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What do SOTA ML models “look like”?

“pip install weightwatcher”

Implicit Self-Regularization in Deep Neural Networks: Evidence from RMT and Implications for Learning JMLR21
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Stochastic optimization

is the process of minimizing an
objective function via the simulation

of random elements.

“the backbone of modern machine
learning”



Stochastic optimizers

In deep learning...
I Stochastic gradient descent (SGD)

wk+1 = wk −
γ

|Ωk |
∑
i∈Ωk

∇fi(wk)

I Momentum

I Stochastic Newton methods

I Adam

I and many others...



Based on classical (convex)
optimization algorithms.

Stochastic component (minibatches)
can allow them to work well in

unconstrained non-convex settings.

Robbins, H., Monro, S. (1951) A stochastic approximation method.
The Annals of Mathematical Statistics, pp.400—407



Phases of Training

Exploration
large learning rate

(sampler)

Exploitation
small learning rate

(optimizer)

Mandt, S., Hoffman, M., Blei, D. (2016) A variational analysis of
stochastic gradient algorithms. ICML 2016, pp. 354–363.



A distributional approach

Investigate how a stochastic optimizer
explores the loss landscape

1. Model stochastic optimization as a
random dynamical system (Markov)

2. Fix all hyperparameters to particular
values (time-homogeneous; no annealing)

3. Examine properties of the stationary
(invariant) distribution

I Avoid continuous-time approximations



Our Findings

Multiplicative noise results in heavy-tailed
stationary behaviour

I Tails of the stationary distribution are an
indication of capacity to explore

I Decay rates in the tails that are slower than
exponential are heavy, e.g.

P(W > t) ≈ ct−α



Heavy tails are significant

Recent efforts have empirically tied the

presence of strong heavy tails during training

with good generalization performance.

Simsekli, U., Sagun, L., Gürbüzbalaban, M. (2019). A Tail-Index
Analysis of Stochastic Gradient Noise in Deep Neural Networks

Martin, C. H., Peng, T., Mahoney, M. W. (2020). Predicting trends
in the quality of state-of-the-art neural networks without access to
training or testing data.

Heavier tails imply wider exploration



A simple one-dimensional
experiment



A 1D experiment

Wk+1 = Wk − γ(Akf
′(Wk) + Bk)



A 1D experiment

Wk+1 = Wk − γ( Ak︸︷︷︸
multiplicative

f ′(Wk) + Bk︸︷︷︸
additive

)

Compare
a. light additive noise (Bk ∼ N (0, σ2))

b. heavy additive noise (Bk ∼ σtν)

c. multiplicative noise

(Ak ∼ N (1, σ2), Bk ∼ N (0, ε2))



Figure: Histograms of 106 iterations of GD with combinations
of small, moderate, and strong vs. light additive, heavy
additive, and multiplicative noise, applied to a non-convex
objective & initial starting location for the optimization.



Optimal search strategies

“Since Levy flights and
walks can optimize search
efficiencies, therefore
natural selection should
have led to adaptations
for Levy flight foraging”

Viswanathan, G.M., Raposo, E.P., da Luz,

M.G.E. (2008). Levy flights and superdiffusion in
the context of biological encounters and random
searches. Physics of Life Reviews. 5(3): 133–150.

Viswanathan, G.M., Buldyrev, S.V., Havlin, S.,

Da Luz, M.G.E., Raposo, E.P. and Stanley, H.E.,
1999. Optimizing the success of random searches.
Nature, 401(6756), pp.911-914.



Establishing heavy
tails



Ridge regression

Consider least squares linear regression with

L2 regularization:

M∗ = arg min
M∈Rd×m

1
2E‖Y −MX‖2 + 1

2λ‖M‖
2
F ,

where

I X ∈ Rd are the inputs

I Y ∈ Rm are the labels



Ridge regression

Lemma

The iterates Mk of minibatch SGD satisfy the
following: for Wk = vec(Mk),

Wk+1 = AkWk + Bk ,
where

Ak = I ⊗

(
(1− λ)I − γn−1

n∑
i=1

XikX
>
ik

)
, Bk = −γn−1

n∑
i=1

YikX
>
ik

There is both additive and multiplicative noise.

Kesten (1973): P(σmin(Ak) > 1) > 0 =⇒ heavy tails



Ridge regression

The ridge regression setting is covered in

much greater detail in

Gurbuzbalaban, M., Simsekli, U., Zhu, L.
(2020). The Heavy-Tail Phenomenon in SGD.
arXiv:2006.04740.



