


Eigenvector localization: 
•  Eigenvectors are “usually” global entities 

•  But they can be localized in extremely sparse/noisy graphs/matrices 

Implicit regularization: 
•  Usually “exactly” optimize f+λg, for some λ and g 

•  Regularization often a side effect of approximations to f 

Algorithmic anti-differentiation: 
•  What is the objective that approximate computation exactly optimizes 

Large-scale graphs and network data: 
•  Small versus medium versus large versus big  

•  Social/information networks versus “constructed” graphs 

First, parse the title ... 
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Networks and networked data 

Interaction graph model of 
networks:   
•  Nodes represent “entities” 
•  Edges represent “interaction” 
between pairs of entities 

Lots of “networked” data!! 
•  technological networks 

–  AS, power-grid, road networks 
•  biological networks 

–  food-web, protein networks 
•  social networks 

–  collaboration networks, friendships 
•  information networks 

–  co-citation, blog cross-postings, 
advertiser-bidded phrase graphs... 

•  language networks 
–  semantic networks... 

•  ... 



What do these networks “look” like?  



Possible ways a graph might look 

Expander or complete graph 

Low-dimensional structure Core-periphery structure 

Bipartite structure 



Scatter plot of λ2 for real networks 

Question: does this plot really tell us much about these networks? 



Communities, Conductance, and NCPPs 

Let A be the adjacency matrix of G=(V,E).  

The conductance φ of a set S of nodes is: 

The Network Community Profile (NCP) Plot of the graph is: 

Just as conductance captures  a Surface-Area-To-Volume notion 
•  the NCP captures a Size-Resolved Surface-Area-To-Volume notion 

•  captures the idea of size-resolved bottlenecks to diffusion 



Why worry about both criteria? 
•  Some graphs (e.g., “space-like” graphs, finite element meshes, road networks, 
random geometric graphs) cut quality and cut balance “work together” 

•  For other classes of graphs (e.g., informatics graphs, as we will see) there is 
a “tradeoff,” i.e., better cuts lead to worse balance 
•  For still other graphs (e.g., expanders) there are no good cuts of any size 



Probing Large Networks with 
Approximation Algorithms 

Idea: Use approximation algorithms for NP-hard graph partitioning 
problems as experimental probes of network structure. 

 Spectral - (quadratic approx) - confuses “long paths” with “deep cuts” 

 Multi-commodity flow - (log(n) approx) - difficulty with expanders 

 SDP - (sqrt(log(n)) approx) - best in theory 

 Metis - (multi-resolution for mesh-like graphs) - common in practice  

 X+MQI - post-processing step on, e.g., Spectral of Metis 

Metis+MQI - best conductance (empirically) 

Local Spectral - connected and tighter sets (empirically, regularized communities!) 

•  We exploit the “statistical” properties implicit in “worst case” algorithms.  



Typical intuitive networks 

Zachary’s karate club Newman’s Network Science d-dimensional meshes 

RoadNet-CA 



Typical real network 
General relativity collaboration network 

(4,158 nodes, 13,422 edges) 
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Data are expander-like 
at large size scales !!! 



“Whiskers” and the “core”  
•  “Whiskers”  

•  maximal sub-graph detached 
from network by removing a 
single edge 

•  contains 40% of nodes and 20% 
of edges   

•  “Core” 

•  the rest of the graph, i.e., the 
2-edge-connected core 

•  Global minimum of NCPP is a whisker 

•  And, the core has a core-peripehery 
structure, recursively ...  

NCP	  plot	  

Largest	  
whisker	  

Slope	  upward	  as	  cut	  
into	  core	  	  



A simple theorem on random graphs 

Power-law random graph with β ε (2,3). 

Structure of the G(w) model, with β ε (2,3). 

•  Sparsity (coupled with randomness) 
is the issue, not heavy-tails.   
•  (Power laws with β ε (2,3) give us 
the appropriate sparsity.) 

Think of the data as: local-structure on global-noise; not small 
noise on global structure! 



Three different types of real networks 

NCP: conductance value of best conductance 
set in graph, as a function of size 

CRP: ratio of internal to external conductance, 
as a function of size 

CA-GrQc FB-Johns55 US-Senate 



Local structure for graphs with upward 
versus downward sloping NCPs 

CA-GrQc: upward- 
sloping global NCP 

US-Senate: downward- 
sloping global NCP 

FB-Johns55: flat 
global NCP 

AclCut (strongly local 
spectral method)  

versus 

MovCut (weakly local 
spectral method) 

Two very similar 
methods often give 
very different results. 

