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Success Drivers of NNs in Modern ML

The key drivers for the success of NNs for Data Science applications are:

« Data: Abundance of training data (e.g., ImageNet)
» Theory: Better theory, especially for stochastic optimization

Data
» Hardware: Ability to train on large data with GPU hardware
Theory
Artificial “ Maths &
inictigence isialgation
£A Hardware

Al: Techniques that enable machines to have human-level of intelligence
ML: Methodologies to learn patterns in data and perform predictions

Data Science: Methods to draw insights from data (through math, stats,
visualization, etc.)
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i Hlustration from H. Sri Kovela !



Physics Informed Learning?

Computational Science is an important tool that we can use to
incorporate physical invariances into learning, but until recently it
was missing from mainstream ML.

“Computational Science can and Data
. It can explore the effects of thousands of scenarios for or in

lieu of actual experiment and be used to study events beyond the

reach of expanding the boundaries of experimental science”

~Tinsley Oden, 2013 Theory

To make further progress in ML it is crucial that we incorporate
computational science into learning. Hardware

Physics
Informed
Learning

Artificial Maths &
Statistics
visualization

EDA

Largely missing from
Science (and ML!) today

Intelligence




Questions?

» QO0: What is a “Foundation Model”?

» Q1: Can we hope to train a “Foundation Model” for SciML?

» Q2: Would incorporating physical knowledge help? If so, how to do it?
» Q3: Foundations?

» Q4: Implementations?

» Q6: Applications?

» Q6: Looking forward?
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What is a foundation model?

Informally:

“a machine learning model that is trained on broad data such that it can be applied
across a wide range of use cases”

HAI-CRFM Foundation Model Report:

“any model that is trained on broad data (generally using self-supervision at scale)
that can be adapted (e.g., fine-tuned) to a wide range of downstream tasks”

US President:

“an Al model that is trained on broad data; generally uses self-supervision; contains
at least tens of billions of parameters; is applicable across a wide range of contexts”

US House of Representatives:

“... at least one billion parameters, ... exhibits, or could be easily modified to exhibit,
high levels of performance at tasks that could pose a serious risk to security ..."



What is a foundation model?

General-purpose technologies that can support a diverse range of use cases.

Built using well-established techniques from ML.:
NNs, self-supervised learning, transfer learning, etc.

New paradigm in ML:
general-purpose models are “reusable infrastructure,” instead of bespoke/one-off solutions
building foundation models is highly resource-intensive (100M - 1B USD, people, data, compute)
adapting a foundation model for a specific use case or using it directly is much less expensive.

Term was created/popularized by Stanford Institute for Human-Centered Atrtificial Intelligence
(HAI) Center for Research on Foundation Models (CRFM):

Bommasani et al. "On the Opportunities and Risks of Foundation Models" arXiv:2108.07258.



What is a foundation model?

Other possible names:
large language model - too narrow, given the focus is not only language
self-supervised model - too specific, to the training objective
pretrained model - suggests the important action happened after pretraining
foundational model - suggests the model provides fundamental principles

Foundation model:

emphasize the intended function (i.e., amenability to subsequent further development) rather
than modality, architecture, or implementation.

Early examples were language models (LMs) like Google's BERT and OpenAl's GPT-n series.
More recently, developed across a range of modalities:

images; music; time series; robotic control; etc.

Lots of areas of science: astronomy, radiology, climate, genomics, coding, mathematics, etc.
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Just call ChatGPT? Or apply the M.O. of ML to Science?

Option 1:
. Ask ChatGPT (OI’ whatever |_|_|\/|)’ post BERKELEY LAB COMPUTING SCIENCES

f’."\ U.S. DEPARTMENT OF

\8/ENERGY

LAWRENCE BERKELEY NATIONAL LABORATORY

fine-tuning, to hypothesize new drugs, or '

what comes after the Top quark, or ... ows & venss | NN B

Can Al Foundation Models Drive Accelerated Scientific Discovery?

Option 2: The M.O. of ML: Can Al Foundation
. Use ChatGPT embeddings in a model Models Drive Accelerated Scientific
for some other scientific objective. Discovery?

