
Local graph analytics:
beyond characterizing
community structure

Michael W. Mahoney

(ICSI, AMP/RISE Lab, and Department of Statistics, UC Berkeley)

Joint work with K. Fountoulakis, J. Shun, X. Cheng, F. Roosta-Khorasani, D. Zhang, A. Pozdnoukhov, D. Gleich, E. Faerman, and F. Borutta

Local graph clustering: motivation!

Facebook social network: colour denotes class year!

Data: Facebook John Hopkins, A. L. Traud, P. J. Mucha and M. A. Porter, Physica A, 391(16), 2012!

Normalized cuts: finds 20% of the graph!

Data: Facebook John Hopkins, A. L. Traud, P. J. Mucha and M. A. Porter, Physica A, 391(16), 2012!

Local graph clustering: finds 3% of the graph!

Data: Facebook John Hopkins, A. L. Traud, P. J. Mucha and M. A. Porter, Physica A, 391(16), 2012!

Local graph clustering: finds 17% of the graph!

Data: Facebook John Hopkins, A. L. Traud, P. J. Mucha and M. A. Porter, Physica A, 391(16), 2012!

Collaboration network!

Data: general relativity and quantum cosmology collaboration network, J. Leskovec, J. Kleinberg and C. Faloutsos, ACM TKDD, 1(1), 2007!

Global graph clustering: normalized cuts!

Data: general relativity and quantum cosmology collaboration network, J. Leskovec, J. Kleinberg and C. Faloutsos, ACM TKDD, 1(1), 2007!

Local graph clustering: small clusters!

Data: general relativity and quantum cosmology collaboration network, J. Leskovec, J. Kleinberg and C. Faloutsos, ACM TKDD, 1(1), 2007!

Current algorithms and running time!

Global, weakly and strongly local methods!
Global methods:O(volume of graph) !
•  The workload depends on the size of the graph!

Weakly local methods:O(volume of graph) !
•  A seed set of nodes is given!
•  The solution is locally biased to the input seed set!
•  The workload depends on the size of the graph!

Strongly local methods: O(volume of output cluster)!
•  A seed set of nodes is given!
•  The solution is locally biased to the input seed set!

Global, weakly and strongly local methods!

Global! Weakly local! Strongly local!

Data: US Senate, P. Mucha, T. Richardson, K. Macon, M. Porter and J. Onnela, Science, vol. 328, no. 5980, pp. 876-878, 2010!

2008!1914!1860!1789!

Cluster quality!
We measure cluster quality using!

Conductance :=!
number of edges leaving cluster!

sum of degrees of vertices in cluster!

Conductance({A,B}) = 2/(2 + 2) = 1/2!
Conductance({A,B,C}) = 1/(2 + 2 + 3) = 1/7!

•  The smaller the conductance value the better!
•  Minimizing conductance is NP-hard, we use approximation algorithms!

A!

B!
C! D!

E!

F!

G!

H!

Cluster quality!
We measure cluster quality using!

Conductance :=!
number of edges leaving cluster!

sum of degrees of vertices in cluster!

Conductance({A,B}) = 2/(2 + 2) = 1/2!
Conductance({A,B,C}) = 1/(2 + 2 + 3) = 1/7!

•  The smaller the conductance value the better!
•  Minimizing conductance is NP-hard, we use approximation algorithms!

A!

B!
C! D!

E!

F!

G!

H!

Cluster quality!
We measure cluster quality using!

Conductance :=!
number of edges leaving cluster!

sum of degrees of vertices in cluster!

A!

B!
C! D!

E!

F!

G!

H!

Conductance({A,B}) = 2/(2 + 2) = 1/2!
Conductance({A,B,C}) = 1/(2 + 2 + 3) = 1/7!

•  The smaller the conductance value the better!
•  Minimizing conductance is NP-hard, we use approximation algorithms!

Cluster quality!
We measure cluster quality using!

Conductance :=!
number of edges leaving cluster!

sum of degrees of vertices in cluster!

A!

B!
C! D!

E!