The Kesten mechanism

Heavy tails (power laws) arise gradually over time
due to the presence of noise on multiple scales

Wk+1 = fk(Wk) ≈ AkWk + Bk

Ak Bk
logarithmic scale linear scale

multiplicative noise additive noise
D1fk D0fk



General stochastic optimization

In machine learning, solving problems of the

form

w ∗ = arg min
w

f (w), f (w) := ED`(w ,X ),

for a loss ` depending on weights w and data

X from some dataset D.



General stochastic optimization

Fixed point iteration: if Ψ is chosen

such that fixed points of EDΨ(·,X ) are

minimizers of f , then

wk+1 = EDΨ(wk ,X )

either diverges, or converges to w ∗.



General stochastic optimization

Estimating the expectation gives a stochastic
optimizer:

Wk+1 =
1

n

n∑
i=1

Ψ(Wk ,Xik), Xik
iid∼ X

where Xik is the i -th datum from the k-th
minibatch.

I Assuming data is shuffled in each epoch

I Forms a time-homogeneous Markov chain for
fixed hyperparameters



General stochastic optimization

Estimating the expectation gives a stochastic
optimizer:

Wk+1 =

��
��
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��

�
��
�*

Ψ(Wk ,Xk)

1

n

n∑
i=1

Ψ(Wk ,Xik), Xk
iid∼ X .

I Assuming data is shuffled in each epoch

I Forms a time-homogeneous Markov chain



Stochastic optimization as a Markov chain

The sequence of iterated random functions

Wk+1 = Ψ(Wk ,Xk) Xk
iid∼ X .

Equivalently, as a root-finding problem:

Wk+1 = Wk − Ψ̃(Wk ,Xk) (Borovkov)

Assume this Markov chain is ergodic.

Diaconis, P., Freedman, D. (1999) Iterated Random Functions.
SIAM Review. 41(1), 45–76.

Alsmeyer, G. (2003) On the Harris recurrence of iterated random
Lipschitz functions and related convergence rate results. Journal of
Theoretical Probability, 16(1):217–247,



Every iterative stochastic
optimization algorithm in ML
(with fixed hyperparameters)
can be written as a Markov

chain in this way.



SGD & SGD with momentum

Minibatch SGD: For minibatch size n and step
size γ,

Ψ(w ,X ) = w − γn−1
n∑

i=1

∇`(w ,Xi).

Momentum: Incorporating velocity v ,

Ψ

((
v

w

)
, X

)
=

1

n

n∑
i=1

(
ηv +∇`(w ,Xi)

w − γ(ηv +∇`(w ,Xi))

)



Main Result

Theorem

Suppose X is non-atomic and there exist kΨ,KΨ,
MΨ,w

∗ such that as ‖w‖ → ∞,

kΨ(X )− o(1) ≤ ‖Ψ(w ,X )−Ψ(w ∗,X )‖
‖w − w ∗‖

≤ KΨ(X ) + o(1).



Main Result

Theorem

Suppose X is non-atomic and there exist kΨ,KΨ,
MΨ,w

∗ such that as ‖w‖ → ∞,

kΨ(X )− o(1) ≤ ‖Ψ(w ,X )−Ψ(w ∗,X )‖
‖w − w ∗‖

≤ KΨ(X ) + o(1).

If P(kΨ(X ) > 1) > 0 and E logKΨ(X ) < 0, for
some µ, ν,Cµ,Cν > 0,

Cµ(1 + t)−µ ≤ P(‖W∞‖ > t) ≤ Cνt
−ν.



II. Factors influencing tail behaviour

Run SGD w/ constant step size on two-layer NN
with L2 loss using Wine Quality UCI dataset.

α̂ is an estimate of the tail exponent α such that

P(‖D∞‖ > t) ≈ ct−α

.I for fluctuations Dk = Wk+1 −Wk (for SGD,
corresponds to gradient norm)

I D∞ = limk→∞Dk has the same tail exponent
as Wk



Factors: step size

Prediction: larger step sizes =⇒ heavier tails

step size
γ α̂

0.001 4.12 ± 0.04
0.005 3.70 ± 0.02
0.01 3.71 ± 0.04

0.025 2.97 ± 0.03
gradient norm



Factors: minibatch size

Prediction: smaller batch sizes =⇒ heavier tails

minibatch size
n α̂
10 5.99 ± 0.05
5 4.98 ± 0.07
2 3.62 ± 0.03
1 2.97 ± 0.03

gradient norm



Factors: L2 regularization

Prediction: more regularization =⇒ heavier tails

L2 regularization
λ α̂

10−4 2.97 ± 0.03
0.01 3.02 ± 0.02
0.1 2.77 ± 0.01
0.2 2.55 ± 0.01

gradient norm



Factors: optimizer

Prediction: SGD, SSN heavier than Adagrad, Adam

optimizer
α̂

Adagrad 3.2 ± 0.1
Adam 2.119 ± 0.005
SGD 2.93 ± 0.03
SSN 0.79 ± 0.04

gradient norm



Summary

Multiplicative noise is a critical element for
understanding performance of stochastic optimizers

I Results in heavy-tailed stationary behaviour

I Far-reaching, but efficient, exploration

Future work:

I Improve precision for tail exponent estimates in
more specific models (e.g. deep neural nets)

I The Kesten mechanism in the spectral domain

I Generalization bounds in discrete time

Hodgkinson, L., Mahoney, M. W. (2020) Multiplicative noise and
heavy tails in stochastic optimization. arXiv:2006.06293
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What are generalization
bounds?



