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Physics Informed Learning?

2J. Tinsley Oden's Commemorative Speech: “THE THIRD PILLAR: The Computational Revolution of Science and Engineering”, Honda Prize, 2013.

Computational Science is an important tool that we can use to 
incorporate physical invariances into learning, but until recently it 
was missing from mainstream ML.

“Computational Science can analyze past events and look into the 
future. It can explore the effects of thousands of scenarios for or in 
lieu of actual experiment and be used to study events beyond the 
reach of expanding the boundaries of experimental science”
–Tinsley Oden, 2013

To make further progress in ML it is crucial that we incorporate 
computational science into learning.
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Largely missing from 
Science (and ML!) today



Questions?

ØQ0: What is a “Foundation Model”?

ØQ1: Can we hope to train a “Foundation Model” for SciML?

ØQ2: Would incorporating physical knowledge help?  If so, how to do it?

ØQ3: Foundations?

ØQ4: Implementations?

ØQ6: Applications?

ØQ6: Looking forward?
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General-purpose technologies that can support a diverse range of use cases. 

Built using well-established techniques from ML: 
• NNs, self-supervised learning, transfer learning, etc.

New paradigm in ML: 
• general-purpose models are “reusable infrastructure,” instead of bespoke/one-off solutions
• building foundation models is highly resource-intensive (100M - 1B USD, people, data, compute)
• adapting a foundation model for a specific use case or using it directly is much less expensive.

Term was created/popularized by Stanford Institute for Human-Centered Artificial Intelligence 
(HAI) Center for Research on Foundation Models (CRFM): 
• Bommasani et al. ``On the Opportunities and Risks of Foundation Models'' arXiv:2108.07258.

What is a foundation model?
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Other possible names: 
• large language model - too narrow, given the focus is not only language 
• self-supervised model - too specific, to the training objective
• pretrained model - suggests the important action happened after pretraining
• foundational model - suggests the model provides fundamental principles

Foundation model: 
• emphasize the intended function (i.e., amenability to subsequent further development) rather 

than modality, architecture, or implementation. 

Early examples were language models (LMs) like Google's BERT and OpenAI's GPT-n series. 
More recently, developed across a range of modalities: 
• images; music; time series; robotic control; etc. (?)
• Lots of areas of science: astronomy, radiology, climate, genomics, coding, mathematics, etc. (?) 

What is a foundation model?
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Computational 
Science

Neuroscience

Data

How to view Scientific Machine Learning



How to view Scientific Machine Learning
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Computational 
Science

Neuroscience

Data

ML is a "horizontal”:
• Provides a standard applicable across multiple cross-areas
• Like the iphone, or roads/railroads, or energy infrastructure, or HPC

Domain Sciences are "verticals”:
• They own domain acquisition, insight, analysis, interpretation, etc.
• You need to be a domain expert to push state of the art

High-profile successes of SciML have taken place in industry:
• "Horizontal" companies that provide tech platforms and have lots of ML expertise
• Not "vertical" companies that know one science domain and use ML for that one goal

What do business leaders care about?
• No CEO cares about ML; they care about money
• Winners are those who invest heavily in this "means to an end" ML infrastructure
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Train on data from: 
• Atmosphere: Climate and Weather processes
• Land: Water and Ecosystem processes 
• Subsurface: Heterogeneous flows and seismicity 
• Language models: e.g., if you want to learn 1/f noise

Transfer learn on data from:
• Astronomy: to discover habitable exoplanets
• Materials Science: to learn physics across scales in an end-to-end way
• Chemistry: to learn interatomic potentials for MD simulation 
• Fire/Floods/Etc.: to learn distributions of extreme events well enough to create insurance markets
• Nuclear Physics: to learn classified data from public data

How is this even possible?  My data are special/unique?
• No; NOT so.
• You are NOT so unique/special: ML algorithms predict movies you watch better than you do

What might be possible with a meaningfully Scientific FM?
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Option 1:
• Ask ChatGPT (or whatever LLM), post 

fine-tuning, to hypothesize new drugs, or 
what comes after the Top quark, or …

Option 2: 
• Use ChatGPT embeddings in a model 

for some other scientific objective.

Option 3: 
• Understand the methodology of ML* 
• Apply that methodology to Scientific data 
• Multi-modal Scientific data could be text 
• It could be simulation, experiment, etc.
• Incorporate spatio-temporal inductive 

biases into architecture and compute
• Develop foundations for SciML

Just call ChatGPT? Or apply the M.O. of ML to Science?

*Scale data size, model size, and compute so none of them saturate, then transfer learn.



The M.O. of ML: Foundation models for SciML?