F!

G!

H!

Conductance({A,B}) = 2/(2 + 2) = 1/2!
Conductance({A,B,C}) = 1/(2 + 2 + 3) = 1/7!

•  The smaller the conductance value the better!
•  Minimizing conductance is NP-hard, we use approximation algorithms!

Cluster quality!
We measure cluster quality using!

Conductance :=!
number of edges leaving cluster!

sum of degrees of vertices in cluster!

A!

B!
C! D!

E!

F!

G!

H!

Conductance({A,B}) = 2/(2 + 2) = 1/2!
Conductance({A,B,C}) = 1/(2 + 2 + 3) = 1/7!

•  The smaller the conductance value the better!
•  Minimizing conductance is NP-hard, we use approximation algorithms!

Local graph clustering methods!
•  MQI (strongly local): Lang and Rao, 2004!
•  Approximate Page Rank (strongly local): Andersen, Chung, Lang, 2006!
•  spectral MQI (strongly local): Chung, 2007!
•  Flow-Improve (weakly local): Andersen and Lang, 2008!
•  MOV (weakly local): Mahoney, Orecchia, Vishnoi, 2012!
•  Nibble (strongly local): Spielman and Teng, 2013!
•  Local Flow-Improve (strongly local): Orecchia, Zhu, 2014!
•  Deterministic HeatKernel PR (strongly local): Kloster, Gleich, 2014!
•  Randomized HeatKernel PR (strongly local): Chung, Simpson, 2015!

•  Sweep cut rounding algorithm

Shared memory parallel methods!
this talk!

•  We parallelize 4 strongly local spectral methods + rounding
1. Approximate Page Rank!
2. Nibble!
3. Deterministic HeatKernel Approximate Page-Rank!
4. Randomized HeatKernel Approximate Page-Rank!
5. Sweep cut rounding algorithm!

•  All local methods take various parameters
-  Parallel method 1: try different parameters independently in parallel!
-  Parallel method 2: parallelize algorithm for individual run
‣  Useful for interactive setting where tweaking of parameters is needed!

this talk!

Community structure!

Communities	 in	 large	 informatics	 graphs	

People	 imagine	 social	
networks	 to	 look	 like:	

Leskovec,	 Lang,	 Dasgupta,	 &	 Mahoney	 “Community	 Structure	 in	 Large	 Networks	 ...”	 (2009)	 	 	
Leskovec,	 Lang,	 &	 Mahoney	 “Community	 Structure	 in	 Large	 Networks	 ...”	 (2008,	 2010)	 	 	
Mahoney	 “Algorithmic	 and	 Statistical	 Perspectives	 on	 Large-‐Scale	 Data	 Analysis”	 (2010)	

How	 do	 we	 know	 this	 plot	 is	 “correct”?	 	

• 	 (since	 computing	 conductance	 is	 intractable)	

• 	 Lower	 Bound	 Result;	 Structural	 Result;	 Modeling	 Result;	 Etc.	

• 	 Algorithmic	 Result	 (ensemble	 of	 sets	 returned	 by	 different	 approximation	 algorithms	 are	 very	 different)	

• 	 Statistical	 Result	 (Spectral	 provides	 more	 meaningful	 communities	 than	 flow)	 	

Real	 social	 networks	
actually	 look	 like:	

Size-‐resolved	 conductance	
(degree-‐weighted	 expansion)	
plot	 looks	 like:	

Data	 are	 expander-‐like	 at	 large	
size	 scales	 !!!	

There	 do	 not	 exist	 good	 large	 clusters	
in	 these	 graphs	 !!!	