NOVEMBER 10, 2023

Opt|0n 3: By Carol Pott
Contact: cscomms@Ibl.gov
- Understand the methodology of ML* i

Pre-trained artificial intelligence (Al) foundation models have generated a lot of excitement recently,

. Apply th at methOdOIOgy to SCIGntIfIC data most notably with Large Language Models (LLMs) such as GPT4 and ChatGPT. The term "foundation
. . . model" refers to a class of Al models that undergo extensive training with vast and diverse datasets,
® M u |t|'m0d al SC|ent|f|C data cou Id be teXt setting the stage for their application across a wide array of tasks. Rather than being trained for a
. . . single purpose, these models are designed to understand complex relationships within their training
® It COUId be Si mUIat|On, eXpe r ment, etC data. These models can adapt to various new objectives through fine-tuning with smaller, task-
. . . specific datasets. Once fine-tuned, these models can accelerate progress and discovery by rapidly
® I NnCco rporate S patl O'te m pO I’al N d u Ct|Ve analyzing complex data, making predictions, and providing valuable insights to researchers. The

magic lies in scaling the model, data, and computation in just the right way.

biases into architecture and compute
- Develop foundations for SciML

i *Scale data size, model size, and compute so none of them saturate, then transfer learn.



Foundation models for SciML?

/ Create and pre-train on diverse PDE systems \
Vary/Sample all inputs (PDE coefficients, source functions, ...)
Include multiple differential operators, predict PDE solution

V-KVu+v-Vu+ ..=f

Neural
—
Operator

11



Foundation models for SciML?

/ Create and pre-train on diverse PDE systems Foundation Models for SciML \
Vary/Sample all inputs (PDE coefficients, source functions, ...) Solve multiple systems using the same pre-trained
Include multiple differential operators, predict PDE solution model, outperforming training from scratch

V-KVu+v-Vu+ ..=f

Foundation
Model




Characterize Scaling and Transfer Behavior

Three common PDE systems: Poisson, Advection-Diffusion, Helmholtz

Choose FNO as the baseline model for all experiments

General strateqy for any system:

— Pre-train an FNO on a “large” pre-training dataset

— Fine-tune on a downstream dataset and compare with training from scratch
(from randomly initialized weights) on this dataset

Analysis by controlling:

— Downstream dataset availability
— Model size (parameter count)

— Extent of out-of-distribution (OOD) of downstream dataset using underlying
physics

13



PDE system 1: Poisson’s equation

—div KVu = f

» Inputs: diffusion tensor (K), forcing/source function (f)

» Qutputs: solution to the PDE (u)

« Training dataset: sample diffusion tensors and source functions

from a training distribution
n
— Source: f(x) = > ;2 ¢i(x)p;
* Linear combination of radial basis functions

— Diffusion: Sample eigenvalues of diffusion tensor and diffusion
direction

» Control physics through eigenvalue

14



PDE System 2: Advection-Diffusion

—divKVu+v-Vu=f

» |nputs: diffusion tensor (K), advection vector (v) ,

forcing/source function (f)

« Qutputs: solution to the PDE (u)

» Training dataset: sample diffusion tensors, advection

vectors, source functions from a training distribution
— Source and diffusion as in System 1

— Sample advection directions and scales

» Control physics through ratio of advection to diffusion

15



PDE System 3: Helmholtz

—Au+wu=f

* |nputs: wavenumber (w), forcing/source function (f)
« Qutputs: solution to the PDE (u)

» Training dataset: sample wavenumbers, source functions

from a training distribution
— Sources as in System 1/2
— Sample wavenumbers

« Control physics through wavenumber

16



Physics control knobs for changing solutions

Source Sampling

——— —

|

o ————

Increasing Sparsity of Gaussians

&

- ————————
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Pre-training and downstream task adaptation

* Pre-train: on 32K examples
— MSE loss

* Downstream datasets: Adapt/TL to new dataset

— with the same physics distribution
— with systematically larger deviations from the pre-training distributions

« Adaptation:
— Zero-shot: No fine-tuning, directly apply pre-trained model
— Few-shot: Fine-tuning the full model with small number of examples

* Analysis:
— Control #downstream examples, #model parameters

 Model Architecture is FNO:

— Instance normalization: allows FNO to process inputs with different scales

— Model size: scale up by controlling embedding dimension of the lifting layer and the hard
threshold mode cutoff .




Towards SciML foundations: OOD transfer behavior
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Other systems show similar OOD transfer behavior
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"Towards Foundation Models for Scientific Machine Learning: Characterizing

Scaling and Transfer Behavior," Subramanian, et al., arXiv:2306.00258, NeurlPS23

Search...

