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Global spectral methods

Given the Laplacian L of a graph G = (V, E), solve the following:
minimize x ' Lx
subjectto x'Dx =1

x'D1=0

Good News: Things one can prove about this.
» Solution can be found by computing an eigenvector of L.
» Solution can be found by running a random walk to co.
» Solution is “quadratically good” (i.e., Cheeger's Inequality).

» Solution can be used for clustering, classification, ranking, etc.

Bad News: This is a very global thing and so often not useful.

» Can we localize it in some meaningful way?
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Motivation 1: Social and information networks



Networks and networked data

Lots of “networked” data!!

>

technological networks (AS,
power-grid, road networks)

biological networks (food-web,
protein networks)

social networks (collaboration
networks, friendships)

information networks
(co-citation, blog cross-postings,
advertiser-bidded phrase graphs

)

language networks (semantic
networks ...)

Interaction graph model of networks:

» Nodes represent “entities”

» Edges represent “interaction”
between pairs of entities



Three different types of real networks
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Information propagates local-to-glocal in different networks
in different ways
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Motivation 2: Machine learning data graphs



Use case!: Galactic spectra from SDSS

xj € R3%4 N ~ 500k

photon fluxes in ~ 10 A
wavelength bins

preprocessing corrects for
redshift, gappy regions

normalized by median flux
at certain wavelengths

raw spectrum in observed frame
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! Also results in neuroscience as well as genetics and mass spec imaging.
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Red vs. blue galaxies

b) blue galaxy image
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Dimension reduction in astronomy

An incomplete history:
» (Connolly et al., 1995): principal components analysis
» (Vanderplas & Connolly, 2009): locally linear embedding
> (Richards et al., 2009): diffusion maps regression
» (Yip, Mahoney, et al., 2013): CUR low-rank decompositions

Here:
» Apply global/local spectral methods to astronomical spectra
» Address both nonlinear structure and nonuniform density

» Explore locally-biased versions of these embeddings for a
downstream classification task



Constructing global diffusion embeddings

(Belkin & Niyogi, 2003; Coifman & Lafon, 2006)

N
j=1

lIxi = x>
Wij = exp <_Ei5j , Di= zj: Wi

In practice, only add k nearest-neighbor edges

Given data {x;} form graph with edge weights

Set ¢; = distance to point i's k/2 nearest-neighbor
The “lazy” transition matrix is M = $D~/2(D + W)D~1/2

Embedding given by leading non-trivial eigenvectors of M



Global embedding: effect of k

k=2
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Figure: Eigenvectors 3 and 4 of Lazy Markov operator, k = 2 : 2048



Global embedding: average spectra

Lazy Markov, k=32, autotuned
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Optimization approach to global spectral methods

Markov matrix related to combinatorial graph Laplacian L:

L% D — w =2DY2(] - M)D'/?

Can write v», the first nontrivial eigenvector of L, as the solution to

minimize x' Lx
subjectto x'Dx =1
x"D1=0

Similarly for v; with additional constraints XTDVJ' =0, <t.

Theorem. Solution can be found by computing an eigenvector. It
it is “quadratically good” (i.e., Cheeger's Inequality).



MOV optimization approach to local spectral methods
(Mahoney, Orecchia, and Vishnoi, 2009; Hansen and Mahoney, 2013; Lawlor, Budavari, Mahoney, 2015)
Suppose we have:

1. a seed vector s = xs, where S is a subset of data points

2. a correlation parameter k

MOV objective. The first semi-supervised eigenvector w; solves:
minimize x ' Lx
subject to x'Dx =1
x"D1=0
x"Ds > \/k

Similarly for wy with addition constraints XTDW_,' =0, <t

Theorem. Solution can be found by solving a linear equation. It is
“quadratically good” (with a local version of Cheeger's Inequality).



Local embedding: scale parameter and effect of seed
For an appropriate choice of ¢ and 7 = (k) < A2, one can show

wa = c(L—~+D)"Ds
= ¢o(Lg —yLk,)"Ds

(In practice, binary search to find “correct” ~.)
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Figure: (left) Global embedding with seeds in black. (middle, right)
Local embeddings using specified seeds.