NCPs	 and	 three	 types	 of	 graphs	

CA-‐GrQc	 	 	 FB-‐Johns55	 	 	 US-‐Senate	 	 	

Jeub,	 Balachandran,	 Porter,	 Mucha,	 and	 Mahoney	 (2014)	

NCPs	 and	 core-‐periphery	 (or	 not)	

CA-‐GrQc	 	 	

10
0

10
1

10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0

size

co
n
d
u
ct
an

ce

CA-GrQc

FB-Johns55

US-Senate

10
0

10
1

10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0

10
1

10
2

size

co
n
d
u
ct
an

ce
ra
ti
o

CA-GrQc

FB-Johns55

US-Senate

0
0.5
1

FB-‐Johns55	 	 	 US-‐Senate	 	 	

Jeub,	 Balachandran,	 Porter,	 Mucha,	 and	 Mahoney	 (2014)	

Approximate Page-Rank!

Personalized Page-Rank vector!
Degree matrix D!

A B C D E F G H

A 2!

B 2!

C 3!

D 4!

E 1!

F 2!

G 1!

H 1!Pick a vertex u of interest and define a vector:!

a teleportation parameter 0 ≤ α ≤ 1 and W = AD-1 then the PPR vector is given by solving:!

A!

B!
C! D!

E!

F!

G!

H!

Adjacency matrix A!
A B C D E F G H

A 1! 1!

B 1! 1!

C 1! 1! 1!

D 1! 1! 1! 1!

E 1!

F 1! 1!

G 1!

H 1!

Approximate Personalized Page-Rank!
R. Andersen, F. Chung and K. Lang. Local graph partitioning using Page-Rank, FOCS, 2006!

Run a coordinate descent solver for PPR until: any vertex u satisfies r[u] ≥ -αρd[u] !

•  r is the residual vector, p is the solution vector !
•  ρ>0 is tolerance parameter!

Initialize: p = 0, r = -αs
While termination criterion is not met do
1.  Choose any vertex u where r[u] < -αρd[u]
2.  p[u] = p[u] - r[u]
3.  For all neighbours v of u: r[v] = r[v] + (1-α)r[u]A[u,v]/d[u]
4.  r[u] = 0

residual update!

Final step: round the solution p using sweep cut.!

Algorithm idea: iteratively spread probability mass from vector s around the graph.!

Approximate Personalized Page-Rank!
R. Andersen, F. Chung and K. Lang. Local graph partitioning using Page-Rank, FOCS, 2006!

Initialize: p = 0, r = -αs!
While termination criterion is not met do!
1.  Choose any vertex u where r[u] < -αρd[u]
2.  p[u] = p[u] - r[u]!
3.  For all neighbours v of u: r[v] = r[v] + (1-α)r[u]A[u,v]/d[u]!
4.  r[u] = 0!

A!

B!

C! D!

E!

F!

G!

H!
p=0, r=0!

p=0, r=-α!

p=0, r=0!

p=0,r=0!

p=0, r=0!

p=0, r=0!

p=0, r=0!

p=0, r=0!

Approximate Personalized Page-Rank!
R. Andersen, F. Chung and K. Lang. Local graph partitioning using Page-Rank, FOCS, 2006!

Initialize: p = 0, r = -αs!
While termination criterion is not met do!
1.  Choose any vertex u where r[u] < -αρd[u]!
2.  p[u] = p[u] - r[u]
3.  For all neighbours v of u: r[v] = r[v] + (1-α)r[u]A[u,v]/d[u]!
4.  r[u] = 0!

A!

B!

C! D!

E!

F!

G!

H!
p=0, r=0!

p=0.1, r=-α!

p=0, r=0!

p=0,r=0!

p=0, r=0!

p=0, r=0!

p=0, r=0!

p=0, r=0!

Approximate Personalized Page-Rank!
R. Andersen, F. Chung and K. Lang. Local graph partitioning using Page-Rank, FOCS, 2006!

Initialize: p = 0, r = -αs, where s is a probability vector!
While termination criterion is not met do!
1.  Choose any vertex u where r[u] < -αρd[u]!
2.  p[u] = p[u] - r[u]!
3.  For all neighbours v of u: r[v] = r[v] + (1-α)r[u]A[u,v]/d[u]
4.  r[u] = 0

A!

B!

C! D!

E!

F!

G!

H!
p=0, r=-0.45!

p=0.1, r=0!

p=0, r=-0.45!

p=0,r=0!

p=0, r=0!

p=0, r=0!

p=0, r=0!

p=0, r=0!