Computer Science > Machine Learning

[Submitted on 1 Jun 2023]

Towards Foundation Models for Scientific Machine Learning: Characterizing Scaling and
Transfer Behavior

Shashank Subramanian, Peter Harrington, Kurt Keutzer, Wahid Bhimji, Dmitriy Morozov, Michael Mahoney, Amir Gholami

Pre-trained machine learning (ML) models have shown great performance for a wide range of applications, in particular in natural language processing
(NLP) and computer vision (CV). Here, we study how pre-training could be used for scientific machine learning (SciML) applications, specifically in the
context of transfer learning. We study the transfer behavior of these models as (i) the pre-trained model size is scaled, (ii) the downstream training dataset
size is scaled, (iii) the physics parameters are systematically pushed out of distribution, and (iv) how a single model pre-trained on a mixture of different
physics problems can be adapted to various downstream applications. We find that-when fine-tuned appropriately-transfer learning can help reach
desired accuracy levels with orders of magnitude fewer downstream examples (across different tasks that can even be out-of-distribution) than training
from scratch, with consistent behavior across a wide range of downstream examples. We also find that fine-tuning these models yields more performance
gains as model size increases, compared to training from scratch on new downstream tasks. These results hold for a broad range of PDE learning tasks. All
in all, our results demonstrate the potential of the "pre-train and fine-tune" paradigm for SciML problems, demonstrating a path towards building SciML
foundation models. We open-source our code for reproducibility.

Comments: 16 pages, 11 figures
Subjects: Machine Learning (cs.LG); Numerical Analysis (math.NA)
Cite as: arXiv:2306.00258 [cs.LG]
(or arXiv:2306.00258v1 [cs.LG] for this version)
https://doi.org/10.48550/arXiv.2306.00258 €@



Many open problems/limitations

Going beyond simulation data to with “real” experimental/observational data
— Our data comes from numerical simulations of dynamical systems with known coefficients.
— Need to test data from observations or (simulations + observations)

NN architecture
— We did not change the FNO model architecture.
— We know it is not the right model for all kinds of SciML problems.

More complex PDEs
— 3D, time, space-time, high-resolution, multi-scale

Self-supervision in pre-training
— Physics losses, spatiotemporal masking (from CV)

— Inductive biases to be continuous, well-posed w.r.t. constraints/discontinuities
23



Unsupervised pretraining and in-context learning?

Search...

dI X1V > cs > arXiv:2402.15734

Computer Science > Machine Learning

[Submitted on 24 Feb 2024]

Data-Efficient Operator Learning via Unsupervised Pretraining and In-Context Learning
Wuyang Chen, Jialin Song, Pu Ren, Shashank Subramanian, Dmitriy Morozov, Michael W. Mahoney

Recent years have witnessed the promise of coupling machine learning methods and physical domain-specific insight for solving scientific problems based
on partial differential equations (PDEs). However, being data-intensive, these methods still require a large amount of PDE data. This reintroduces the need
for expensive numerical PDE solutions, partially undermining the original goal of avoiding these expensive simulations. In this work, seeking data
efficiency, we design unsupervised pretraining and in-context learning methods for PDE operator learning. To reduce the need for training data with
simulated solutions, we pretrain neural operators on unlabeled PDE data using reconstruction-based proxy tasks. To improve out-of-distribution
performance, we further assist neural operators in flexibly leveraging in-context learning methods, without incurring extra training costs or designs.
Extensive empirical evaluations on a diverse set of PDEs demonstrate that our method is highly data-efficient, more generalizable, and even outperforms
conventional vision-pretrained models.

Subjects: Machine Learning (cs.LG); Machine Learning (stat.ML)
Cite as:  arXiv:2402.15734 [cs.LG]
(or arXiv:2402.15734v1 [cs.LG] for this version)
https://doi.org/10.48550/arXiv.2402.15734 O

1 "Data-Efficient Operator Learning via Unsupervised Pretraining and In-Context Learning," Chen, Song, Ren, Subramanian, Morozov, and Mahoney, arXiv:2402.15734 !



Questions?

> QO0: What is a “Foundation Model”?

» Q1: Can we hope to train a “Foundation Model” for SciML?

» Q2: Would incorporating physical knowledge help? If so, how to do it?
» Q3: Foundations?

» Q4: Implementations?
» Q6: Applications?
» Q6: Looking forward?
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Combining domain-driven and data-driven models?

Characterizing possible failure modes
in physics-informed neural networks

Aditi S. Krishnapriyan*'2, Amir Gholami*-2,
Shandian Zhe®, Robert M. Kirby*, Michael W. Mahoney?>*
Science | DOI:10.1145/3524015 S (e 'Lawrence Berkeley National Laboratory, 2University of California, Berkeley,
3University of Utah, “International Computer Science Institute

Neu ral Networks Learn {aditikl, amirgh, mahoneymw}@berkeley.edu, {zhe, kirby}@cs.utah.edu
to Speed Up Simulations

Physics-informed machine learning is gaining attention, Abstract
but suffers from trainingissues.

