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Bias of the least-squares estimator

x

y

S = (x1, y1), . . . , (xn, yn)
i.i.d.∼ D

w∗(S) = argmin
w

∑
i

(xi ·w − yi )
2

3 / 40



Bias of the least-squares estimator

x

y

S = (x1, y1), . . . , (xn, yn)
i.i.d.∼ D

Statistical regression

y = x ·w∗ + ξ, E[ ξ ] = 0

w∗(S) = argmin
w

∑
i

(xi ·w − yi )
2

3 / 40



Bias of the least-squares estimator

x

y

S = (x1, y1), . . . , (xn, yn)
i.i.d.∼ D

Statistical regression

y = x ·w∗ + ξ, E[ ξ ] = 0

w∗(S) = argmin
w

∑
i

(xi ·w − yi )
2

3 / 40



Bias of the least-squares estimator

x

y

S = (x1, y1), . . . , (xn, yn)
i.i.d.∼ D

Statistical regression

y = x ·w∗ + ξ, E[ ξ ] = 0

w∗(S) = argmin
w

∑
i

(xi ·w − yi )
2

Unbiased! E
[
w∗(S)

]
= w∗

3 / 40



Bias of the least-squares estimator

x

y

S = (x1, y1), . . . , (xn, yn)
i.i.d.∼ D

Worst-case regression

w∗= argmin
w

ED

[
(x ·w − y)2

]

w∗(S) = argmin
w

∑
i

(xi ·w − yi )
2

3 / 40



Bias of the least-squares estimator

x

y

S = (x1, y1), . . . , (xn, yn)
i.i.d.∼ D

Worst-case regression

w∗= argmin
w

ED

[
(x ·w − y)2

]

w∗(S) = argmin
w

∑
i

(xi ·w − yi )
2

Biased! E
[
w∗(S)

]
6= w∗

3 / 40



Correcting the worst-case bias

x

y

xn+1

S = (x1, y1), . . . , (xn, yn)
i.i.d.∼ D

Worst-case regression

Sample xn+1 ∼ x2 ·DX
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S ′ ← S ∪ (xn+1, yn+1)

Unbiased! E
[
w∗(S ′)

]
= w∗
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In general: add dimension many points
Derezinski and Warmuth

Worst-case regression in d dimensions

S = (x1, y1), . . . , (xn, yn)
i.i.d.∼ D, (x, y) ∈ Rd×R

Estimate the optimum

w∗= argmin
w∈Rd

ED

[
(x>w − y)2

]
Volume rescaled sampling

Sample
d points

xn+1, . . . , xn+d ∼ det

−x>
n+1−
. . .

−x>
n+d−

2

· (DX )d

Query yn+i ∼ DY|x=xn+i
∀i=1..d

Add S◦ = (xn+1, yn+1), . . . , (xn+d , yn+d) to S

Theorem E
[
w∗(S ∪ S◦)

]
= w∗ even though E

[
w∗(S)

]
6= w∗
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Effect of correcting the bias

Let ŵ = 1
T

∑T
t=1 w∗(St), for independent samples S1, ...,ST

Question: Is the estimation error ‖ŵ −w∗‖ converging to 0?

Example: x>= (x1, . . . , x5)
i.i.d.∼ N (0, 1), y =

5∑
i=1

xi +
x3
i

3︸ ︷︷ ︸
nonlinearity

+ε,
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i.i.d. samples  k=10

i.i.d. + volume k=10

i.i.d. samples  k=20

i.i.d. + volume k=20

i.i.d. samples  k=40

i.i.d. + volume k=40
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Discussion

I First-of-a-kind unbiased estimator for random designs,

different than RandNLA sampling theory

I Augmentation uses a determinantal point process (DPP) we

call volume-rescaled sampling

I There are many efficient DPP algorithms

I A new mathematical framework for computing expectations

Key application: Experimental design

I Bridge the gap between statistical and worst-case perspectives
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Volume-rescaled sampling
Derezinski and Warmuth

x1, x2, . . . , xk − i.i.d. random vectors

sampled from x ∼ DX

Dk
X − distribution of X

d

x>
i i

1

k

random X

Volume-rescaled sampling of size k from DX :

VSkDX (X) ∝ det(X>X)Dk
X (X)

Note: For k = d , we have det(X>X) = det(X)2

Question: What is the normalization factor of VSkDX ?

EDk
X

[det(X>X)] = ??

Can find it through a new proof of the Cauchy-Binet formula!
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The decomposition of volume-rescaled sampling
Derezinski and Warmuth

Let X̃ ∼ VSkDX and S ⊆ [k] be a random size d set such that

Pr(S | X̃) ∝ det(X̃S)2.