Former is often 
preferable---for both 
algorithmic and 
statistical reasons. 

Why?  And what does 
problem does it solve? 



Regularized and non-regularized communities  

•  Metis+MQI - a Flow-based method 
(red) gives sets with better 
conductance. 

•  Local Spectral (blue) gives tighter 
and more well-rounded sets. 

External/internal conductance 

Diameter of the cluster Conductance of  bounding cut 

Local Spectral 

Connected 

Disconnected 

Lower is good 



Summary of lessons learned  

Local-global properties of real data are very different ... 
•  ... than practical/theoretical people implicitly/explicitly assume 

Local spectral methods were a big winner 

•  For both algorithmic and statistical reasons 

Little design decisions made a big difference 
•  Details of how deal with truncation and boundary conditions are not second-
order issues when graphs are expander-like 

Approximation algorithm usefulness uncoupled from theory 
•  Often useful when they implicitly regularize 
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Local spectral optimization methods 
Local spectral methods - provably-good local version of global spectral 

 ST04: truncated “local”  random walks to compute locally-biased cut  

 ACL06: approximate locally-biased PageRank vector computations  

 Chung08: approximate heat-kernel computation to get a vector   

Q1: What do these procedures optimize approximately/exactly? 
Q2: Can we write these procedures as optimization programs? 



Recall spectral graph partitioning 
•  Relaxation of: 

The basic optimization 
problem: 

•  Solvable via the eigenvalue 
problem: 

•  Sweep cut of second eigenvector 
yields: 

Also recall Mihail’s sweep cut for a general test vector: 



Geometric correlation and 
generalized PageRank vectors 

Given a cut T, define the 
vector: 

Can use this to define a geometric 
notion of correlation between cuts: 

•  PageRank: a spectral ranking method (regularized version of second eigenvector of LG) 

•  Personalized: s is nonuniform; & generalized: teleportation parameter α can be negative. 



Local spectral partitioning ansatz 

Primal program: Dual program: 

Interpretation: 
•  Find a cut well-correlated with the 
seed vector s. 

•  If s is a single node, this relax: 

Interpretation: 
•  Embedding a combination of scaled 
complete graph Kn and complete 
graphs T and T (KT and KT) - where 
the latter encourage cuts near (T,T). 

Mahoney, Orecchia, and Vishnoi (2010) 



Main results (1 of 2) 

Theorem: If x* is an optimal solution to LocalSpectral, 
it is a GPPR vector for parameter α, and it can be 
computed as the solution to a set of linear equations.  
Proof: 

(1) Relax non-convex problem to convex SDP 

(2) Strong duality holds for this SDP 

(3) Solution to SDP is rank one (from comp. slack.) 

(4) Rank one solution is GPPR vector. 

Mahoney, Orecchia, and Vishnoi (2010) 



Main results (2 of 2) 

Theorem: If x* is optimal solution to LocalSpect
(G,s,κ), one can find a cut of conductance ≤ 8λ(G,s,κ) in 
time O(n lg n) with sweep cut of x*.  

Theorem: Let s be seed vector and κ correlation 
parameter.  For all sets of nodes T s.t. κ’ :=<s,sT>D

2 , we 
have: φ(T) ≥ λ(G,s,κ) if κ ≤ κ’, and φ(T) ≥ (κ’/κ)λ(G,s,κ) 
if κ’ ≤ κ . 

Mahoney, Orecchia, and Vishnoi (2010) 

Lower bound: Spectral 
version of flow-
improvement algs. 

Upper bound, as usual from 
sweep cut & Cheeger. 



Illustration on small graphs 
•  Similar results if 
we do local random 
walks, truncated 
PageRank, and heat 
kernel diffusions. 

•  Often, it finds 
“worse” quality but 
“nicer” partitions 
than flow-improve 
methods. (Tradeoff 
we’ll see later.) 



Illustration with general seeds 
•  Seed vector doesn’t need to correspond to cuts.   

•  It could be any vector on the nodes, e.g., can find a cut “near” low-
degree vertices with si = -(di-dav), iε[n]. 



New methods are useful more generally 
Maji, Vishnoi,and Malik (2011) applied Mahoney, Orecchia, and Vishnoi (2010) 

•  Cannot find the tiger with global eigenvectors.   

•  Can find the tiger with our LocalSpectral method! 



Semi-supervised eigenvectors 
Eigenvectors are inherently global quantities, and the leading ones may 
therefore fail at modeling relevant local structures.  

Generalized eigenvalue 
problem.  Solution is given by 
the second smallest 
eigenvector, and yields a 
“Normalized Cut”. 