Recent work in scientific machine learning has developed so-called physics-

HYSICAL SCIENTISTS AND en-
gineering research and de-
velopment (R&D) teams are
embracing neural networks
in attempts to accelerate

their simulations. From quantum me-
chanics to the prediction of blood flow
in the body, numerous teams have re-
ported on speedups in simulation by
swapping conventional finite-element
solvers for models trained on various
combinations of experimental and syn-
thetic data.




Physical Laws as Additional Sources of Data?

 NNs require a lot of data to train

 In addition to data, we know laws/constraints that govern physical phenomena
— Conservation of mass, momentum, energy
— We often have approximate models that can predict the system behavior

« Uses of physical knowledge
— Simulation data
— Add to the loss — as a hard or soft constraint
— Add inductive biases to the architecture

Lots of Physics Some Physics No Physics

i lllustration Credit: Prof. Karniadakis | Small Data Some Data Big Data

27



Methods for Incorporating Physics into Learning

» Method 1: Enforce physical laws as hard constraints either in:
— NN Architecture: still an open problem
— Optimization: very difficult to train the NN with such constraints

» Method 2: Train on lots of data and let NN learn physics based operators
— Neural Operator like methods

» Method 3: Use penalty methods and add the PDE residual to the loss.
— PINN like methods: very easy to implement with any NN architecture

> Method 4: Use a combination of Neural Operator and PINNs

— Uses a combination of observation data points as well as physical
constraints added as soft penalty to the loss

Xu K, Darve E. Physics constrained learning for data-driven inverse modeling from sparse observations. arXiv preprint arXiv:2002.10521. 2020 Feb 24.

Raissi M, Perdikaris P, Karniadakis GE. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear

partial differential equations. Journal of Computational Physics. 2019 Feb 1,378:686-707.

[Weinan et al. 2017; Raissi et al. 2019; Rackauckas et al. 2020; Hennigh et al. 2021, Lu et al. 2021] H

Lietal. 2021] H

Etc. i 28



Sounds good ... but this is not the entire story

* There are a lot of subtleties in adding a soft-constraint:
— Methods actually do not work so well, even for simple problems

» To study this, we chose three families of PDEs:
— Advection (aka wave equation)
— Reaction
— Reaction-Diffusion

» Soft-constrained PINN-like models fail to learn relevant physics in all these cases
— Since there are many moving parts to ML training
— The relevant ML methodologies don’t play well with scientific methodologies

— Reasons for the failure modes are interesting and informative .



Advection Equation

_+B—=O, .’EEQ,te[OaT]a

Initial condition: u(z,0) = sin(z),
Periodic boundary conditions: u(O, t) = u(27r, t)

(X, t;) @ i II1911’1£ = )\]—"”’&t + Bﬂxllg PDE Residual

Uz +|I’&($, 0) = sm(:v)||§ Initial Condition

Ut -|-”1'),(m = 271') — ’f),(:L‘ = 0)”% Boundary Condition

____________________________________________________________________________________________________________________________________J 30
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PINN can fail to learn Advection™

——Relative error —+ Absolute error
-

6l

Exact .. 100; , -

Solution 5 5

1 j =1 11071 S

8.0 02 0.4 0.6 0.8 1.0 § 10_1 g 1 é

3] ] )
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= 1072 | 3

PINN K | é’
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B

hgp|bdmh|dfh .

Krishnapriyan AS, Gholami*A, Zhe S, Kirby RM, Mahoney MW. Characterizing possible failure modes in physics-informed neural networks. NeurlPS, 2021.



PINN can fail to learn Advection

Exact solution Predicted solution
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*Nothing special about advection: same holds true for other PDEs..

Krishnapriyan AS, Gholami*A, Zhe S, Kirby RM, Mahoney MW. Characterizing possible failure modes in physics-informed neural networks. NeurlPS, 2021.
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Training: Optimization Challenges with PINNs

Data Loss Function: Physics Loss Function:
Ly =|a— u||g Lr = ||t + by — aww”g

mein,C = L, + Arie

Without Physics Loss With Physics Loss

i Hlustration credit: Roman Amici, Mike Kirby
' Krishnapriyan* AS, Gholami* A, Zhe S, Kirby RM, Mahoney MW. Characterizing possible failure modes in physics-informed neural networks. NeurlPS, 2021.
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Rethinking PINN Training: Curriculum Learning

« The main idea is to start the training with simple physical constraints and introduce the
complexities iteratively throughout learning

» First let the NN learn the simple problems, before penalizing it for learning the exact PDE

Example: For the advection equation, we start to train the NN with very small velocities, and slowly
increase the velocity to the target one

: : --Regular training = Curriculum training
X o8 : (X, t;) @ a 30 —eeee e oo eee e s
* i » s 2
he e - e 20
% 6 . i 15
rrbinﬁz)\fﬂﬂt—i—ﬂﬁmllg 10
Hli(z, 0) — sin(a)|3 2

+Ha(z = 2m) — a(z = 0)|3

Training duration
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Questions?

