpha



Generalization Metrics As Features for Trojan Detection

Loss LandscapeDecision Boundary Weight Matrices



Metrics from Model Weights/Gradients
Data-dependent Data-independent

Scale metrics Sharpness. Jacobian. Matrix norms. Path norm.

Shape metrics Tail index of gradients. WeightWatcher



WeightWatchers

Martin, C.H., Peng, T, Mahoney, M.W. Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature (2021)
Clauset, A., Shalizi, C. R. & Newman, M. E. J. Power-law distributions in empirical data. SIAM Rev. 51, 661–703 (2009).



Martin, C.H., Peng, T, Mahoney, M.W. Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature (2021)
Clauset, A., Shalizi, C. R. & Newman, M. E. J. Power-law distributions in empirical data. SIAM Rev. 51, 661–703 (2009).

Quality of Models (with WeightWatcher)



Quality of Models (with WeightWatcher)

Martin, C.H., Peng, T, Mahoney, M.W. Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature (2021)
Clauset, A., Shalizi, C. R. & Newman, M. E. J. Power-law distributions in empirical data. SIAM Rev. 51, 661–703 (2009).



Three-regime Model for Network 
Pruning



Network Pruning
Problem: hyperparameter tuning

Test error of pruned model

Training Pruning Fine-tuning

batch size
training epochs (iterations)
learning rate…

Test error of dense model

Challenges:

● multi-stages pipeline
○ Final test error of pruned model 

is hard to predict during 
first stage of training

● constraint of model density
○ For a target model density, 

which hyperparameter is optimal?
(optimal choice may vary for different 
densities)

Full Dense Model Pruned Sparse Model

model density:
the ratio of remaining weights after pruning 
to the original weights 

Training with 
poisoned data Detection

Test error of model Detection accuracy

batch size
training epochs (iterations)
learning rate… Backdoor detection

Which training hyperparameter is optimal for 
higher detection accuracy?



Methodology:  Very Simple Deep Learning (VSDL) model

Prior work [1]:
``Phase transition’’ exists in the 2D ``load-temperature’’ space.

Prior work [2]: 
Loss landscape measures can well predict 
the ``phase transition’’.

[1] Martin, C. H., & Mahoney, M. W. (2017). Rethinking generalization requires revisiting old ideas: statistical mechanics approaches and complex learning behavior. arXiv preprint arXiv:1710.09553.

Load-like  
(model capacity)

Temperature-like
(regularization)

Model Size

Amount of data

Training Epochs (Early Stopping) /

Batch Size / Learning Rate / Weight decay 

[2] Yang, Y., Hodgkinson, L., Theisen, R., Zou, J., Gonzalez, J. E., Ramchandran, K., & Mahoney, M. W. (2021). Taxonomizing local versus global structure in neural network loss landscapes. Advances in Neural Information Processing Systems, 34, 18722-18733.



Approach:   VSDL Model Design for network pruning
Training Epochs
(Temperature-like parameter)

Model Density
(Load-like parameter)  

Hypothesis

1. Does the multi-regime (phase) 
phenomenon exist?

1. Can we quantify these regimes with
loss landscape metrics? 



Modeling
Empirical Results for modeling

Experiment Setting:  ResNet20/CIFAR-10

Test Error of pruned model

For a target model density, 
which training epoch is optimal?

White pixel represents optimal training epoch 
for this model density ( column) 

Normalized Test Error of pruned model An interesting dichotomous phenomenon:
Increasing temperature better for low density, 
decreasing temperature better for high density.



Modeling
Empirical Results for modeling

Experiment Setting:  ResNet20/CIFAR-10

Test Error of pruned model Normalized Test Error of pruned model 

Linear Mode Connectivity [1] CKA Similarity [2]

[1] Garipov, T., Izmailov, P., Podoprikhin, D., Vetrov, D. P., & Wilson, A. G. (2018). Loss surfaces, mode connectivity, and fast ensembling of dnns. Advances in neural information processing systems, 31.