Classification on global and local embeddings

Try to reproduce 5 astronomer-defined classes
Train multiclass logistic regression on global and local embeddings

Seeds chosen to discriminate one class (e.g., AGN) vs. rest
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Figure: (left) Global embedding, colored by class. (middle, right)
Confusion matrices for classification on global and local embeddings.
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Local spectral methods in worst-case theory



Local versus global spectral methods

Global spectral methods:
» Compute eigenvectors of matrices related to the graph.

» Provide “quadratically good" approximations to the best
partitioning of the graph (Cheeger’s Inequality).

» This provide inference control for classification, regression, etc.
Local spectral methods:

» Use random walks to find locally-biased partitions in large graphs.

> Can prove locally-biased versions of Cheeger's Inequality.

» Scalable worst-case running time; non-trivial statistical properties.
Success stories for local spectral methods:

» Getting nearly-linear time Laplacian-based linear solvers.

» For finding local clusters in very large graphs.

» For analyzing large social and information graphs.



Two different types of local spectral methods

Strongly-local methods:
» ST; ACL; C; AP: run short random walks.

» Theorem: If there is a small cluster near the seed node, they
you will find it, otherwise you will stop; and running time
depends on size of output, not the graph.

» You don’t even touch most of the nodes in a large graph.

» Very good in practice, especially the ACL push algorithm.

Weakly-local methods:
» MOV; HM: optimization objective with locality constraints.

» Theorem: If there is a small cluster near the seed node, they
you will find it, otherwise you will stop; and running time
depends on time to solve linear systems.

> You do touch all of the nodes in a large graph.
» Many semi-supervised learning methods have similar form.



The ACL push procedure

1L W =0/Y=01-p8)g, k=1
2. while any r; > 7d; d; is the degree of node j
3. A =R 4 (- rdip)§

Tdip i=J
4 Z =i 4 (s rdip)/dy i~
k) otherwise

5. k+—k+1
Things to note:
» This approximates the solution to the personalized PageRank problem:
> (I = BAD™1)X = (1 - B)V,
A= D"12AD~1/2
X = D1/2)7
» [aD + L]Z = oV, where 3 =1/(1+ ) and X = DZ.

» The global invariant 7= (1 — 8)vV — (I — BAD™1)X is maintained
throughout, even though 7 and X are supported locally.

» (I — BA)Y = (1 — B)D~Y/2V, where

> Question: What does this algorithm compute—approximately or exactly?



ACL theory, TCS style

Informally, here is the ACL algorithm:
» Diffuse from a localized seed set of nodes.

» Maintain two localized vectors such that a global invariant is
satisfied.

» Stop according to a stopping rule.

Informally, here is the ACL worst-case theory:
» If there is a good conductance cluster near the initial seed set,
then the algorithm will find it, and otherwise it will stop.
» The output satisfied Cheeger-like quality-of-approximation
guarantees.

» The running time of the algorithm depends on the size of the
output but is independent of the size of the graph.

Note: This is an approximation algorithm.
Question: What does this algorithm compute—exactly?



Constructing graphs that algorithms implicitly optimize
Given G = (V, E), add extra nodes, s and t, with weights connected to nodes
inSC VortoS.

Then, the s, t-minimum cut problem is:

c,1 = Z C(u,v)|Xu — Xv

(u,v)EE

min || Bx]|
xs=1,x=0

The £>-minorant of this problem is:

c2 = Z C(u,v)|Xu — xv|?

(u,v)€E

min || BX]|
xs=1,x¢=0

or, equivalently, of this problem:

. 1o 1 s 1.7,
Jmin_ SIBRIe2 =5 Y Cumlx—x [ =581
(u,v)EE



Implicit regularization in the ACL approximation algorithm

Let B(S) be the incidence matrix for the “localized cut graph,” for
vertex subset S, and let C(«) be the edge-weight matrix.