> Q0: What is a “Foundation Model’?

» Q1: Can we hope to train a “Foundation Model” for SciML?

» Q2: Would incorporating physical knowledge help? If so, how to do it?
» Q3: Foundations?

» Q4: Implementations?

» Q6: Applications?

» Q6: Looking forward?
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One way to address failure modes: ProbConserve

1. Compute mean and variance estimates L SORCTANE | [ HadC-ANP | ProbConserv-ANE
2. Update model (with oblique projection,
. L] L] 3
depending on heteroscedasticity
structure)
. . iy 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3
3. Good for sharp discontinuities « e ot
=== |FUE SOlution
Solution profile u as a function as x Solution profile u as a functionas x  Solution profile u as a function as x (a) Solution profile.
Lo 1.25 t — t=0 1o t —— t=0.01
1.00 i ti0.3 0.8 - — th.OS
’; 05 o e S0 i " ANP SoftC-ANP HardC-ANP | ProbConserv-ANP
g 00 S £ 200 -
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—0s 0.25 0.2 +< 1504
5
-1.0 0.00 0.0
0 2 4 6 000 025 050 075 1.00 000 025 050 075 1.00 o 1004
X X X (@) 50 -

(a) easy: Diffusion equation (k = 1) (b) medium: PME (k(u) = u3) (c) hard: Stefan (discont. k(u)) 0 T
Figure 1: Illustration of the “easy-to-hard” paradigm for PDEs, for the GPME family of conservation equa- 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3
tions: (a) “easy” parabolic smooth (diffusion equation) solutions, with constant parameter k(u) = k = 1; e
(b) “medium” degenerate parabolic PME solutions, with nonlinear monomial coefficient &(u) = u™, with pa- Shock pOSItIO n | True shock

rameter m = 3 here; and (c) “hard” hyperbolic-like (degenerate parabolic) sharp solutions (Stefan equation)
with nonlinear step-function coefficient k(u) = 1>+, where 1¢ is an indicator function for event £.

(b) Posterior of the shock position.

i "Learning Physical Models that Can Respect Conservation Laws," Hansen, Maddix, Alizadeh, Gupta, and Mahoney, arXiv:2302.11002, ICML23, Physica D (2024) !
i "Using Uncertainty Quantification to Characterize and Improve Out-of-Domain Learning for PDEs," Mouli, Maddix, Alizadeh, Gupta, Stuart, Mahoney, Wang, arXiv:2403.10642 !



Foundations more generally

lllustrative recent proof-of-principle directions:

. ContinuousNet: “numerical” convergence tests
. Traditional vs Modern ML UQ: Over- vs under-parameterized models
. Weight diagnostics: WeightWatcher Analysis and HTSR

. Time Series: LEM, ConvLEM, Chronos



Foundations more generally: ContinuousNet

— Euler-Net: z,, + hV (z5;6) _ Euler-Net: z,, + 0.01N (zn;0)

1. Convergence test based on numerical analysis I~ .
theory 1K : ‘
2. Verifies whether a model has learned an underlying { ‘% . A N

continuous dynamics Fire

(a) Euler-Net (b) Euler-Net convergence test (c) Evaluated h is 10% of the trained At

3. Good for super-resolution, iterative dynamics, etc. T e

--~ Baseline numerical RK4: x, + RKA[F(z,))

4. Applies to NNs, SINDy, etc. r 'W 7o,
” Zlf
5 5t = of \ \ / / \ \
& z \
h =025 h=At=05 . X \ & \‘
10-12 1 /
TE ]07‘130’5 10" ‘10’“ 1072 1070 100 0 8 10
; Evaluated h Tlme
(d) RK4-Net (e) RK4-Net convergence test (f) Evaluated h is 10% of the trained At

Figure 2: Illustration of our convergence test with different ODE-Nets. (a) Schematic of an ODE-Net

Euler-Net

RK4-Net

! "Learning continuous models for continuous physics," Krishnapriyan, Queiruga, Erichson, and Mahoney, arXiv:2202.08494, Comm Phys (2023)
' i "Continuous-in-Depth Neural Networks," Queiruga, Erichson, Taylor, and Mahoney, arXiv:2008.02389 !



