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When are ensembles really effective?



What do SOTA ML models “look like"?

Analyzing DNN Weight matrices with WeightWatcher

1. Take a model
U 2 vT 52, Take a weight matrix
\>3. Do Spectral analysis
4. Histogram of eigenvalues
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“=p Analyze one layer of pre-trained model
=P Compare multiple layers of pre-trained model
=P Monitor NN properties as you train your own model

“pip install weightwatcher”

Implicit Self-Regularization in Deep Neural Networks: Evidence from RMT and Implications for Learning JMLR21



Outline

“Multiplicative noise and heavy tails in stochastic
optimization,” HM, ICML 2021



Stochastic optimization

is the process of minimizing an
objective function via the simulation
of random elements.

“the backbone of modern machine
learning”



>

Stochastic optimizers

In deep learning...
Stochastic gradient descent (SGD)

Y
= - — V
Wil = Wk o 'EEQ (wy)
1efdy
Momentum

Stochastic Newton methods
Adam
and many others...



Based on classical (convex)
optimization algorithms.

Stochastic component (minibatches)
can allow them to work well in
unconstrained non-convex settings.

[ Robbins, H., Monro, S. (1951) A stochastic approximation method.
The Annals of Mathematical Statistics, pp.400—407



Phases of Training

Exploration Exploitation
large learning rate small learning rate

(sampler) (optimizer)

ﬁ Mandt, S., Hoffman, M., Blei, D. (2016) A variational analysis of
stochastic gradient algorithms. ICML 2016, pp. 354-363.



A distributional approach

Investigate how a stochastic optimizer
explores the loss landscape

1. Model stochastic optimization as a
random dynamical system (Markov)

2. Fix all hyperparameters to particular
values (time-homogeneous; no annealing)

3. Examine properties of the stationary
(invariant) distribution

» Avoid continuous-time approximations




Our Findings

Multiplicative noise results in heavy-tailed
stationary behaviour

» Tails of the stationary distribution are an
indication of capacity to explore

» Decay rates in the tails that are slower than
exponential are heavy, e.g.

P(W > t)~ct



Heavy tails are significant

Recent efforts have empirically tied the
presence of strong heavy tails during training
with good generalization performance.

Simsekli, U., Sagun, L., Giirbiizbalaban, M. (2019). A Tail-Index
Analysis of Stochastic Gradient Noise in Deep Neural Networks

Martin, C. H., Peng, T., Mahoney, M. W. (2020). Predicting trends
in the quality of state-of-the-art neural networks without access to
training or testing data.

Heavier tails imply wider exploration



A simple one-dimensional
experiment



A 1D experiment
Wi = Wi — ’y(Akf/( Wk) + Bk)



A 1D experiment
Wk_|_1 = Wk — ’7( Ak f’(Wk) + Bk )
N~ N~~~

multiplicative additive

Compare
a. light additive noise (Bx ~ N (0, 0?))
b. heavy additive noise (Bx ~ ot,)

c. multiplicative noise

(Ak NN(l,Uz), Bk NN(O,E2))
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Figure: Histograms of 10° iterations of GD with combinations
of small, moderate, and strong vs. light additive, heavy
additive, and multiplicative noise, applied to a non-convex
objective & initial starting location for the optimization.



Optimal search strategies

Optimizing the success
of random searches

G. M. Viswanathan* {1, Sergey V. Buldyrev*, Shlomo Havlin*§,
M. G. E. da Luzl'9, E. P. Raposol & H. Eugene Stanley*

We address the general question of what is the best statistical
strategy to adapt in order to search efficiently for randomly
located objects (‘target sites’). It is often assumed in foraging
theory that the flight lengths of a forager have a characteristic
scale: from this assumption gaussian, Rayleigh and other classical
distributions with well-defined variances have arisen. However,
such theories cannot explain the long-tailed power-law
distributions'? of flight lengths or flight times®~ that are observed
experimentally. Here we study how the search efficiency depends
on the probability distribution of flight lengths taken by a forager
that can detect target sites only in its limited vicinity. We show
that, when the target sites are sparse and can be visited any
number of times, an inverse square power-law distribution of
flight lengths, corresponding to Lévy flight motion, is an optimal
strategy. We test the theory by analysing experimental foraging
data on selected insect, mammal and bird species, and find that
they are consistent with the predicted inverse square power-law
distributions.
Lévy flights are characterized by a distribution function