[2] Kornblith, S., Norouzi, M., Lee, H., & Hinton, G. (2019, May). Similarity of neural network representations revisited. In International Conference on Machine Learning (pp. 3519-3529). PMLR.

A sharp transition 
from near-zero  to negative 

A smooth transition 
that is aligned well 
with the change of test error

bestpoor good

VSDL model for pruning

Favorable transition that
improves test error and loss landscape

Taxonomizing



Application
Task: prune a model to different densities,  select the best training hyperparameter for each density

(multiple markers in one column represent repeated experiments)

Experiment Setting:  tuning training epochs for ResNet20/CIFAR-10

A conventional wisdom:
Train the dense model to best (lowest test error), and then prune



Application
Baseline: test error based selection

Everything looks good if we only look at the test error.

(multiple markers in one column represent repeated experiments)

Experiment Setting:  tuning training epochs for ResNet20/CIFAR-10

A conventional wisdom:
Train the dense model to best (lowest test error), and then prune



Application
Three-regime model:  loss landscape metric (linear mode connectivity)

(multiple markers in one column represent repeated experiments)

Experiment Setting:  tuning training epochs for ResNet20/CIFAR-10



Application
Three-regime model:  loss landscape metric diagnoses the problem of baseline.

Regime I (bad) Choice of hyperparameter is bad
conventional wisdom doesn’t work

Regime II or III bestpoor good

(multiple markers in one column represent repeated experiments)

Experiment Setting:  tuning training epochs for ResNet20/CIFAR-10



Application
Tuning the baseline by the three-regime based approach

Regime I:
Tune by increasing temperature 
until LMC >= 0

Regime II or III: 
Tune by decreasing temperature 
until CKA doesn’t improve

bestpoor good

(multiple markers in one column represent repeated experiments)

Experiment Setting:  tuning training epochs for ResNet20/CIFAR-10



Application
Results:  Our approach can achieve the optimal performance as Grid Search, but in fewer steps.

(multiple markers in one column represent repeated experiments)

Experiment Setting:  tuning training epochs for ResNet20/CIFAR-10



Generalizability
Our approach can work for different hyperparameter, architectures and 
dataset.

DenseNet-40 on CIFAR-10 (tuning training epochs)

VGG19 on CIFAR-10 (tuning training epochs)

ResNet-20 on CIFAR-10 (tuning batch size)

ResNet-20 on CIFAR-100 (tuning training epochs)



Summary
1. Conventional wisdom (test error based) doesn’t work when we look at a 

different regime. 
2. Three-regime based hyperparameter tuning is more efficient than grid 

search.

Next Steps
1. How easy/hard is it to plant/detect backdoors in different regimes? 
2. A more challenging task:  do hyperparameter search on both ``load’’ and 

``temperature’’.



Some publications
• Y. Yang et al. “Boundary thickness and robustness in learning models.” NeurIPS (2020).
• F. Utrera et al. "Adversarially-trained deep nets transfer better." ICLR (2021).
• Y. Yang et al.  “Taxonomizing local versus global structure in neural network loss landscapes.” 

NeurIPS (2021).
• Dominic Carrano. Geometric Properties of Backdoored Neural Networks. MS Thesis (2021).
• Charles Yang. Detecting Backdoored Neural Networks with Structured Adversarial Attacks. MS 

Thesis (2021).
• N. B. Erichson et al. "Noise-response Analysis for Rapid Detection of Backdoors in Deep Neural 

Networks." SIAM Data Mining (2021).
• Z. Zhang et al. “Neurotoxin: durable backdoors in federated learning.” ICML (2022).
• S. Lim et al. "Noisy Feature Mixup." ICLR (2022).
• Y. Yang et al.  Taxonomizing local versus global structure in neural network loss landscapes. 

NeurIPS (2021).
• N. B. Erichson et al. "Noise-response Analysis for Rapid Detection of Backdoors in Deep Neural 

Networks." SIAM Data Mining (2021).

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-78.html