Foundations more generally: traditional vs modern ML UQ

Traditional UQ versus Modern UQ in overparameterized vs underparameterized models

MNIST MNIST Thyroid QSAR
@ 1.5
pOOOCO0
POOOOOO000 PoOOO00O
i ,.-"'"" ‘-..uo'" 1.0
1.0 ! 1.0 1.0 1.0
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pocoooccooe 0-5
0.5 '?.\“m 0.5 s ?q' 05 ‘::W booooooo
1
0.0 8 oo 0.0 oo |9® 0.0
102 104 10° 108 10* 105 102 10 102 104 102 104
# Random Features # Random Features # Random Features Max Leaf Nodes Max Leaf Nodes Max Leaf Nodes
-~ DER -~ EIR —@— Avg. Train Error -~ DER -0 EIR -@ Awg. Train Error

Figure 3: Bagged random feature classifiers. Figure 4: Random forest classifiers. Blacked dashed

Blacked dashed line represents the interpolation
threshold. Across all tasks, DER and EIR are maxi-
mized at this point, and then decrease thereafter.

line represents the interpolation threshold. Across all
tasks, DER and EIR are maximized at this point, and
then remain constant thereafter.

DER DER EIR
= 0.35
@ ' @ -..;_"r-' Iu [
_L,na 1.1 Ug) - . 1.1 N -0.30
5 -1.0 5 =3 | -10 :" | 0.25
< -0.9 < 1 0o =
m /M i
fos i Hhos & W
Width ‘Width Width
(a) Without LR decay. (b) With LR decay.

Figure 5: Large scale studies of deep ensembles on ResNet18/CIFAR-10. We plot the DER and EIR across a
range of hyper-parameters, for two training settings: one with learning rate decay, and one without. The black
dashed line indicates the interpolation threshold, i.e., the curve below which individual models achieve exactly
zero training error. Observe that interpolating ensembles attain distinctly lower EIR than non-interpolating
ensembles, and correspondingly have low DER (< 1), compared to non-interpolating ensembles with high
DER (> 1).

Er "The Interpolating Information Criterion for Overparameterized Models," Hodgkinson, van der Heide, Salomone, Roosta, and Mahoney, arXiv:2307.07785
1 "When are ensembles really effective?,” Theisen, Kim, Yang, Hodgkinson, and Mahoney, arXiv:2305.12313, NeurlPS23
i "Monotonicity and Double Descent in Uncertainty Estimation with Gaussian Processes," Hodgkinson, van der Heide, Roosta, and Mahoney, arXiv:2210.07612, ICML23



Foundations more generally: weight diagnostics

Use methods from disordered

systems theory, random Analyzing DNN Weight matrices with WeightWatcher
matri.x theory and statisticgl @ e
physics to diagnose practical

>3, Do Spectral analysis

U 2 v \>2. Take a weight matrix
> 4. Histogram of eigenvalues

problems in state-of-the art
neural networks

Random-like ESD p(A) Bulk+Spikes ESD p(A) Heavy Tailed ESD p(A)

MP fit oal =l MP fit 0.4/ Pemp(A)
PemplA) [N Pemp(A)

gl

* “Predicting trends in the quality of state-of-the-art neural \ @ W

networks without access to training or testing data,”
Martin, Peng, and Mahoney, arXiv:2002.06716 (2020)

e “Statistical Mechanics Methods for Discovering ‘ 3 ‘ \
Knowledge from Modern Production Quality Neural ] h | ] 4
Networks, Martin and Mahoney,” KDD (2019) ool ) 00l WLy ] ool e

Eigenvalues A of X = WTW Eigenvalues A of X = WTW Eigenvalues A of X = WTW

06{ | N 0.3

&

Spectral Density

o
N

| / \ 041 “‘ A 0.2

14
a

* “Traditional and Heavy-Tailed Self Regularization in
Neural Network Models, Martin and Mahoney,” ICML .
(2019) y “=p Analyze one layer of pre-trained model
* “Heavy-Tailed Universality Predicts Trends in Test »Compa re multiple layers of pre-trained model
Accuracies for Very Large Pre-Trained Deep Neural
Networks,” Martin and Mahoney, SDM (2019) “=p Monitor NN properties as you train your own model

¢ “Implicit Self-Regularization in Deep Neural Networks:
Evidence from Random Matrix Theory and Implications
for Learning,” Martin and Mahoney, arXiv:1810.01075
(2018)