Approximate Personalized Page-Rank!
R. Andersen, F. Chung and K. Lang. Local graph partitioning using Page-Rank, FOCS, 2006!

Initialize: p = 0, r = -αs!
While termination criterion is not met do!
1.  Choose any vertex u where r[u] < -αρd[u]
2.  p[u] = p[u] - r[u]
3.  For all neighbours v of u: r[v] = r[v] + (1-α)r[u]A[u,v]/d[u]
4.  r[u] = 0

A!

B!

C! D!

E!

F!

G!

H!
p=0.045, r=0!

p=0.1, r=-0.2025!

p=0, r=-0.6525!

p=0,r=0!

p=0, r=0!

p=0, r=0!

p=0, r=0!

p=0, r=0!

Approximate Personalized Page-Rank!
R. Andersen, F. Chung and K. Lang. Local graph partitioning using Page-Rank, FOCS, 2006!

Initialize: p = 0, r = -αs, where s is a probability vector!
While termination criterion is not met do!
1.  Choose any vertex u where r[u] < -αρd[u]
2.  p[u] = p[u] - r[u]
3.  For all neighbours v of u: r[v] = r[v] + (1-α)r[u]A[u,v]/d[u]
4.  r[u] = 0

A!

B!

C! D!

E!

F!

G!

H!
p=0.045, r=-0.1957!

p=0.1, r=-0.3982!

p=0.0653, r=0!

p=0,r=-0.1957!

p=0, r=0!

p=0, r=0!

p=0, r=0!

p=0, r=0!

Running time APPR!

•  At each iteration APPR touches a single node and its neighbours!
- Let supp(p) be the support of vector p at termination which satisfies vol(supp(p)) ≤ 1/(αρ)
- Overall until termination the work is: O(1/(αρ)) [Andersen, Chung, Lang, FOCS, 2006]!

•  We store vectors p and r using sparse sets!
- We can only afford to do work proportional to nodes and edges currently touched
- We used unordered_map data structure in STL (Standard Template Library)!
- Guarantees O(1/(αρ)) work!

Variational Perspective!
APPR is an approximation algorithm but what is it minimizing?!

where!
•  B: is the incidence matrix!
•  Z, H: are diagonal scaling matrices!

Kimon Fountoulakis, F. Roosta-Khorasani, J. Shun, X. Cheng, M. Mahoney. Variational Perspective of Local Graph Clustering, arXiv:1602.01886v1.!

Kimon Fountoulakis, D. Gleich, M. Mahoney. An optimization approach to locally-biased graph algorithms, arXiv:1607.04940.!

Incidence matrix B!
A B C D E F G H

A-B 1! -1!

A-C 1! -1!

B-C 1! -1!

C-D 1! -1!

D-E 1! -1!

D-F 1! -1!

D-G 1! -1!

F-H 1! -1!

Variational Perspective!

Kimon Fountoulakis, F. Roosta-Khorasani, J. Shun, X. Cheng, M. Mahoney. Variational Perspective of Local Graph Clustering, arXiv:1602.01886v1.!

Kimon Fountoulakis, D. Gleich, M. Mahoney. An optimization approach to locally-biased graph algorithms, arXiv:1607.04940.!

•  Proximal gradient descent (standard method in optimization)!
✓ converges to the solution without touching nodes that are zero at optimality.!
✓ Running time: O(1/(αρ) x log factor on α 1/α and 1/ρ).!
✓ The result holds for unweighted graphs as well.!

• The volume of the nodes that are non-zero at optimality is bounded by 1/ρ.!
✓  For unweighted graphs this translates to at most 1/ρ non-zeros at optimality.!

• The optimal solution of the l1-reg. problem has local Cheeger-like guarantees.!

Variational Perspective!
•  Is accelerated proximal gradient descent a strongly local method?!

•  If yes, then we expect O(1/sqrt(α) x 1/ρ) running time, compared to O(1/αρ)!