12

Create and pre-train on diverse PDE systems
Vary/Sample all inputs (PDE coefficients, source functions, …) 
 Include multiple differential operators, predict PDE solution

Neural 
Operator

Foundation 
Model

Foundation Models for SciML
Solve multiple systems using the same pre-trained 

model, outperforming training from scratch

PDE 1

PDE 2

PDE 3

Inputs 
𝑓, K, 𝑣, …

∇ ⋅ K	∇𝑢 + 𝑣 ⋅ ∇𝑢 +	… = 𝑓

Outputs 
𝑢 Inputs 

𝑓, K, 𝑣, …
Outputs 

𝑢

"Towards Foundation Models for Scientific Machine Learning: Characterizing Scaling and Transfer Behavior," Subramanian, Harrington, Keutzer, Bhimji, Morozov, Mahoney, 
and Gholami, arXiv:2306.00258, NeurIPS23. 

*Scale data size, model size, and compute so none of them saturate, then transfer learn.



The M.O. of ML: Physics control knobs for changing solutions
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The M.O. of ML: OOD transfer behavior

14"Towards Foundation Models for Scientific Machine Learning: Characterizing Scaling and Transfer Behavior," Subramanian, Harrington, Keutzer, Bhimji, Morozov, Mahoney, 
and Gholami, arXiv:2306.00258, NeurIPS23. 



Transfer behavior with model size

15



Many open problems/limitations

• Going beyond simulation data to with “real” experimental/observational data
– Our data comes from numerical simulations of dynamical systems with known coefficients.
– Need to test data from observations or (simulations + observations)

•  NN architecture
– We did not change the FNO model architecture.
– We know it is not the right model for all kinds of SciML problems.

• More complex PDEs
– 3D, time, space-time, high-resolution, multi-scale

• Self-supervision in pre-training
– Physics losses, spatiotemporal masking (from CV)
– Inductive biases to be continuous, well-posed w.r.t. constraints/discontinuities

16
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Unsupervised pretraining and in-context learning?

"Data-Efficient Operator Learning via Unsupervised Pretraining and In-Context Learning," Chen, Song, Ren, Subramanian, Morozov, and Mahoney, arXiv:2402.15734
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Combining domain-driven and data-driven models?



Methods for Incorporating Physics into Learning
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Ø Method 1: Enforce physical laws as hard constraints either in:
– NN Architecture: still an open problem
– Optimization: very difficult to train the NN with such constraints

Ø Method 2: Train on lots of data and let NN learn physics based operators
– Neural Operator like methods

Ø Method 3: Use penalty methods and add the PDE residual to the loss.
– PINN like methods: very easy to implement with any NN architecture

Ø Method 4: Use a combination of Neural Operator and PINNs
– Uses a combination of observation data points as well as physical 

constraints added as soft penalty to the loss

Xu K, Darve E. Physics constrained learning for data-driven inverse modeling from sparse observations. arXiv preprint arXiv:2002.10521. 2020 Feb 24.
Raissi M, Perdikaris P, Karniadakis GE. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear 
partial differential equations. Journal of Computational Physics. 2019 Feb 1;378:686-707. 
[Weinan et al. 2017; Raissi et al. 2019; Rackauckas et al. 2020; Hennigh et al. 2021; Lu et al. 2021]
Li et al. 2021]
Etc.



Sounds good … but this is not the entire story …

• There are a lot of subtleties in adding a soft-constraint:
– Methods actually do not work so well, even for simple problems

• To study this, we chose three families of PDEs:
– Advection (aka wave equation)
– Reaction 
– Reaction-Diffusion

• Soft-constrained PINN-like models fail to learn relevant physics in all these cases 
– Since there are many moving parts to ML training
– The relevant ML methodologies don’t play well with scientific methodologies
– Reasons for the failure modes are interesting and informative

21



PINN can fail to learn Advection*

22
Krishnapriyan AS, Gholami*A, Zhe S, Kirby RM, Mahoney MW. Characterizing possible failure modes in physics-informed neural networks. NeurIPS, 2021.

� = 30

<latexit sha1_base64="TI8qOvLytWub/vChAqGgr7AInKU="></latexit>

*Nothing special about advection: same holds true for other PDEs..