¢ (https://github.com/CalculatedContent/ww-trends-2020)



Foundations more generally: Time Series

Published as a conference paper at ICLR 2022

LONG EXPRESSIVE MEMORY FOR SEQUENCE

MODELING

T. Konstantin Rusch
ETH Ziirich
trusch@ethz.ch

Michael W. Mahoney
ICSI and UC Berkeley

Siddhartha Mishra
ETH Ziirich

smishra@ethz.ch

mmahoney@stat.berkeley.edu

ABSTRACT

N. Benjamin Erichson
University of Pittsburgh
erichson@pitt.edu

Time Series Tokenization

Historical Time Series

Mean Scaling
—

Quantization
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Context Tokens
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Time Series
Language Model
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Next Token ID

Inference
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Figure 1: High-level depiction of CHRONOs. (Left) The input time series is scaled and quantized to obtain a sequence .
i "Chronos: Learning the Language of Time Series," Ansari et al., arXiv:2403.07815



Questions?

» QO0: What is a “Foundation Model”?

» Q1: Can we hope to train a “Foundation Model” for SciML?

» Q2: Would incorporating physical knowledge help? If so, how to do it?
» Q3: Foundations?

> Q4: Implementations?

» Q6: Applications?

» Q6: Looking forward?

42



Parameter Count (Billion)

Model Size Increased Exponentially in 2018-22
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https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

SqueezelLLM Overview

Breaking Memory Wall with Dense-and-Sparse Quantization

LLaMA Performance
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Implementations: Quantization

Search...

adI'Xx1V > cs > arXiv:2103.13630

Computer Science > Computer Vision and Pattern Recognition

[Submitted on 25 Mar 2021 (v1), last revised 21 Jun 2021 (this version, v3)]
A Survey of Quantization Methods for Efficient Neural Network Inference

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer

As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation,
manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation
is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers
to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization
is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years
due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from
floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory
footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not
surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of
computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep
Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have
presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the
evaluation of future research in this area.

Comments: Book Chapter: Low-Power Computer Vision: Improving the Efficiency of Artificial Intelligence
Subjects: Computer Vision and Pattern Recognition (cs.CV)
Cite as: arXiv:2103.13630 [cs.CV]
(or arXiv:2103.13630v3 [cs.CV] for this version)
https://doi.org/10.48550/arXiv.2103.13630 O



Implementations: HW-SW Co-design for Transformers

Full Stack Optimization of Transformer Inference: a Survey

Sehoon Kim* Coleman Hooper* Thanakul Wattanawong
sehoonkim@berkeley.edu chooper@berkeley.edu j-wat@berkeley.edu
UC Berkeley UC Berkeley UC Berkeley
Minwoo Kang Ruohan Yan Hasan Genc
minwoo_kang@berkeley.edu yrh@berkeley.edu hngenc@berkeley.edu
UC Berkeley UC Berkeley UC Berkeley
Grace Dinh Qijing Huang Kurt Keutzer
dinh@berkeley.edu jennyhuang@nvidia.com keutzer@berkeley.edu
UC Berkeley NVIDIA UC Berkeley
Michael W. Mahoney Yakun Sophia Shao Amir Gholami
mmahoney@stat.berkeley.edu ysshao@berkeley.edu amirgh@berkeley.edu
ICSI, LBNL, UC Berkeley UC Berkeley ICSI, UC Berkeley
ABSTRACT 1 INTRODUCTION

Recent advances in state-of-the-art neural network architecture de-
sign have been moving toward Transformer models. These models
achieve superior accuracy across a wide range of applications in
computer vision, natural language processing, and speech recog-
nition. This trend has been consistent over the past several years

L since Transformer maodels were originallv introduced. However.

Deep learning models have scaled up to billions of parameters
and billions of Multiply-Accumulate (MAC) operations during both
training and inference. As a result, there has been a growing interest
in computing these models efficiently and in deploying these com-
pute and memory-intensive workloads on resource-constrained
edge devices. These edge devices have tight energy and memory
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Implementations: “Full stack” design

Rethink the design, training, inference, and role of data for successful application of NNs in SciML
» Different than computational design for ML/LLMs in industry
« Different than computational design in HPC and scientific simulation

47




Questions?

» QO0: What is a “Foundation Model”?

» Q1: Can we hope to train a “Foundation Model” for SciML?

» Q2: Would incorporating physical knowledge help? If so, how to do it?
» Q3: Foundations?

» Q4: Implementations?

> Q6: Applications?

