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Success Drivers of NNs in Modern ML

2
Illustration from H. Sri Kovela

AI: Techniques that enable machines to have human-level of intelligence
ML: Methodologies to learn patterns in data and perform predictions
Data Science: Methods to draw insights from data (through math, stats, 
visualization, etc.)
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The key drivers for the success of NNs for Data Science applications are:

• Data: Abundance of training data (e.g., ImageNet)
• Theory: Better theory, especially for stochastic optimization
• Hardware: Ability to train on large data with GPU hardware



Physics Informed Learning?

3J. Tinsley Oden's Commemorative Speech: “THE THIRD PILLAR: The Computational Revolution of Science and Engineering”, Honda Prize, 2013.

Computational Science is an important tool that we can use to 
incorporate physical invariances into learning, but until recently it 
was missing from mainstream ML.

“Computational Science can analyze past events and look into the 
future. It can explore the effects of thousands of scenarios for or in 
lieu of actual experiment and be used to study events beyond the 
reach of expanding the boundaries of experimental science”
–Tinsley Oden, 2013

To make further progress in ML it is crucial that we incorporate 
computational science into learning.
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Physics 
Informed 
Learning

Largely missing from 
Science (and ML!) today



Questions?

ØQ0: What is a “Foundation Model”?

ØQ1: Can we hope to train a “Foundation Model” for SciML?

ØQ2: Would incorporating physical knowledge help?  If so, how to do it?

ØQ3: Foundations?

ØQ4: Implementations?

ØQ6: Applications?

ØQ6: Looking forward?
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Informally:
• “a machine learning model that is trained on broad data such that it can be applied 

across a wide range of use cases”

HAI-CRFM Foundation Model Report:
• “any model that is trained on broad data (generally using self-supervision at scale) 

that can be adapted (e.g., fine-tuned) to a wide range of downstream tasks”

US President:
• “an AI model that is trained on broad data; generally uses self-supervision; contains 

at least tens of billions of parameters; is applicable across a wide range of contexts”

US House of Representatives:
• “... at least one billion parameters, ... exhibits, or could be easily modified to exhibit, 

high levels of performance at tasks that could pose a serious risk to security ..."

What is a foundation model?
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General-purpose technologies that can support a diverse range of use cases. 

Built using well-established techniques from ML: 
• NNs, self-supervised learning, transfer learning, etc.

New paradigm in ML: 
• general-purpose models are “reusable infrastructure,” instead of bespoke/one-off solutions
• building foundation models is highly resource-intensive (100M - 1B USD, people, data, compute)
• adapting a foundation model for a specific use case or using it directly is much less expensive.

Term was created/popularized by Stanford Institute for Human-Centered Artificial Intelligence 
(HAI) Center for Research on Foundation Models (CRFM): 
• Bommasani et al. ``On the Opportunities and Risks of Foundation Models'' arXiv:2108.07258.

What is a foundation model?
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Other possible names: 
• large language model - too narrow, given the focus is not only language 
• self-supervised model - too specific, to the training objective
• pretrained model - suggests the important action happened after pretraining
• foundational model - suggests the model provides fundamental principles

Foundation model: 
• emphasize the intended function (i.e., amenability to subsequent further development) rather 

than modality, architecture, or implementation. 

Early examples were language models (LMs) like Google's BERT and OpenAI's GPT-n series. 
More recently, developed across a range of modalities: 
• images; music; time series; robotic control; etc.
• Lots of areas of science: astronomy, radiology, climate, genomics, coding, mathematics, etc. 

What is a foundation model?
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Option 1:
• Ask ChatGPT (or whatever LLM), post 

fine-tuning, to hypothesize new drugs, or 
what comes after the Top quark, or …

Option 2: 
• Use ChatGPT embeddings in a model 

for some other scientific objective.

Option 3: 
• Understand the methodology of ML* 
• Apply that methodology to Scientific data 
• Multi-modal Scientific data could be text 
• It could be simulation, experiment, etc.
• Incorporate spatio-temporal inductive 

biases into architecture and compute
• Develop foundations for SciML

Just call ChatGPT? Or apply the M.O. of ML to Science?