Then:

I X̃S ∼ VSdDX ,

I X̃[k]\S ∼ Dk−d
X ,

I S is uniformly random,

and the three are independent.

X̃Sd

random X̃

10 / 40



Consequences for least squares
Derezinski and Warmuth

Theorem ([DWH19])

Let S ={(x1, y1), . . . , (xk , yk)} i.i.d.∼ Dk , for any k ≥ 0.

Sample x̃1, . . . , x̃d ∼ VSdDX ,

Query ỹi ∼ DY|x=x̃i ∀i=1..d .

Then for S◦ = {(x̃1, ỹ1), . . . , (x̃d , ỹd)},

E
[
w∗(S ∪ S◦)

]
= ES∼Dk

[
ES◦∼VSdD

[ w∗(S ∪ S◦) ]
]

(decomposition) = ES̃∼VSk+d
D

[
w∗(S̃)

]
(d-modularity) = w∗.
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Classical statistical regression

We consider n parameterized experiments: x1, . . . , xn ∈ Rd .
Each experiment has a real random outcome Yi for i = 1..n.

Classical setup:
Yi = x>i w∗+ ξi , E[ξi ] = 0, Var[ξi ] = σ2, cov[ξi , ξj ] = 0, i 6= j

The ordinary least squares estimator wLS = X+Y satisfies:

(unbiasedness) E[wLS] = w∗,

(mean squared error)

MSE(wLS)︷ ︸︸ ︷
E ‖wLS −w∗‖2 = σ2tr

(
(X>X)−1

)
letting b = tr

(
(X>X)−1

)
=

b

n
· E ‖ξ‖2

(mean squared prediction error)

MSPE(wLS)︷ ︸︸ ︷
E ‖X(wLS −w∗)‖2 = σ2d

=
d

n
· E ‖ξ‖2
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Experimental design in classical setting (summary)

Suppose we have a budget of k experiments out of the n choices.
Goal: Select a subset of k experiments S ⊆ [n]
Question: How large does k need to be so that:

MSE or MSPE︷ ︸︸ ︷
Excess estimation error ≤ ε ·

E ‖ξ‖2︷ ︸︸ ︷
Total noise ?

Denote L∗ = E ‖ξ‖2 = nσ2.

Prior result:
There is a design (S , ŵ) of size k s.t. E[ŵS ] = w∗ and:

MSE(ŵS)−MSE(wLS) ≤ ε · L∗, for k ≥ d + b/ε,

MSPE(ŵS)−MSPE(wLS) ≤ ε · L∗, for k ≥ d + d/ε,

where b = tr((X>X)−1).
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Experimental design in general setting (summary)

No assumptions on Yi .

We define w∗
def
= E[wLS] = X+E[Y ].

Define “total noise” as L∗
def
= E ‖ξ‖2, where ξ

def
= X>w∗−Y .

Theorem 1 (MSE).
There is a random design (S , ŵ) such that E[ŵS ] = w∗ and

MSE(ŵS)−MSE(wLS) ≤ ε · L∗, for k = O(d log n + b/ε),

where b = tr((X>X)−1).

Theorem 2 (MSPE).
There is a random design (S , ŵ) such that E[ŵS ] = w∗ and

MSPE(ŵS)−MSPE(wLS) ≤ ε · L∗, for k = O(d log n + d/ε).
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Classical experimental design

Consider n parameterized experiments: x1, . . . , xn ∈ Rd .
Each experiment has a real random response yi such that:

yi = x>i w∗ + ξi , ξi ∼ N (0, σ2)

Goal: Select k � n experiments to best estimate w∗

Select S = {4, 6, 9}

Receive y4, y6, y9

x>
4

x>
6

x>
9

X
d

y

y4 .
y6 .

y9
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A-optimal design

Find an unbiased estimator ŵ with smallest mean squared error :

min
ŵ

max
w∗

Eŵ

[
‖ŵ −w∗‖2

]︸ ︷︷ ︸
MSE[ŵ]

subject to E
[
ŵ
]

= w∗ ∀w∗

Given every y1, . . . , yn , the optimum is least squares: ŵ = X†y

MSE
[
X†y

]
= tr

(
Var[X†y]

)
= σ2tr

(
(X>X)−1

)
A-optimal design: min

S : |S |≤k
tr
(
(X>SXS)−1

)

Typical required assumption: yi = x>i w∗ + ξi , ξi ∼ N (0, σ2)

17 / 40



A-optimal design
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A-optimal design: a simple guarantee

Theorem (Avron and Boutsidis, 2013)
For any X and k ≥ d there is S of size k such that:

tr
(
(X>SXS)−1

)
≤ n − d + 1

k − d + 1
tr
(
(X>X)−1

)︸ ︷︷ ︸
(denoted φ)

Corollary If y = Xw∗+ ξ where Var[ξ] = σ2I and E[ξ] = 0 then

tr
(
Var[X†SyS ]

)︸ ︷︷ ︸
σ2tr((X>S XS )−1)

≤ σ2 n−d+1

k−d+1
φ ≤ φ

k−d+1︸ ︷︷ ︸
ε

· tr
(
Var[ξ]

)︸ ︷︷ ︸
nσ2

k = d + φ/ε and MSE[X†SyS ] ≤ ε · tr(Var[ξ])
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General response model (What if ξi is not N (0, σ2)?)