PU)~17 o

with 1< p = 3, where J; is the flight length. The gaussian is the
stable distribution for the special case u = 3 owing to the central-
limit theorem, while values y = 1 do not correspond to probability
distributions that can be normalized”. This generalization, equation
(1), introduces a natural parameter p such that we essentially have a

“Since Levy flights and
walks can optimize search
efficiencies, therefore
natural selection should
have led to adaptations
for Levy flight foraging”

@ Viswanathan, G.M., Raposo, E.P., da Luz,

M.G.E. (2008). Levy flights and superdiffusion in
the context of biological encounters and random
searches. Physics of Life Reviews. 5(3): 133-150.

@ Viswanathan, G.M., Buldyrev, S.V., Havlin, S.,

Da Luz, M.G.E., Raposo, E.P. and Stanley, H.E.,
1999. Optimizing the success of random searches.
Nature, 401(6756), pp.911-914.



Establishing heavy
tails



Ridge regression

Consider least squares linear regression with
L2 regularization:

M* = argmin 3E|| Y — MX|]> + I\|| M7,
McRdxm
where
» X € RY are the inputs
» Y € R™ are the labels



Ridge regression

Lemma

The iterates My of minibatch SGD satisfy the
following: for W) = vec(Mjy),

Wi+1 = AcWi + Bk,

where

Ar=1Q® ((1 — N/ —n7? inkx,[> , Bi=—yn) VX
i=1

i=1

There is both additive and multiplicative noise.
Kesten (1973): P(omin(Ak) > 1) > 0 = heavy tails



Ridge regression

The ridge regression setting is covered in
much greater detail in

4 Gurbuzbalaban, M., Simsekli, U., Zhu, L.
(2020). The Heavy-Tail Phenomenon in SGD.
arXiv:2006.04740.



The Kesten mechanism

Heavy tails (power laws) arise gradually over time
due to the presence of noise on multiple scales

Wit1 = fi(Wi) = AW + By

Ak B
logarithmic scale linear scale

multiplicative noise | additive noise
Df; D




General stochastic optimization

In machine learning, solving problems of the
form

w* =argmin f(w), f(w):=Epl(w,X),

w

for a loss ¢ depending on weights w and data
X from some dataset D.



General stochastic optimization

Fixed point iteration: if V is chosen
such that fixed points of EpW(-, X) are
minimizers of f, then

Wki1 = ]EDW(Wk, X)

either diverges, or converges to w*.



General stochastic optimization

Estimating the expectation gives a stochastic
optimizer:

1< i
Wi = — STU(Wi Xa), X X
=1

where Xj is the /-th datum from the k-th
minibatch.
» Assuming data is shuffled in each epoch
» Forms a time-homogeneous Markov chain for
fixed hyperparameters



General stochastic optimization

Estimating the expectation gives a stochastic
optimizer:

W (W, Xk)

X, S X

» Assuming data is shuffled in each epoch
» Forms a time-homogeneous Markov chain



Stochastic optimization as a Markov chain

The sequence of iterated random functions

Wii1 = V(Wi Xk) X 7S X

Equivalently, as a root-finding problem:
Wii1 = Wi — (Wi, X))  (Borovkov)
Assume this Markov chain is ergodic.
[4 Diaconis, P., Freedman, D. (1999) Iterated Random Functions.

SIAM Review. 41(1), 45-76.

[4 Alsmeyer, G. (2003) On the Harris recurrence of iterated random
Lipschitz functions and related convergence rate results. Journal of
Theoretical Probability, 16(1):217-247,



Every iterative stochastic
optimization algorithm in ML
(with fixed hyperparameters)
can be written as a Markov

chain in this way.



SGD & SGD with momentum

Minibatch SGD: For minibatch size n and step
size v,

V(w,X)=w—yn? Z Vi(w, X;).

i=1
Momentum: Incorporating velocity v,

n

o)1) 35 ()

i=1



Main Result

Theorem

Suppose X is non-atomic and there exist ky, Ky,
My, w* such that as ||w| — oo,

[W(w, X) = W(w", X)||

[[w — w]|

k\y(X) — O(l) <




Main Result

Theorem

Suppose X is non-atomic and there exist ky, Ky,
My, w* such that as ||w| — oo,

[W(w, X) = W(w", X)||

[[w — w]|

ky(X) — o(1) <

If P(ky(X) > 1) > 0 and Elog Ky(X) < 0, for
some u,v, C,, G, > 0,

Cu(L+ ) < P(|Wal| > ) < Gt ™.