*Scale data size, model size, and compute so none of them saturate, then transfer learn.



Foundation models for SciML?
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Create and pre-train on diverse PDE systems
Vary/Sample all inputs (PDE coefficients, source functions, …) 
 Include multiple differential operators, predict PDE solution

Neural 
Operator

Inputs 
𝑓, K, 𝑣, …

∇ ⋅ K	∇𝑢 + 𝑣 ⋅ ∇𝑢 +	… = 𝑓

Outputs 
𝑢



Foundation models for SciML?
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Create and pre-train on diverse PDE systems
Vary/Sample all inputs (PDE coefficients, source functions, …) 
 Include multiple differential operators, predict PDE solution

Neural 
Operator

Foundation 
Model

Foundation Models for SciML
Solve multiple systems using the same pre-trained 

model, outperforming training from scratch

PDE 1

PDE 2

PDE 3

Inputs 
𝑓, K, 𝑣, …

∇ ⋅ K	∇𝑢 + 𝑣 ⋅ ∇𝑢 +	… = 𝑓

Outputs 
𝑢 Inputs 

𝑓, K, 𝑣, …
Outputs 

𝑢



Characterize Scaling and Transfer Behavior

• Three common PDE systems: Poisson, Advection-Diffusion, Helmholtz

• Choose FNO as the baseline model for all experiments

•  General strategy for any system:
– Pre-train an FNO on a “large” pre-training dataset
– Fine-tune on a downstream dataset and compare with training from scratch 

(from randomly initialized weights) on this dataset 

• Analysis by controlling:
– Downstream dataset availability
– Model size (parameter count)
– Extent of out-of-distribution (OOD) of downstream dataset using underlying 

physics
13



PDE system 1: Poisson’s equation

• Inputs: diffusion tensor (K), forcing/source function (f)

• Outputs: solution to the PDE (u)

• Training dataset: sample diffusion tensors and source functions 
from a training distribution

– Source: 

• Linear combination of radial basis functions

– Diffusion: Sample eigenvalues of diffusion tensor and diffusion 
direction

• Control physics through eigenvalue

14
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PDE System 2: Advection-Diffusion

• Inputs: diffusion tensor (K), advection vector (v) , 
forcing/source function (f)

• Outputs: solution to the PDE (u)

• Training dataset: sample diffusion tensors, advection 
vectors, source functions from a training distribution

– Source and diffusion as in System 1

– Sample advection directions and scales

• Control physics through ratio of advection to diffusion
15
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PDE System 3: Helmholtz

• Inputs: wavenumber (w), forcing/source function (f)

• Outputs: solution to the PDE (u)

• Training dataset: sample wavenumbers, source functions 
from a training distribution

– Sources as in System 1/2

– Sample wavenumbers

• Control physics through wavenumber

16
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Physics control knobs for changing solutions
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Pre-training and downstream task adaptation
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• Pre-train: on 32K examples
– MSE loss

• Downstream datasets: Adapt/TL to new dataset 
– with the same physics distribution
– with systematically larger deviations from the pre-training distributions

• Adaptation:
– Zero-shot: No fine-tuning, directly apply pre-trained model
– Few-shot: Fine-tuning the full model with small number of examples 

• Analysis:
– Control #downstream examples, #model parameters

• Model Architecture is FNO:
– Instance normalization: allows FNO to process inputs with different scales
– Model size: scale up by controlling embedding dimension of the lifting layer and the hard 

threshold mode cutoff



Towards SciML foundations: OOD transfer behavior
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Other systems show similar OOD transfer behavior
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Transfer behavior with model size
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"Towards Foundation Models for Scientific Machine Learning: Characterizing 
Scaling and Transfer Behavior," Subramanian, et al., arXiv:2306.00258, NeurIPS23 



Many open problems/limitations

• Going beyond simulation data to with “real” experimental/observational data
– Our data comes from numerical simulations of dynamical systems with known coefficients.
– Need to test data from observations or (simulations + observations)

•  NN architecture
– We did not change the FNO model architecture.
– We know it is not the right model for all kinds of SciML problems.