Shared memory parallelization!

Running time: work depth model!

Model !
•  Work: number of operations required!
•  Depth: longest chain of sequential dependencies !

Note that our results are not model dependent. !

Let P be the number of cores available.!

By Brent’s theorem [1] an algorithm with work W and depth D has overall
running time: W/P + D.!
In practice W/P dominates. Thus parallel efficient algorithms require the same !
work as its sequential version.!

Work depth model: J. Jaja. Introduction to parallel algorithms. Addison-Wesley Profesional, 1992 !

Brent’s theorem: [1] R. P. Brent. The parallel evaluation of general arithmetic expressions. J ACM (JACM), 21(2):201-206, 1974 !

Parallel Approximate Personalized Page-Rank!
While termination criterion is not met do!
1.  Choose ALL (instead of any) vertex u where r[u] < -αρdeg[u]!
2.  p[u] = p[u] - r[u]!
3.  For all neighbours v of u: r[v] = r[v] + (1-α)/(2deg[u])r[u]!
4.  r[u] = (1-α)r[u]/2!

•  Asymptotic work remains the same: O(1/(αρ)).
•  Parallel randomized implementation: work O(1/(αρ)) and depth O(log(1/(αρ)).

- Keep track of two sparse copies of p and r!
- Concurrent hash table for sparse sets <— important for O(1/(αρ)) work!
- Use atomic increment to deal with conflicts!
- Use of Ligra (Shun and Blelloch 2013) to process only “active” vertices and their edges !

•  Same theoretical graph clustering guarantees, Fountoulakis et al. 2016.!

Data!
Input graph! Num. vertices! Num. edges!

soc-JL! 4,847,571! 42,851,237!

cit-Patents! 6,009,555! 16,518,947!

com-LJ! 4,036,538! 34,681,189!

com-Orkut! 3,072,627! 117,185,083!

Twitter! 41,652,231! 1,202,513,046!

Friendster! 124,836,180! 1,806,607,135!

Yahoo! 1,413,511,391! 6,434,561,035!

Performance!

•  Slightly more work for the parallel version!
•  Number of iterations is significantly less!

Performance!

•  3-16x speed up!
•  Speedup is limited by small active set in some iterations and memory effects!

Network community profile plots!

•  O(105) approximate PPR problems were solved in parallel for each plot, !

Friendster, 124M nodes, 1.8B edges ! Yahoo, 1.4B nodes, 6.4B edges!

•  Agrees with conclusions of [Leskovec et al. 2008], i.e., good clusters tend to be small.!

Rounding: sweep cut!
•  Round returned vector p of approximate PPR!
-  1st step (O(1/(αρ) log(1/(αρ))) work): Sort vertices by non-increasing value of
non-zero p[u]/d[u]!

-  2nd step (O(1/(αρ)) work): Look at all prefixes of sorted order and return the
cluster with minimum conductance, !

E!A!

B!

C! D! G!

F! H!2nd!

1st! 3rd! 4th!
Sorted vertices: {A,B,C,D}!

Cluster! Conductance!
{A}! 1!

{A,B}! 1/2!
{A,B,C} 1/7

{A,B,C,D}! 3/11!

Parallel sweep cut!
•  1st step: Sort vertices by non-increasing value of non-zero p[u]/d[u].!

-  Use parallel sorting algorithm, O(1/(αρ) log(1/(αρ))) work and O(log(1/(αρ)) depth.!
•  2nd step: Look at all prefixes of sorted order and return the cluster with minimum
conductance.!
-  Naive implementation: for each sorted prefix compute conductance, O((1/(αρ))2).!
- We design a parallel algorithm based on integer sorting and prefix sums that
takes O(1/(αρ)) time.

- The algorithm computes the conductance of ALL sets with a single pass over
the nodes and the edges.

Parallel sweep cut: 2nd step!
Incidence matrix B!

A B C D E F G H

A-B 1! -1!

A-C 1! -1!

B-C 1! -1!

C-D 1! -1!

D-E 1! -1!

D-F 1! -1!