» Q6: Looking forward?
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Example scientific challenges

Popular Past Challenges:
Learn solutions to PDEs
Learn operators new laws of physics
Learn dynamical systems

Lesson 1: Don’t solve a past problem that some well-established domain solves.*
Lesson 2: Don’t solve domain problems that are only well-define to domain expert.**

Important Future Challenges:
Extreme value forecasting/estimation
Multi-scale modeling/analysis
High-frequency inverse scattering

Goal: Focus on future challenges that are real scientific problems that cut across
domains and that play well with ML methodologies.

i *They will beat you up, even if you do better than them.
i **How ignorant can | be about your domain and still solve a problem you care about?



Example scientific challenges
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Capturing wave propagation is a challenge

/ X s 1
kilometers & k 7 kilometers
0

Many uses (in seismology and elsewhere):

« Waveform forecasting for early warning

 Waveform simulation for HPC

« Waveform generation for imaging, ground
motion prediction, source inversion




Seq2Seq approach to forecast future waveforms

i 1 r«; ») V/( ( .\\ No need to know EQ
\\ 44/ magnitude, location,

\Reconstruct / weconstru Reco struct / O ri g i n ti m e, S O u rCe
‘L,{ . ConvLEM ConVLEM p a ra m ete rS

ConvLEM —>» ConvLEM —>» ConvLEM 1

Encoder State

"’Emberding" \ "KEmberdingic" ./ Embedding "\
4 fh) "'ﬁ‘ ( ‘)))
z, ) N\l k

e We use a sequence to sequence (seqg2seq) approach to forecast seismic
wavefields, consisting of encoder and decoder modules.

e The backbone of our seqg2seq model is a novel convolutional long expressive
memory model (convLEM), which allows us to jointly model multi-scale
structure in space and time.

e The ConvLEM model is based on an input-driven systems of coupled ordinary
differential equations, which can model multiple scales.

Work with Rie Nakata (LBNL), Ben Erichson (ICSI, LBNL), Dongwei Lyu (UCB), Arben Pitarka (LLNL)



38°30'N I

38°00N 1

37°30'N

kilometers

Waveform forecasting for synthetic point-source EQs

Use first 15.6 sec to predict 104.4 sec

Strike-slip point-sources
Source locations
. Along fault: 1 km interval over 60 km
. Depth: 2 — 15 km, 1 km interval
. A total of 960 simulations
. USGS Velocity models
. Finite-difference visco-elastic simulation (SW4)
. <0.5Hz
. Tested with dense regular grid and sparse
irregular sensor locations

37°00'N o

123°00'W

122°30'W




Forecasted waveforms, PGV, and arrival time
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Generalization to unseen event: M6
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Generative modeling for ground motion synthesis

Build a dynamic Variational Autoencoder to generate ground motions.

o Dynamic: incorporate temporal evolution by using RNN

Use STFT: for capturing both time and frequency features.

Conditional variables: coordinates of source and sensors, earthquake magnitudes.
o« GAN models: difficult to optimize and suffer from mode collapse.

STFT Dynamic VAE iSTFT

et s

X1.T

Normalization Phase info.

AI:T

M ’ xSI'C’ xI'CV

Work with P. Ren (LBNL), B. Erichson (LBNL, ICSI), R. Nakata (LBNL, MIT), N. Nakata (LBNL, MIT), M. Lacour, N. Abrahamson (UCB)
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Summa ry Waveform generation
Waveform forecasting

M= 2.51, Rpyp= 72.8km, M= 1.89, Rpyp= 20.82km, M= 2.8, Rpyp= 22.29km,

True Ns Predict Ns E"or: Predict_'rrue o Dpyp= 9.06km, Apy,= -37.78. — Dpyp= 10.49km, Apyp= 89.82. et Dpyp= 21.48km, Apyp=-116.51.
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Questions?

» QO0: What is a “Foundation Model”?

» Q1: Can we hope to train a “Foundation Model” for SciML?

» Q2: Would incorporating physical knowledge help? If so, how to do it?
» Q3: Foundations?

» Q4: Implementations?

» Q6: Applications?

> Q6: Looking forward?
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Looking forward ...

Foundation Models are infrastructure:
A foundation upon which to do stuff

Just like the computer, or iphone, or bridges, or electrical grid
All these are impressive ... until they are not

Look at history: computer science (industry) vs computational science (science)
Very similar forcing functions

Expect similar outcomes

Do we compute on the metal or with multiple layers of abstraction?
Do we fit SciML into the form factor provided by industrial LMs?

Question: How can we deliver on the promise of Scientific ML?
Give it a strong, robust, principled foundations
Rooted in both scientific principles and ML principles