• More complex PDEs
– 3D, time, space-time, high-resolution, multi-scale

• Self-supervision in pre-training
– Physics losses, spatiotemporal masking (from CV)
– Inductive biases to be continuous, well-posed w.r.t. constraints/discontinuities

23
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Unsupervised pretraining and in-context learning?

"Data-Efficient Operator Learning via Unsupervised Pretraining and In-Context Learning," Chen, Song, Ren, Subramanian, Morozov, and Mahoney, arXiv:2402.15734



Questions?
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Ø Q3: Foundations?

Ø Q4: Implementations?

Ø Q6: Applications?

Ø Q6: Looking forward?
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Combining domain-driven and data-driven models?



Physical Laws as Additional Sources of Data?

• NNs require a lot of data to train
• In addition to data, we know laws/constraints that govern physical phenomena

– Conservation of mass, momentum, energy
– We often have approximate models that can predict the system behavior

• Uses of physical knowledge
– Simulation data
– Add to the loss – as a hard or soft constraint
– Add inductive biases to the architecture

27
Illustration Credit: Prof. Karniadakis



Methods for Incorporating Physics into Learning

28

Ø Method 1: Enforce physical laws as hard constraints either in:
– NN Architecture: still an open problem
– Optimization: very difficult to train the NN with such constraints

Ø Method 2: Train on lots of data and let NN learn physics based operators
– Neural Operator like methods

Ø Method 3: Use penalty methods and add the PDE residual to the loss.
– PINN like methods: very easy to implement with any NN architecture

Ø Method 4: Use a combination of Neural Operator and PINNs
– Uses a combination of observation data points as well as physical 

constraints added as soft penalty to the loss

Xu K, Darve E. Physics constrained learning for data-driven inverse modeling from sparse observations. arXiv preprint arXiv:2002.10521. 2020 Feb 24.
Raissi M, Perdikaris P, Karniadakis GE. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear 
partial differential equations. Journal of Computational Physics. 2019 Feb 1;378:686-707. 
[Weinan et al. 2017; Raissi et al. 2019; Rackauckas et al. 2020; Hennigh et al. 2021; Lu et al. 2021]
Li et al. 2021]
Etc.



Sounds good … but this is not the entire story

• There are a lot of subtleties in adding a soft-constraint:
– Methods actually do not work so well, even for simple problems

• To study this, we chose three families of PDEs:
– Advection (aka wave equation)
– Reaction 
– Reaction-Diffusion

• Soft-constrained PINN-like models fail to learn relevant physics in all these cases 
– Since there are many moving parts to ML training
– The relevant ML methodologies don’t play well with scientific methodologies
– Reasons for the failure modes are interesting and informative

29



Advection Equation

30Krishnapriyan* AS, Gholami* A, Zhe S, Kirby RM, Mahoney MW. Characterizing possible failure modes in physics-informed neural networks. NeurIPS, 2021.



PINN can fail to learn Advection*

31
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*Nothing special about advection: same holds true for other PDEs..



PINN can fail to learn Advection

32
Krishnapriyan AS, Gholami*A, Zhe S, Kirby RM, Mahoney MW. Characterizing possible failure modes in physics-informed neural networks. NeurIPS, 2021.
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*Nothing special about advection: same holds true for other PDEs..



Training: Optimization Challenges with PINNs

33Illustration credit: Roman Amici, Mike Kirby
Krishnapriyan* AS, Gholami* A, Zhe S, Kirby RM, Mahoney MW. Characterizing possible failure modes in physics-informed neural networks. NeurIPS, 2021.



Rethinking PINN Training: Curriculum Learning

• The main idea is to start the training with simple physical constraints and introduce the 
complexities iteratively throughout learning

• First let the NN learn the simple problems, before penalizing it for learning the exact PDE

Example: For the advection equation, we start to train the NN with very small velocities, and slowly 
increase the velocity to the target one

34



Questions?

ØQ0: What is a “Foundation Model”?