D-G 1! -1!

F-H 1! -1!

Sorted vertices: {A,B,C,D}!
Cluster! Sum cols B! Volume! Conductance!

{A}! 2 2 2/2=1!

{A,B}! 2! 4! 2/4=1/2!
{A,B,C}! 1! 7! 1/7!

{A,B,C,D}! 3! 11! 3/11!

E!A!

B!
C! D! G!

F! H!

•  Sort vertices!
- work: O(1/(αρ) log(1/(αρ))), depth: O(log(1/(αρ)))!

•  Represent matrix B with a sparse set using vertex identifiers!
 and the order of vertices!

- work: O(1/(αρ)), depth: O(log(1/(αρ)))!
•  Use prefix sums to sum elements of the columns!

- work: O(1/(αρ)), depth: O(log(1/(αρ)))!

Parallel sweep cut: performance!

Node Embeddings!

Locality and Structure Aware Graph Node
Embedding (Lasagne)!

• Embed nodes into lower dimensional spaces in an unsupervised way!
✓ Takes into account local structure !

• Useful for!
✓ Multi-label classification (experiments follow in next slides)!

• What is the method?!
✓ Run local graph clustering from each node (runs in nearly linear time)!
✓ Get context for each node by sampling neighbors using the Personalized
PageRank vector of each node.!
✓ Build a context matrix for word-to-vec model.!
✓ Train the word-to-vec model.!

Datasets!
•  Protein-Protein Interactions (PPI): !

This is a subgraph of the PPI network for Homo Sapiens.!
!
•  BlogCatalog:!

 This is a social network graph where each of the 10,312 nodes corresponds to a user and the
333,983 edges represent the friendship relationships between bloggers. 39 different interest
groups provide the labels.!
!
•  IMDb Germany: !

This kind of artificial dataset is created from the IMDb movie database. It consists of 32,732
nodes, 1,175,364 edges and 27 labels. Each node represents an actor/actress who played in a
german movie. Edges connect actors/actresses that were in a cast together and the node labels
represent the genres that the corresponding actor/actress played. !
!
•  Flickr: !

The Flickr network is a quite dense social network graph with 80,513 nodes and 5,899,882
edges. Each node describes a user and the links represent friendships. !

Datasets Overview!
Blogcatalog!

-  Social Network!
-  Nodes: 10312 (Blogger)!
-  Edges: 333983 (Friendship links)!
-  Considered classes: 29 (Blog categories)!

!
!
!
!
!
!
!

PPI!
-  Protein-Protein-Interaction Network!
-  Nodes: 3890 (Proteins)!
-  Edges: 38739 (Interactions)!
-  Considered classes: 34 (Biological states)!

!

!

Datasets Overview!
IMDb Germany!

-  Collaboration Network!
-  Nodes: 32732 (Actors)!
-  Edges: 1175364 (Collaborations)!
-  Considered classes: 25 (Genres of the movies)!

!
!
!
!
!
!
!

Flickr!
-  Social Network!
-  Nodes: 80513 (Users)!
-  Edges: 5899882 (Friendship links)!
-  Considered classes: 195 (Interest group memberships)!

!

!

Word2Vec [Mikolov, 2013]!
-  Learning word representations technique from NLP!
-  Word representations are learned based on their context (Distributional

Hypothesis - words in similar contexts are similar)!
… how to stop puppy from barking… !
… barking dog stole my sleep… !

https://www.tensorflow.org/versions/r0.12/tutorials/word2vec/index.html

 0 …0 1 0 … 0 barking

puppy
x T WContext WEmbedding

Recent “node embedding” work!
DeepWalk [Perozzi, 2014]!
-  Adaptation of word2vec to graphs!
-  Learning representations of nodes in the graph!
-  ‘Sentences’ are represented by random walks: n random walks of size t!