Theorem. The PageRank vector Z that solves (aD + L)Z = av,
with vV = ds/vol(S) is a renormalized solution of the 2-norm cut
computation:

min__1B(S)Tc(ey2:

Xs=1,xt=

Theorem. Let X be the output from the ACL push procedure, set
parameters right, and let Zg be the solution of:

B(S)Z D
25—12‘2 02,>02H (8)Z1E(ay2 + #lIDZ]1,

where 7= (1 Zg 0)7. Then X = DZ;/vol(S).
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Local spectral methods to robustify graph construction



Problems that arise with explicit graph construction

Question: What is the effct of “noise “ or “perturbations” or “arbitrary
decisions” in the construction of the graph on the output of the
subsequent graph algorithm.

Common problems with constructing graphs.

> Problems with edges/nonedges in explicit graphs (where arbitrary
decisions are hidden from the user).

> Problems with edges/nonedges in constructed graphs (where
arbitrary decisions are made by the user).

> Problems with labels associated with the nodes or edges (since the
“ground truth” may be unreliable).



Semi-supervised learning and implicit graph construction
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Figure: The s, t-cut graphs associated with four different constructions
for semi-supervised learning on a graph. The labeled nodes are indicated
by the blue and red colors. This construction is to predict the blue-class.

To do semi-supervised learning, these methods propose a diffusion equation:
Y =(L+aD)7's.

This equation “propagates” labels from a small set S of labeled nodes.
» This is equivalent to the minorant of an s, t-cut problem where the
problem varies based on the class.

» This is exactly the MOV local spectral formulation—that ACL
approximates the solution of and exactly solves a regularized version of.



Comparing diffusions: sparse and dense graphs, low and
high error rates
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Case study with toy digits data set
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Performance of the diffusions while varying the density by changing (a) o
or (b) varying r in the nearest neighbor construction. In both cases,
making the graph “denser” results in worse performance.



Densifying sparse graphs with matrix polynomials

Do it the usual way:
» Vary the kernel density width parameter o.

» Convert the weighted graph into a highly sparse unweighted
graph through a nearest neighbor construction.

Do it by coundint paths of different lengths:

> Run the Ay construction: given a graph with adjacency matrix
A, the graph Ay counts the number of paths of length up to k
between pairs of nodes:

» That is, oversparsify, compute Ay for k = 2,3,4, and then do
nearest neighbor construction.

(BTW, this is essentially what local spectral methods do.)



Error rates on densified sparse graphs
Neighs. Avg. Deg Neighs. k Avg. Deg

13 19.0 3 2 18.1
28 40.5 5 2 39.2
37 53.3 3 3 52.3
73 104.4 10 2 103.8
97 138.2 3 4 127.1

Table: Paired sets of parameters that give us the same non-zeros in a
nearest neighbor graph and a densified nearest neighborgraph Ag.

Zhou Zhou w. Push

Avg. Deg k=1 k>1 k=1 k>1
19 0.163 0.114 0.156 0.117

41 0.156 0.132 0.158 0.113

53 0.183 0.142 0.179 0.136

104 0.193 0.145 0.178 0.144
138 0.216 0.102 0.204 0.101

Table: Median error rates show the benefit to densifying a sparse graph
with the Ax construction. Using average degree of 138 outperforms all of
the nearest neighbor trials from previous figure.



Pictorial illustration
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We artificially densify this graph to Ay (for k =2,3,4,5) to compare
sparse and dense diffusions and implicit ACL regularization. (Unavoidable
errors are caused by a mislabeled node.) Things to note:

> On dense graphs, regularizing diffusions has smaller effect (b vs. d).
> In sparse graphs, regularizing diffusions has bigger effect (a vs. c).

> Regularized diffusions less sensitive to density changes than
unregularized diffusions (c vs. d).



Conclusion

» Many real data graphs are very not nice:

» data analysis design decisions are often reasonable but
somewhat arbitrary
> “noise” from label errors, node/edge errors, arbitrary decisions
hurt diffusion-bsed algorithms in different ways
» Many preprocessing design decisions make data more nice:
» “good” when algorithm users do it—it helps algorithms return
something meaningful
> “bad" when algorithm developers do it—algorithms don’t get
stress-tested on not nice data
> Local and locally-biased spectral algorithms:
» have very nice algorithmic and statistical properties
» can also be used to robustify the graph construction step to
arbitrariness of data preprocessing decisions
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