Fn - all random vectors in Rn with finite second moment

y ∈ Fn

w∗
def
= argmin

w
Ey

[
‖Xw − y‖2

]
= X†E[y],

ξy|X
def
= y − Xw∗ = y − XX†E[y] - deviation from best linear predictor

Two special cases:

1. Statistical regression: E
[
ξy|X

]
= 0 (mean-zero noise)

2. Worst-case regression: Var
[
ξy|X

]
= 0 (deterministic y)
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Random experimental designs

Statistical: Fixed S is ok
Worst-case: Fixed S can be exploited by the adversary

Definition

A random experimental design (S , ŵ) of size k is:

1. a random set variable S ⊆ {1..n} such that |S | ≤ k

2. a (jointly with S) random function ŵ : R|S| → Rd

Mean squared error of a random experimental design (S , ŵ):

MSE
[
ŵ(yS)

]
= ES,ŵ,y

[
‖ŵ(yS)−w∗‖2

]
Wk(X) - family of unbiased random experimental designs (S , ŵ):

ES ,ŵ,y

[
ŵ(yS)

]
= X†E[y]︸ ︷︷ ︸

w∗

for all y ∈ Fn
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Main result

Theorem

For any ε > 0, there is a random experimental design (S , ŵ) of size

k = O(d log n + φ/ε), where φ = tr
(
(X>X)−1

)
,

such that (S , ŵ) ∈ Wk(X) (unbiasedness) and for any y ∈ Fn

MSE
[
ŵ(yS)

]
−MSE

[
X†y

]
≤ ε · E

[
‖ξy|X‖2

]

Toy example: Var[ξy|X] = σ2I, E[ξy|X] = 0

1. E
[
‖ξy|X‖2

]
= tr

(
Var[ξy|X]

)
2. MSE

[
X†y

]
= φ

n · tr
(
Var[ξy|X]

)
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Important special instances

1. Statistical regression: y = Xw∗ + ξ, E[ξ] = 0

MSE
[
ŵ(yS)

]
−MSE

[
X†y

]
≤ ε · tr

(
Var[ξ]

)
I Weighted regression: Var[ξ] = diag

(
[σ2

1 , . . . , σ
2
n]
)

I Generalized regression: Var[ξ] is arbitrary

I Bayesian regression: w∗ ∼ N (0, I)

2. Worst-case regression: y is any fixed vector in Rn

ES,ŵ

[
‖ŵ(yS)−w∗‖2

]
≤ ε · ‖y − Xw∗‖2

where w∗ = X†y

22 / 40



Main result: proof outline

1. Volume sampling:

I to get unbiasedness and expected bounds

I control MSE in tail of distribution

1.1 well-conditioned matrices

1.2 unbiased estimators

2. Error bounds via i.i.d. sampling:

I to bound sample size k

I control MSE in bulk of the distribution

2.1 Leverage score sampling: Pr(i)
def
= 1

d x>
i (X>X)−1xi

2.2 Inverse score sampling: Pr(i)
def
= 1

φx>
i (X>X)−2xi (new)

3. Proving expected error bounds for least squares
23 / 40



Volume sampling

Definition

Given a full rank matrix X ∈ Rn×d we define volume sampling

VS(X) as a distribution over sets S ⊆ [n] of size d :

Pr(S) =
det(XS)2

det(X>X)
.

Pr(S) ∼
squared volume

of the parallelepiped

spanned by {xi : i ∈S}

Computational cost:

O(nnz(X) log n + d4 log d)

xi

xj
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Unbiased estimators via volume sampling

Under arbitrary response model, any i.i.d. sampling is biased

Theorem ([DWH19])

Volume sampling corrects the least squares bias of i.i.d. sampling.

Let q = (q1, . . . , qn) be some i.i.d. importance sampling.

volume + i.i.d.