-  The sequence of nodes in random walk is interpreted as “sentence”!
-  For each node in the random walk w nodes visited previously to it and w nodes visited after it are interpreted as

its context!
-  Evaluation with Multi-Label classification!
!
Line [Tang, 2015]!
-  Separately earns representations based on direct neighbours and neighbours of direct neighbours!
-  Final representation vector is the concatenation of both representation!
!
node2vec [Grover, 2016]!
-  Different sampling strategy for random walk (Breadth vs. Depth first)!
-  DFS learns Homophily (highly interconnected nodes are similar) !
-  BFS learns Structural Equivalence (nodes with similar structural roles are similar)!
-  Combination of both for the random walk (2nd order random walk):!
!

!

Recent “node embedding” work!
-  The main difference is how the neighborhood is explored!

-  Strong assumptions about neighborhood structure:!

-  Distance to the relevant neighbours!

-  Neighborhoods of all nodes follow the same pattern!

-  node2vec:!
-  Additional parameters p and q !
-  Preprocessing quadratic in node degree !

!

Lasagne!
-  Node embedding based on Personal PageRank (PPR) with the node as only

seed (adaptation of ACL06 algorithm)!

-  PPR describes the local neighborhood!
-  Only assumption is the level of locality: teleportation parameter!
-  Sampling of training instances using PPR entries as weights!

-  Captures locality more accurately!

-  Instead of skip-gram/cbow:!

-  Node as part of own context!

-  Discard own weight, replace through the second largest!

NCP plots of datasets!

Multi-label classification!

Social Models!

Decision Making!
  Predicting choices of individuals is in high demand for computational social sciences,
economics etc.!

  Digital networking facilitates information flow and spread of influence among individuals.!
  Objective: social graph regularization for latent class discrete choice models.

  Individuals with an edge in the social network have higher probability of having the same
latent class.!

Graphical model (plate notation)

  Expressiveness of parametric modeling!
  Descriptive exploratory power of latent class !
  Social network regularization!

Combines

  the range of inferences possible with the
state-of-the-art discrete choice models !

Extends

Preliminary Results!

  Start of study: students are not influenced by smoker
friends, prediction is similar for all models.!

  End of study: some students were influenced by
smoker friends, prediction is better for the social latent
class model.!

Summary

  D. Zhang, K. Fountoulakis, J. Cao, M. Yin, M. Mahoney, A.
Pozdnoukhov. “Social Discrete Choice Models”, arXiv:1703.07520!

Reference

Social Mobility (ongoing work)!
  Activity based travel demand models are essential tools used in
transportation planning and regional development scenario evaluation.!

  Activity prediction is performed by using cell phone data, i.e., call detail
records and GPS data.!

  Objective: incorporate social influence in activity prediction tasks.
  Construct social graphs using cell phone data which together with GPS
data are feed into a Long Short-Term Memory neural network for activity
prediction.!

Real-time Personalized Prediction (ongoing work)!
  Objective: develop models with personalized solution, i.e., personalized solutions correspond to
higher likelihood. !

  Real-time: training the model requires “local” running time since only highly influential individuals
are touched. !
  Does not require clipping the graph a-priori, we let the optimal solution to “decide” which
individuals are the most important.!

  Data and social graph are considered within a single model, i.e., not a two-stage procedure.!

Personalize the solution by localizing the social
graph

  By personalizing starting point of the
algorithm!

  Maintaining local operations per iteration!
  Early termination, i.e., free lunch!

New solvers with local
running time

  K. Fountoulakis. F. Roosta-Khorasani, J. Shun, X. Cheng and M. Mahoney.
“Variational Perspective of Local Graph Clustering”, arXiv:1602.01886.!

Preliminary work

Conclusions!

•  Local spectral methods!
✓  Variants of usual global spectral methods that are biased toward a small part of large data.!
✓  Strong algorithmic and statistical theory.!
✓  Very good in practice, e.g., characterizing community structure. !
!
•  Beyond community structure.!
✓  Variational perspective: unifying framework and several improved variants.!
✓  Shared memory parallel implementations of billion node graphs.!
✓  Combine with NLP w2v ideas for better node embedding and classification.!
✓  Starting to combine with social discrete choice and real-time prediction models!
!