Training: Optimization Challenges with PINNs

23Illustration credit: Roman Amici, Mike Kirby
Krishnapriyan* AS, Gholami* A, Zhe S, Kirby RM, Mahoney MW. Characterizing possible failure modes in physics-informed neural networks. NeurIPS, 2021.
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One way to address failure modes: ProbConserve

"Learning Physical Models that Can Respect Conservation Laws," Hansen, Maddix, Alizadeh, Gupta, and Mahoney, arXiv:2302.11002, ICML23, Physica D (2024)
"Using Uncertainty Quantification to Characterize and Improve Out-of-Domain Learning for PDEs," Mouli, Maddix, Alizadeh, Gupta, Stuart, Mahoney, Wang, arXiv:2403.10642 

1. Compute mean and variance estimates
2. Update model (with oblique projection, 

depending on heteroscedasticity 
structure) 

3. Good for sharp discontinuities
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Illustrative recent proof-of-principle directions:

• ContinuousNet: “numerical” convergence tests

• Traditional vs Modern ML UQ: Over- vs under-parameterized models

• Weight diagnostics: WeightWatcher Analysis and HTSR

• Time Series: LEM, ConvLEM, Chronos

Foundations more generally
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Foundations more generally: ContinuousNet

"Learning continuous models for continuous physics," Krishnapriyan, Queiruga, Erichson, and Mahoney, arXiv:2202.08494, Comm Phys (2023) 
"Continuous-in-Depth Neural Networks," Queiruga, Erichson, Taylor, and Mahoney, arXiv:2008.02389

1. Convergence test based on numerical analysis 
theory

2. Verifies whether a model has learned an underlying 
continuous dynamics

3. Good for super-resolution, iterative dynamics, etc.
4. Applies to NNs, SINDy, etc.
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Traditional UQ versus Modern UQ in overparameterized vs underparameterized models

Foundations more generally: traditional vs modern ML UQ

"The Interpolating Information Criterion for Overparameterized Models," Hodgkinson, van der Heide, Salomone, Roosta, and Mahoney, arXiv:2307.07785
"When are ensembles really effective?," Theisen, Kim, Yang, Hodgkinson, and Mahoney, arXiv:2305.12313, NeurIPS23
"Monotonicity and Double Descent in Uncertainty Estimation with Gaussian Processes," Hodgkinson, van der Heide, Roosta, and Mahoney, arXiv:2210.07612, ICML23
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Foundations more generally: weight diagnostics

Use methods from disordered 
systems theory, random 
matrix theory and statistical 
physics to diagnose practical 
problems in state-of-the art 
neural networks

• “Predicting trends in the quality of state-of-the-art neural 
networks without access to training or testing data,” 
Martin, Peng, and Mahoney, arXiv:2002.06716 (2020) 

• “Statistical Mechanics Methods for Discovering 
Knowledge from Modern Production Quality Neural 
Networks, Martin and Mahoney,” KDD (2019) 

• “Traditional and Heavy-Tailed Self Regularization in 
Neural Network Models, Martin and Mahoney,” ICML 
(2019) 

• “Heavy-Tailed Universality Predicts Trends in Test 
Accuracies for Very Large Pre-Trained Deep Neural 
Networks,” Martin and Mahoney, SDM (2019) 

• “Implicit Self-Regularization in Deep Neural Networks: 
Evidence from Random Matrix Theory and Implications 
for Learning,” Martin and Mahoney, arXiv:1810.01075 
(2018)

• (https://github.com/CalculatedContent/ww-trends-2020)
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Foundations more generally: Time Series

"Chronos: Learning the Language of Time Series," Ansari et al., arXiv:2403.07815
"Long Expressive Memory for Sequence Modeling," Rusch, Mishra, Erichson, and Mahoney, arXiv:2110.04744, ICLR22
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Model Size Increased Exponentially in 2018-22

32
Amir Gholami, Zhewei Yao, Sehoon Kim, Michael W. Mahoney, Kurt Keutzer, AI and Memory Wall, IEEE Micro, 2024.

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8


SqueezeLLM Overview
Breaking Memory Wall with Dense-and-Sparse Quantization

33
Kim*, S., Hooper*, C., Gholami*, A., Dong, Z., Li, X., Shen, S., Mahoney, M.W. and Keutzer, K. SqueezeLLM: Dense-and-Sparse Quantization. arXiv:2306.07629.



Implementations: “Full stack” design

34

Rethink the design, training, inference, and role of data for successful application of NNs in SciML
• Different than computational design for ML/LLMs in industry
• Different than computational design in HPC and scientific simulation

Data

Training

NN Architecture Design
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Popular Past Challenges:
• Learn solutions to PDEs
• Learn operators new laws of physics
• Learn dynamical systems

Lesson 1: Don’t solve a past problem that some well-established domain solves.*
Lesson 2: Don’t solve domain problems that are only well-define to domain expert.**

Important Future Challenges:
• Extreme value forecasting/estimation
• Multi-scale modeling/analysis
• High-frequency inverse scattering

Goal: Focus on future challenges that are real scientific problems that cut across 
domains and that play well with ML methodologies.