ØQ1: Can we hope to train a “Foundation Model” for SciML?

ØQ2: Would incorporating physical knowledge help?  If so, how to do it?

ØQ3: Foundations?

ØQ4: Implementations?

ØQ6: Applications?

ØQ6: Looking forward?

35



36

One way to address failure modes: ProbConserve

"Learning Physical Models that Can Respect Conservation Laws," Hansen, Maddix, Alizadeh, Gupta, and Mahoney, arXiv:2302.11002, ICML23, Physica D (2024)
"Using Uncertainty Quantification to Characterize and Improve Out-of-Domain Learning for PDEs," Mouli, Maddix, Alizadeh, Gupta, Stuart, Mahoney, Wang, arXiv:2403.10642 

1. Compute mean and variance estimates
2. Update model (with oblique projection, 

depending on heteroscedasticity 
structure) 

3. Good for sharp discontinuities
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Illustrative recent proof-of-principle directions:

• ContinuousNet: “numerical” convergence tests

• Traditional vs Modern ML UQ: Over- vs under-parameterized models

• Weight diagnostics: WeightWatcher Analysis and HTSR

• Time Series: LEM, ConvLEM, Chronos

Foundations more generally
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Foundations more generally: ContinuousNet

"Learning continuous models for continuous physics," Krishnapriyan, Queiruga, Erichson, and Mahoney, arXiv:2202.08494, Comm Phys (2023) 
"Continuous-in-Depth Neural Networks," Queiruga, Erichson, Taylor, and Mahoney, arXiv:2008.02389

1. Convergence test based on numerical analysis 
theory

2. Verifies whether a model has learned an underlying 
continuous dynamics

3. Good for super-resolution, iterative dynamics, etc.
4. Applies to NNs, SINDy, etc.
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Traditional UQ versus Modern UQ in overparameterized vs underparameterized models

Foundations more generally: traditional vs modern ML UQ

"The Interpolating Information Criterion for Overparameterized Models," Hodgkinson, van der Heide, Salomone, Roosta, and Mahoney, arXiv:2307.07785
"When are ensembles really effective?," Theisen, Kim, Yang, Hodgkinson, and Mahoney, arXiv:2305.12313, NeurIPS23
"Monotonicity and Double Descent in Uncertainty Estimation with Gaussian Processes," Hodgkinson, van der Heide, Roosta, and Mahoney, arXiv:2210.07612, ICML23
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Foundations more generally: weight diagnostics

Use methods from disordered 
systems theory, random 
matrix theory and statistical 
physics to diagnose practical 
problems in state-of-the art 
neural networks

• “Predicting trends in the quality of state-of-the-art neural 
networks without access to training or testing data,” 
Martin, Peng, and Mahoney, arXiv:2002.06716 (2020) 

• “Statistical Mechanics Methods for Discovering 
Knowledge from Modern Production Quality Neural 
Networks, Martin and Mahoney,” KDD (2019) 

• “Traditional and Heavy-Tailed Self Regularization in 
Neural Network Models, Martin and Mahoney,” ICML 
(2019) 

• “Heavy-Tailed Universality Predicts Trends in Test 
Accuracies for Very Large Pre-Trained Deep Neural 
Networks,” Martin and Mahoney, SDM (2019) 

• “Implicit Self-Regularization in Deep Neural Networks: 
Evidence from Random Matrix Theory and Implications 
for Learning,” Martin and Mahoney, arXiv:1810.01075 
(2018)

• (https://github.com/CalculatedContent/ww-trends-2020)
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Foundations more generally: Time Series

"Chronos: Learning the Language of Time Series," Ansari et al., arXiv:2403.07815
"Long Expressive Memory for Sequence Modeling," Rusch, Mishra, Erichson, and Mahoney, arXiv:2110.04744, ICLR22
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Model Size Increased Exponentially in 2018-22