Il. Factors influencing tail behaviour

Run SGD w/ constant step size on two-layer NN
with L2 loss using Wine Quality UCI dataset.

Qv is an estimate of the tail exponent « such that

P(||Dso|| > t) = ct™@

» for fluctuations Dy = W1 — W (for SGD,
corresponds to gradient norm)

» D = limy_, Di has the same tail exponent
as W,



Prediction:

Factors: step size

step size

gl

~

(07

0.001
0.005
0.01
0.025

4.12 £ 0.04
3.70 £ 0.02
3.71 £ 0.04
2.97 £ 0.03

102 4

109 4

10-2 1

107 1

10"

larger step sizes = heavier tails

step size

T T T T T T
103 1072 1071 10° 10! 10?
gradient norm




Factors: minibatch size

Prediction: smaller batch sizes == heavier tails

minibatch size

minibatch size

S

n a 100 4

10 | 5.99 + 0.05 10-2 1
5 14.98 = 0.07 141
2 13.62 £ 0.03
11297 £0.03

10-6 4

T T T T T T
10-3 102 101 100 10! 102
gradient norm



Prediction:

Factors: L? regularization

L? regularization

~

A o
107%]2.97 + 0.03
0.01 | 3.02 £ 0.02
0.1 |2.77 £ 0.01
0.2 | 2554+ 0.01

100 4

1072 1

1074

10—6 4

more regularization = heavier tails

L2 regularization

T T T T T T
103 102 101 10° 10t 10?2
gradient norm




Factors: optimizer

Prediction:
optimizer
&
Adagrad 32+0.1
Adam | 2.119 4 0.005
SGD 2.93 + 0.03
SSN 0.79 &+ 0.04

SGD, SSN heavier than Adagrad, Adam

optimizer

Adagrad

. —- SGD
B I ot s ey, e 1Y, _
i @” I(\.?-\ Adam

) SSN
A
o BN
w\
'1\\.
F‘K
LI
~e
10-5 10-3 10-1 101 103

gradient norm




Summary

Multiplicative noise is a critical element for
understanding performance of stochastic optimizers

» Results in heavy-tailed stationary behaviour
» Far-reaching, but efficient, exploration
Future work:

» Improve precision for tail exponent estimates in
more specific models (e.g. deep neural nets)

» The Kesten mechanism in the spectral domain
» Generalization bounds in discrete time

El Hodgkinson, L., Mahoney, M. W. (2020) Multiplicative noise and
heavy tails in stochastic optimization. arXiv:2006.06293



Outline

“Generalization Properties of Stochastic Optimizers
via Trajectory Analysis,” HSKM, ICML 2022



What are generalization
bounds?



Empirical Risk Minimization

To train parameterized models, solve

w* = argmin R ,(w) ZZWX

w

for a loss ¢ depending on weights w and data

X X ”dD



Generalization bounds

Bounds on the excess risk

En(w*) = Ra(w") — EEDRn(W*)

4

WV
generalization



Stochastic optimization

is the process of

Deep
.. L. Learning
minimizing an
objective function via
the simulation of

random elements.

Optimization

“the backbone of
modern machine
learning”



How do the dynamics of
the optimizer influence
generalization?



Types of Dynamics

Brownian motion
light-tailed

-0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

Lévy flight
heavy-tailed

-0.4

-0.2 0.0 0.2



Heavy Tails in Machine Learning

Norms of optimizer steps in a deep learning task

10°
102
Jél -+
5 10° 5
(o] o
o O 10!
10!
100
0 1000 2000 1000 2000
Noise norm Noise norm
(a) Real

(b) Gaussian

ﬁ Simsekli, U., Sagun, L., & Gurbuzbalaban, M. (2019, May). A
tail-index analysis of stochastic gradient noise in deep neural

networks. In International Conference on Machine Learning (pp.
5827-5837). PMLR.