Example scientific challenges
 

*They will beat you up, even if you do better than them.
**How ignorant can I be about your domain and still solve a problem you care about?
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Foundational methods: can be useful in your vertical …

"Learning Physics for Unveiling Hidden Earthquake Ground Motions via Conditional Generative Modeling," Ren, Nakata, Lacour, Naiman, Nakata, Song, Bi, Malik, Morozov, 
Azencot, Erichson, and Mahoney, arXiv:2407.15089
"WaveCastNet: An AI-enabled Wavefield Forecasting Framework for Earthquake Early Warning," Lyu, Nakata, Ren, Mahoney, Pitarka, Nakata, and Erichson, arXiv:2405.20516 
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… for science: 
• Earthquake early warning: to turn off critical infrastructure
• Scientific GenAI: to uncover physically-meaningful data ground motions
• Etc.
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Foundational methods: SuperBench

"SuperBench: A Super-Resolution Benchmark Dataset for Scientific Machine Learning," Ren, Erichson, Subramanian, San, Lukic, and Mahoney, arXiv:2306.14070

1. A super-resolution benchmark for SciML
2. High-resolution fluid flow, cosmology, and weather 

datasets with dimensions up to 2048 × 2048
3. Pixel-level difference, human-level perception 

domain-motivated error metrics
4. Extensible framework 

Up-sampling

SR: !!"(#)

Down-sampling

Degradation: !(#) t

Coarse-grained data Fine-scale data

Overview

cosmo, bicubic

(a)

(b)
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Data Sets
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SciGPT: Scalable Foundation Model for Scientific Machine Learning

Motivation: In spite of recent effort, there is no scientific foundation model 
(SFM) that: 
(1) has been trained on a broad range of data 
(2) across different domains, and space and time scales, 
(3) to gain an understanding of multiple physical processes and their interactions in a 

complex scientific system. 

Goal: To develop a broad-based SFM ``blueprint'' that: 
(1) is applicable via transfer learning to multiple scientific domains and 
(2) provides a clear blueprint to develop a general scientific foundation model. 

Longer Term: Will provide a clear path forward for more general investment: 
(1) for a general scientific foundation model and 
(2) for multiple domain-specific scientific ML models.
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SciGPT: Scalable Foundation Model for Scientific Machine Learning, cont.

Three main challenges: that currently block the development of a SFM: 
(1) lack of “neural scaling” w.r.t. model/data/compute as well as spatio-temporal 

scaling; 
(2) lack of control on out-of-distribution generalization; and 
(3) lack of broad-based multi-modal data for training.

Approach:  Adopt the main methodology that ML researchers do:
(1) used to develop CV and NLP FMs, 
(2) adapting those methods as needed to the properties of scientific data.

“Scale model and data and compute so none of them saturate, then transfer learn’’



Prediction of extreme events & impacts Learning physics across scales & Earth 
system components (atmosphere, land, 
subsurfaceEarthquakes

Observation

ML-generated

Climate impacts on watersheds, tipping points

Air temperature

Water temperature

E.g. power law dynamics common in natural 
systems

Possible SciGPT applications in X={Earth Sciences}?
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Possible Different Scientific Tasks
Prediction (in space and time).
• Temporal forecasting: weather, traffic, network intrusion, energy infrastructure, etc.
• Time series prediction across disciplines: extreme events; short, medium, long term
• E.g., predict the weather or air quality at a particular location using information from 

nearby observations, model forecasts, and remote sensing images. 

Inversion and imaging of physical parameters.
• Indirect experiments (e.g., seismic waves) are often used to invert for physical parameters 

(e.g., seismic velocities) that can be used for prediction/discovery 
• High-frequency regime: of particular interest, to identify fine-scale structures, but it is 

particularly challenging, doe to computationally expensive Fourier inversions

Sim-to-real.
• Transfer learn from simulations, using a small amount of real data.
• Transfer learn from low-quality simulations, using a small amount of higher-quality
• Transfer learn from ``in the lab,'' using a small amount of  ``in the field’’ data 
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Foundation Models are infrastructure:
• A foundation upon which to do stuff 
• Just like the computer, or iphone, or bridges, or electrical grid
• All these are impressive … until they are not

Look at history: computer science (industry) vs computational science (science) 
• Very similar forcing functions
• Expect similar outcomes
• Do we compute on the metal or with multiple layers of abstraction?
• Do we fit SciML into the form factor provided by industrial LMs?

Question: How can we deliver on the promise of Scientific ML?
• Give it a strong, robust, principled foundations
• Rooted in both scientific principles and ML principles

Looking forward …