43
Amir Gholami, Zhewei Yao, Sehoon Kim, Michael W. Mahoney, Kurt Keutzer, AI and Memory Wall, IEEE Micro, 2024.

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8


SqueezeLLM Overview
Breaking Memory Wall with Dense-and-Sparse Quantization

44
Kim*, S., Hooper*, C., Gholami*, A., Dong, Z., Li, X., Shen, S., Mahoney, M.W. and Keutzer, K. SqueezeLLM: Dense-and-Sparse Quantization. arXiv:2306.07629.
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Implementations: Quantization



Implementations: HW-SW Co-design for Transformers

46



Implementations: “Full stack” design

47

Rethink the design, training, inference, and role of data for successful application of NNs in SciML
• Different than computational design for ML/LLMs in industry
• Different than computational design in HPC and scientific simulation

Data

Training

NN Architecture Design
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Popular Past Challenges:
• Learn solutions to PDEs
• Learn operators new laws of physics
• Learn dynamical systems

Lesson 1: Don’t solve a past problem that some well-established domain solves.*
Lesson 2: Don’t solve domain problems that are only well-define to domain expert.**

Important Future Challenges:
• Extreme value forecasting/estimation
• Multi-scale modeling/analysis
• High-frequency inverse scattering

Goal: Focus on future challenges that are real scientific problems that cut across 
domains and that play well with ML methodologies.

Example scientific challenges
 

*They will beat you up, even if you do better than them.
**How ignorant can I be about your domain and still solve a problem you care about?
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Example scientific challenges
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Capturing wave propagation is a challenge 

Many uses (in seismology and elsewhere):
• Waveform forecasting for early warning
• Waveform simulation for HPC
• Waveform generation for imaging, ground 

motion prediction, source inversion



Seq2Seq approach to forecast future waveforms

● We use a sequence to sequence (seq2seq) approach to forecast seismic
wavefields, consisting of encoder and decoder modules.

● The backbone of our seq2seq model is a novel convolutional long expressive
memory model (convLEM), which allows us to jointly model multi-scale
structure in space and time.

● The ConvLEM model is based on an input-driven systems of coupled ordinary 
differential equations, which can model multiple scales.

No need to know EQ 
magnitude, location, 
origin time, source 
parameters

Work with Rie Nakata (LBNL), Ben Erichson (ICSI, LBNL), Dongwei Lyu (UCB), Arben Pitarka (LLNL)



Waveform forecasting for synthetic point-source EQs

Use first 15.6 sec to predict 104.4 sec 

• Strike-slip point-sources 
• Source locations

• Along fault: 1 km interval over 60 km
• Depth: 2 – 15 km, 1 km interval

• A total of 960 simulations
• USGS Velocity models 
• Finite-difference visco-elastic simulation (SW4)
• < 0.5 Hz
• Tested with dense regular grid and sparse 

irregular sensor locations



Forecasted waveforms, PGV, and arrival time
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Generalization to unseen event: M6
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Generative modeling for ground motion synthesis

Build a dynamic Variational Autoencoder to generate ground motions.
● Dynamic: incorporate temporal evolution by using RNN
● Use STFT: for capturing both time and frequency features.
● Conditional variables: coordinates of source and sensors, earthquake magnitudes.
● GAN models: difficult to optimize and suffer from mode collapse.

M, xsrc, xrcv

Work with P. Ren (LBNL), B. Erichson (LBNL, ICSI), R. Nakata (LBNL, MIT),  N. Nakata (LBNL, MIT), M. Lacour, N. Abrahamson (UCB) 



Training dataset for generative models

Use horizontal component recordings.
Downloaded data: 1,375,470
Training data: 5,194
Frequency range: 2-15 Hz
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Foundation Models are infrastructure:
• A foundation upon which to do stuff 
• Just like the computer, or iphone, or bridges, or electrical grid
• All these are impressive … until they are not

Look at history: computer science (industry) vs computational science (science) 
• Very similar forcing functions
• Expect similar outcomes
• Do we compute on the metal or with multiple layers of abstraction?
• Do we fit SciML into the form factor provided by industrial LMs?

Question: How can we deliver on the promise of Scientific ML?
• Give it a strong, robust, principled foundations
• Rooted in both scientific principles and ML principles

Looking forward …