Previous Work

Under a (continuous-time) Feller process model
of SGD,

heavier tails =— smaller &,.

E Simsekli, U., Sener, O., Deligiannidis, G., & Erdogdu, M. A. (2020).
Hausdorff dimension, heavy tails, and generalization in neural

networks. Advances in Neural Information Processing Systems, 33,
5138-5151.

» Complicated assumptions
» What about discrete time, i.e. SGD itself?



Markov Assumption

Assume that the iterates of the
optimizer

W17W27"'7Wk7'

are a Markov chain.



Upper Tail Exponent

Previous works have considered the
upper tail exponent:

P([|Wis1 — Wi > r) = O(r ™).

as r — OQ.



Lower Tail Exponent

What about the lower tail
exponent”?

P(|Wert — Will < r) = O(r).

asr — 0.



Lower Tail Exponent

Theorem (Informal)

Assume that iterates Wy of an optimizer satisfy
P(|Wist — Will < r) = O(r)

in the neighbourhood of a local optimum w*. Then
an upper bound on

E sup |E,(Wy)| is positively correlated with .

m

—1.....



Is this true in practice?

Train NNs with varying hyperparameters &
regularization
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Lower Tail Exponent

Lower tail often correlates with upper tail
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Summary

» Developed a general proof technique
for linking optimizer dynamics to
generalization

» Extended results of Simsekli et al., 2020.

» Lower tail exponent correlates with &,

» Supported in practice
» Lower tail correlates with upper tail



Heavy-tailed Self-regularization Theory

“Multiplicative noise and heavy tails in stochastic
optimization,” HM, ICML 2021

“Generalization Properties of Stochastic Optimizers
via Trajectory Analysis,” HSKM, ICML 2022

When are ensembles really effective?



Taxonomizing loss landscapes

Taxonomizing local versus global structure in neural network loss landscapes, Yang et al.
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Figure 2: (Standard setting). Partitioning the 2D load-like—temperature-like diagram into different phases
of learning, using batch size as the temperature and varying model width to change load. Models are trained
with ResNet18 on CIFAR-10. All plots are on the same set of axes. We note that batch size is inverse

temperature, and thus it has smaller values at the top of the y-axis and larger values at the bottom.



Taxonomizing loss landscapes

Taxonomizing local versus global structure in neural network loss landscapes, Yang et al. arXiv:2107.11228

Globally well-connected
Phase 11

Globally poorly-connected ‘

Locally sharp| low-

gy path
0

Locally flat

Phase III

Phase IV-A

Phase IV-B

high barrier

trained models are
less similar

trained models
are similar

Figure 1: (Caricature of different types of loss landscapes). Globally well-connected versus globally
poorly-connected loss landscapes; and locally sharp versus locally flat loss landscapes. Globally well-connected
loss landscapes can be interpreted in terms of a global “rugged convexity”; and globally well-connected and
locally flat loss landscapes can be further divided into two sub-cases, based on the similarity of trained models.




The weakness of modern weak learners?

Ensembling?

Bagged Random
Feature classifiers

Interpolation threshold

1
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4
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Width

ResNet18/CIFAR-10
Deep Ensembles

Theory

Characterize the "ensemble improvement rate" in
terms of the "disagreement-error ratio”

e If disagreement > average error, then ensembles
improve performance when DER is large

e If disagreement < average error, then ensembles do
not improve performance too much when DER is small

Emplrlcal
Ensemble improvement, DER become small beyond
the “interpolation” threshold

e Ensembling becomes less useful for large models
which can easily “interpolate” the training

e This corresponds to the disagreement-error ratio

Avg. Test Error

46 811162332456491120
Width

getting smaller in this regime

. MV TestError
[n]a [n:m
“ozs
015

5233245649128

81
Width

"When are ensembles really effective?," Theisen, et al. arXiv:2305.12313 (2023)




Contributions and Conclusions

For modern ML models, weights are HT, gradients are
HT, etc are HT

HTs are hard

Can use this theory to:

>

>

>
>

predict trends in the quality of SOTA neural
networks without access to training or testing data
perform diagnostics at scale, including identifing
Simpson's paradoxes in public benchmarks

predict overfitting/underfitting

characterize benefits/non-benefits of ensembling

Seems worth considering more ...
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