Locally-biased analogue of the 
second smallest eigenvector.  
Optimal solution is a generalization 
of Personalized PageRank and can 
be computed in nearly-linear time 
[MOV2012]. 

Semi-supervised eigenvector 
generalization of [MOV2012]. This 
objective incorporates a general 
orthogonality constraint, allowing 
us to compute a sequence of 
“localized eigenvectors”. 

Semi-supervised eigenvectors are efficient to compute and inherit many 
of the nice properties that characterizes global eigenvectors of a graph. 

Hansen and Mahoney (NIPS 2013, JMLR 2014) 



Semi-supervised eigenvectors 

Norm constraint 
Orthogonality constraint 
Locality constraint 

Provides a natural way to interpolate 
between very localized solutions and 
the global eigenvectors of the graph 
Laplacian. 

For             this becomes the usual 
generalized eigenvalue problem.         

The solution can be viewed as the 
first step of the Rayleigh quotient 
iteration, where      is the current 
estimate of the eigenvalue, and          
the current estimate of the 
eigenvector.  

Projection operator 

Seed vector 

Determines the locality of the solution.  

Convex for                                 . 

Leading solution 

General solution 

Hansen and Mahoney (NIPS 2013, JMLR 2014) 



Semi-supervised eigenvectors 
Hansen and Mahoney (NIPS 2013, JMLR 2014) 

Convexity - The interplay between      and      . 

For            , one we can compute semi-
supervised eigenvectors using local graph 
diffusions, i.e., personalized PageRank. 

Approximate the solution using the Push 
algorithm [Andersen2006]. 



Semi-supervised eigenvectors 

Global eigenvectors Global eigenvectors 

Probability of random edges 

33 

Small-world example - The eigenvectors having smallest eigenvalues 
capture the slowest modes of variation. 



Semi-supervised eigenvectors 

Correlation with seed 

Semi-supervised eigenvectors 
Low correlation 

seed node 

Semi-supervised eigenvectors 
High correlation 

34 

Small-world example - The eigenvectors having smallest eigenvalues 
capture the slowest modes of variation. 



Semi-supervised eigenvectors 
Hansen and Mahoney (NIPS 2013, JMLR 2014) 

One seed per 
class 

Ten labeled samples per 
class used in a downstream 
classifier 

Semi-supervised eigenvector scatter plots 

Semi-supervised learning example - Discard the majority of the labels from MNIST dataset.  
We seek a basis in which we can discriminate between fours and nines.  



Semi-supervised eigenvectors 
Hansen and Mahoney (NIPS 2013, JMLR 2014) 

Localization/approximation of the Push algorithm is controlled by the      parameter 
that defines a threshold for propagating mass away from the seed set. 



Semi-supervised eigenvectors 
Hansen and Mahoney (NIPS 2013, JMLR 2014) 

Methodology to construct semi-supervised eigenvectors of a graph, i.e., local 
analogues of the global eigenvectors. 
•  Efficient to compute  
•  Inherit many nice properties that characterizes global eigenvectors of a graph 
•  Larger-scale: couples cleanly with Nystrom-based low-rank approximations 
•  Larger-scale: couples with local graph diffusions 
•  Code is available at: https://sites.google.com/site/tokejansenhansen/ 

Many applications:  
•  A spatially guided “searchlight” technique 
that compared to [Kriegeskorte2006] 
account for spatially distributed signal 
representations. 
•  Local structure in astronomical data 
•  Large-scale and small-scale structure in 
DNA SNP data in population genetics 
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Statistical regularization (1 of 3) 
Regularization in statistics, ML, and data analysis 
•  arose in integral equation theory to “solve” ill-posed problems 

•  computes a better or more “robust” solution, so better 
inference  

•  involves making (explicitly or implicitly) assumptions about data 

•  provides a trade-off between “solution quality” versus 
“solution niceness” 

•  often, heuristic approximation procedures have regularization 
properties as a “side effect”  

•  lies at the heart of the disconnect between the “algorithmic 
perspective” and the “statistical perspective” 



Statistical regularization (2 of 3) 
Usually implemented in 2 steps: 
•  add a norm constraint (or “geometric 
capacity control function”) g(x) to 
objective function f(x) 

•  solve the modified optimization problem 

 x’ = argminx f(x) + λ g(x) 

Often, this is a “harder” problem, 
e.g., L1-regularized L2-regression 

 x’ = argminx ||Ax-b||2 + λ ||x||1   



Statistical regularization (3 of 3) 
Regularization is often observed as a side-effect or 
by-product of other design decisions 
•  “binning,” “pruning,” etc. 