Empirical Risk Minimization

To train parameterized models, solve

w ∗ = arg min
w
Rn(w), Rn(w) :=

1

n

n∑
i=1

`(w ,Xi),

for a loss ` depending on weights w and data

X1, . . . ,Xn
iid∼ D.



Generalization bounds

Bounds on the excess risk

En(w ∗) = Rn(w ∗)− EDRn(w ∗)︸ ︷︷ ︸
generalization



Stochastic optimization

is the process of

minimizing an

objective function via

the simulation of

random elements.

“the backbone of

modern machine

learning”



How do the dynamics of
the optimizer influence

generalization?



Types of Dynamics

Brownian motion
light-tailed
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Heavy Tails in Machine Learning

Norms of optimizer steps in a deep learning task

Şimşekli, U., Sagun, L., & Gurbuzbalaban, M. (2019, May). A
tail-index analysis of stochastic gradient noise in deep neural
networks. In International Conference on Machine Learning (pp.
5827-5837). PMLR.



Previous Work

Under a (continuous-time) Feller process model
of SGD,

heavier tails =⇒ smaller En.

Şimşekli, U., Sener, O., Deligiannidis, G., & Erdogdu, M. A. (2020).
Hausdorff dimension, heavy tails, and generalization in neural
networks. Advances in Neural Information Processing Systems, 33,
5138-5151.

I Complicated assumptions

I What about discrete time, i.e. SGD itself?



Markov Assumption

Assume that the iterates of the
optimizer

W1,W2, . . . ,Wk , . . .

are a Markov chain.



Upper Tail Exponent

Previous works have considered the
upper tail exponent:

P(‖Wk+1 −Wk‖ > r) ≈ O(r−β).

as r → ∞.



Lower Tail Exponent

What about the lower tail
exponent?

P(‖Wk+1 −Wk‖ ≤ r) ≈ O(rα).

as r → 0+.



Lower Tail Exponent

Theorem (Informal)

Assume that iterates Wk of an optimizer satisfy

P(‖Wk+1 −Wk‖ ≤ r) ≈ O(rα)

in the neighbourhood of a local optimum w ∗. Then
an upper bound on

E sup
k=1,...,m

|En(Wk)| is positively correlated with α.



Is this true in practice?

Train NNs with varying hyperparameters &

regularization





Lower Tail Exponent

Lower tail often correlates with upper tail



Summary

I Developed a general proof technique
for linking optimizer dynamics to

generalization

I Extended results of Şimşekli et al., 2020.

I Lower tail exponent correlates with En
I Supported in practice
I Lower tail correlates with upper tail
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Taxonomizing loss landscapes

Taxonomizing local versus global structure in neural network loss landscapes, Yang et al. arXiv:2107.11228



Taxonomizing loss landscapes

Taxonomizing local versus global structure in neural network loss landscapes, Yang et al. arXiv:2107.11228



The weakness of modern weak learners?

Ensembling?

ResNet18/CIFAR-10
Deep Ensembles

Interpolation threshold

Bagged Random 
Feature classifiers

Theory:
● Characterize the "ensemble improvement rate" in 

terms of the "disagreement-error ratio”
● If disagreement > average error, then ensembles 

improve performance when DER is large
● If disagreement < average error, then ensembles do 

not improve performance too much when DER is small
Empirical:
● Ensemble improvement, DER become small beyond 

the “interpolation” threshold
● Ensembling becomes less useful for large models 

which can easily “interpolate” the training
● This corresponds to the disagreement-error ratio 

getting smaller in this regime

"When are ensembles really effective?," Theisen, et al. arXiv:2305.12313 (2023)



Contributions and Conclusions

I For modern ML models, weights are HT, gradients are
HT, etc are HT

I HTs are hard

I Can use this theory to:

I predict trends in the quality of SOTA neural
networks without access to training or testing data

I perform diagnostics at scale, including identifing
Simpson’s paradoxes in public benchmarks

I predict overfitting/underfitting
I characterize benefits/non-benefits of ensembling

I Seems worth considering more ...
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