•  “truncating” small entries to zero, “early stopping” of iterations 

•  approximation algorithms and heuristic approximations engineers 
do to implement algorithms in large-scale systems 

BIG question: Can we formalize the notion that/when 
approximate computation can implicitly lead to “better” 
or “more regular” solutions than exact computation? 



Notation for weighted undirected graph 



Approximating the top eigenvector 
Basic idea: Given an SPSD (e.g., Laplacian) matrix A,  
•  Power method starts with v0, and iteratively computes 

 vt+1 = Avt / ||Avt||2   . 

•  Then, vt = Σi γi
t vi -> v1   . 

•  If we truncate after (say) 3 or 10 iterations, still have some mixing 
from other eigen-directions 

What objective does the exact eigenvector optimize? 
•  Rayleigh quotient R(A,x) = xTAx /xTx, for a vector x. 

•  But can also express this as an SDP, for a SPSD matrix X.  

•  (We will put regularization on this SDP!) 



Views of approximate spectral methods 
Three common procedures (L=Laplacian, and M=r.w. matrix): 

•  Heat Kernel: 

•  PageRank: 

•  q-step Lazy Random Walk: 

Question: Do these “approximation procedures” exactly 
optimizing some regularized objective? 



Two versions of spectral partitioning 

VP: 

R-VP: 



Two versions of spectral partitioning 

VP: SDP: 

R-SDP: R-VP: 



A simple theorem  
Modification of the usual 
SDP form of spectral to 
have regularization (but, 
on the matrix X, not the 
vector x). 

Mahoney and Orecchia  (2010)   



Three simple corollaries 
FH(X) = Tr(X log X) - Tr(X) (i.e., generalized entropy) 

 gives scaled Heat Kernel matrix, with t = η 

FD(X) = -logdet(X) (i.e., Log-determinant) 
 gives scaled PageRank matrix, with t ~ η 

Fp(X) = (1/p)||X||p
p (i.e., matrix p-norm, for p>1) 

 gives Truncated Lazy Random Walk, with λ ~ η 

( F() specifies the algorithm; “number of steps” specifies the η ) 

Answer: These “approximation procedures” compute 
regularized versions of the Fiedler vector exactly! 



Implicit Regularization and  
Algorithmic Anti-differentiation  

Given: Problem P 
Derive: solution 
characterization C 

Show: algorithm A  
finds a solution where 
C holds 

Publish, Profit?!

Gleich and Mahoney (2014)   

The Ideal World 

Given: “min-cut” 
Derive: “max-flow is 
equivalent to min-cut” 

Show: push-relabel 
solves max-flow  

Publish, Profit! 



Implicit Regularization and  
Algorithmic Anti-differentiation  

Given: Problem P 
Derive: approximate 
solution characterization C’ 

Show: algorithm A’ quickly  
finds a solution where C’ 
holds 

Publish, Profit?!

Gleich and Mahoney (2014)   

(The Ideal World)’ 

Given: “sparsest-cut” 
Derive: Rayleigh-
quotient approximation 

Show: power-method 
finds a good Rayleigh-
quotient !

Publish, Profit! 



Implicit Regularization and  
Algorithmic Anti-differentiation  

Given: Ill-defined task P 
Hack around until you find 
something useful 

Write paper presenting 
“novel heuristic” H for P 
and … 

Publish, Profit ...!

Gleich and Mahoney (2014)   

The Real World 

Given: “find communities” 
Hack around with details 
buried in code & never 
described  
Write paper describing novel 
community detection method 
that finds hidden communities !

Publish, Profit ... 



Implicit Regularization and  
Algorithmic Anti-differentiation  

Understand why H works 

Show heuristic H solves 
problem P’ 

Guess and check until you 
find something H solves 

Gleich and Mahoney (2014)   

E.g., Mahoney and Orecchia implicit regularization results. 

Given: “find communities” 

Hack around until you find 
some useful heuristic H 

Derive characterization of 
heuristic H 

Given heuristic H, is there a problem P’ such that H is an 
algorithm for P’ ?  



Implicit Regularization and  
Algorithmic Anti-differentiation  

If your algorithm is related 
to optimization, this is:  

Given a procedure H, what 
objective does it optimize? 

Gleich and Mahoney (2014)   

Given heuristic H, is there a problem P’ such that H is an 
algorithm for P’ ?  

In an unconstrained case, 
this is:  

Just “anti-differentiation”!! 

•  Just as anti-differentiation is harder than differentiation, expect that 
algorithmic anti-differentiation to he harder than algorithm design. 

• These details matter in many empirical studies, and can dramatically impact 
performance (speed or quality) 

• Can we get a suite of scalable primitives to “cut and paste” to obtain goos 
algorithmic and good statistical properties? 



Application: new connections between 
PageRank, spectral, and localized flow  

•  A new derivation of the PageRank vector for an 
undirected graph based on Laplacians, cuts, or flows 
•  A new understanding of the “push” methods to 
compute Personalized PageRank 
•  An empirical improvement to methods for semi-
supervised learning 

•  Explains remarkable empirical success of “push” 
methods 
•  An example of algorithmic anti-differentiation 

Gleich and Mahoney (2014)   



The PageRank problem/solution 
  The PageRank random surfer 
1.  With probability beta, follow a 

random-walk step 
2.  With probability (1-beta), 

jump randomly ~ dist. v. 
  Goal: find the stationary dist. x!

  Alg: Solve the linear system 

Symmetric adjacency matrix 
Diagonal degree matrix 

Solution 
Jump-vector Jump vector 



PageRank and the Laplacian 

Combinatorial Laplacian 



Push Algorithm for PageRank 
  Proposed (in closest form) in Andersen, Chung, Lang  

(also by McSherry, Jeh & Widom) for personalized PageRank 
  Strongly related to Gauss-Seidel (see Gleich’s talk at Simons for this) 

  Derived to show improved runtime for balanced solvers 

The 
Push 

Method!



Why do we care about “push”? 
1.  Used for empirical 

studies of 
“communities” 

2.  Used for “fast 
PageRank” 
approximation 

  Produces sparse 
approximations to 
PageRank!  

  Why does the “push 
method” have such 
empirical utility?  

v has a single one here 

Newman’s netscience 
379 vertices, 1828 nnz 
“zero” on most of the nodes 



Recall the s-t min-cut problem 

Unweighted incidence matrix 
Diagonal capacity matrix 



The localized cut graph 
Gleich and Mahoney (2014)   

  Related to a construction 
used in “FlowImprove”  
Andersen & Lang (2007); 
and Orecchia & Zhu (2014) 



The localized cut graph 
Gleich and Mahoney (2014)   

Solve the s-t min-cut



The localized cut graph 
Gleich and Mahoney (2014)   

Solve the “electrical flow” "
s-t min-cut



s-t min-cut -> PageRank 
Gleich and Mahoney (2014)   



PageRank -> s-t min-cut 
Gleich and Mahoney (2014)   

  That equivalence works if v is degree-weighted. 
  What if v is the uniform vector?  

  Easy to cook up popular diffusion-like problems and adapt 
them to this framework. E.g., semi-supervised learning (Zhou 
et al. (2004). 



Back to the push method 
Gleich and Mahoney (2014)   

Regularization 
for sparsity 

Need for 
normalization 



Large-scale applications 
A lot of work on large-scale data already implicitly 
uses variants of these ideas: 
•  Fuxman, Tsaparas, Achan, and Agrawal (2008): random walks on query-click for 
automatic keyword generation 

•  Najork, Gallapudi, and Panigraphy (2009): carefully “whittling down” 
neighborhood graph makes SALSA faster and better 

•  Lu, Tsaparas, Ntoulas, and Polanyi (2010): test which page-rank-like implicit 
regularization models are most consistent with data 

Question: Can we formalize this to understand when it 
succeeds and when it fails more generally? 



Conclusions 

Motivation: large informatics graphs 
•  Downward-sloping, flat, and upward-sloping NCPs (i.e., not “nice” at large 
size scales, but instead expander-like/tree-like) 

•  Implicit regularization in graph approximation algorithms 

Eigenvector localization & semi-supervised eigenvectors 
•  Strongly and weakly local diffusions 

•  Extension to semi-supervised eigenvectors 

Implicit regularization & algorithmic anti-differentiation 
•  Early stopping in iterative diffusion algorithms 

•  Truncation in diffusion algorithms 



MMDS Workshop on  
“Algorithms for Modern Massive Data Sets” 

(http://mmds-data.org) 

at UC Berkeley, June 17-20, 2014 

Objectives: 

-  Address algorithmic, statistical, and mathematical challenges in modern statistical 
data analysis. 

-  Explore novel techniques for modeling and analyzing massive, high-dimensional, and 
nonlinearly-structured data.  

- Bring together computer scientists, statisticians, mathematicians, and data analysis 
practitioners to promote cross-fertilization of ideas. 

Organizers: M. W. Mahoney, A. Shkolnik, P. Drineas, R. Zadeh, and F. Perez 

Registration is available now! 