∼VS(X)︷ ︸︸ ︷
xi1 , ..., xid ,

∼qk−d︷ ︸︸ ︷
xid+1

, xid+2
, ..., xik

E
[
argmin

w

k∑
t=1

1

qit
(x>it w − yit )

2

]
= w∗y|X
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Key idea: volume-rescaled importance sampling

Simple volume-rescaled sampling:

I Let DX be a uniformly random xi

I (XS , yS) ∼ VSkD and ŵ = X†SyS .

Then, E[ŵ] = w∗y|X.

x>
4

x>
6

x>
9

fixed X
d

y

y4 .
y6 .

y9

Problem: Not robust to worst-case noise
Solution: Volume-rescaled importance sampling

I Let p = (p1, . . . , pn) be an importance sampling distribution,

I Define x̃ ∼ DX as x̃ = 1√
pi

xi for i ∼ p.

Then, for (X̃S , ỹS) ∼ VSkD and ŵ = X̃†S ỹS , we have E[ŵ] = w∗y|X.
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Importance sampling for experimental design

1. Leverage score sampling : Pr(i) = plevi
def
= 1

d x>i (X>X)−1xi

A standard sampling method for worst-case linear regression.

2. Inverse score sampling : Pr(i) = pinvi
def
= 1

φx>i (X>X)−2xi .

A novel sampling technique essential for achieving O(φ/ε) sample size.
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Minimax A-optimality and Minimax experimental design

Definition

Minimax A-optimal value for experimental design:

R∗k (X)
def
= min

(S,ŵ)∈Wk (X)
max

y∈Fn\Sp(X)

MSE
[
ŵ(yS)

]
−MSE

[
X†y

]
E
[
‖ξy|X‖2

]
Fact. X†y is the minimum variance unbiased estimator for Fn:

if Ey,ŵ

[
ŵ(y)

]
= X†E[y] ∀y∈Fn

then Var
[
ŵ(y)

]
� Var

[
X†y

]
∀y∈Fn

I If d ≤ k ≤ n, then R∗k (X) ∈ [0,∞)

I If k ≥ C · d log n, then R∗k (X) ≤ C · φ/k for some C

I If k2 < εnd/3, then R∗k (X) ≥ (1−ε) · φ/k for some X
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Alternative: mean squared prediction error

Definition. MSPE
[
ŵ
]

= E
[
‖X(ŵ −w∗)‖2

]
(V-optimality)

Theorem

There is (S , ŵ) of size k = O(d log n + d/ε) s.t. for any y ∈ Fn,

MSPE
[
ŵ(yS)

]
−MSPE

[
X†y

]
≤ ε · E

[
‖ξy|X‖2

]
Follows from the MSE bound by reduction to X>X = I.

Then MSPE
[
ŵ
]

= MSE
[
ŵ
]

and φ = d .

Minimax V-optimal value:

min
(S ,ŵ)∈Wk (X)

max
y∈Fn\Sp(X)

MSPE
[
ŵ(yS)

]
−MSPE

[
X†y

]
E
[
‖ξy|X‖2

]
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Questions about minimax experimental design

1. Can R∗k (X) be found, exactly or approximately?

2. What happens in the regime of k ≤ C · d log n?

3. Can we restrict Wk(X) to only tractable experimental designs?

4. Does the minimax-value change when you restrict Fn?

4.1 Weighted regression

4.2 Generalized regression

4.3 Bayesian regression

4.4 Worst-case regression
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Reduction to worst-case regression

Theorem

W.l.o.g. we can replace random y ∈ Fn with fixed y ∈ Rn:

R∗k (X) = min
(S,ŵ)∈Wk (X)

max
y∈Rn\Sp(X)

ES ,ŵ

[
‖ŵ(yS)− X†y‖2

]
‖y − XX†y‖2

Suppose (S , ŵ) for all fixed response vectors y ∈ Rn satisfies

E
[
ŵ(yS)

]
= X†y and E

[
‖ŵ(yS)− X†y‖2

]
≤ ε · ‖y − XX†y‖2.

Then, for all random response vectors y ∈ Fn and w∗ ∈ Rd ,

E
[
‖ŵ(yS)−w∗‖2

]︸ ︷︷ ︸
MSE[ŵ(yS )]

≤ E
[
‖X†y −w∗‖2

]︸ ︷︷ ︸
MSE[X†y]

+ ε · E
[
‖y − Xw∗‖2

]
.
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Bayesian experimental design

Consider n parameterized experiments: x1, . . . , xn ∈ Rd .
Each experiment has a real random response yi such that:

yi = x>i w∗ + ξi , ξi ∼ N (0, σ2), w∗ ∼ N (0, σ2A−1)

Goal: Select k � n experiments to best estimate w∗

Select S = {4, 6, 9}

Receive y4, y6, y9

x>
4

x>
6

x>
9

fixed X
d

y

y4 .
y6 .

y9
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Bayesian A-optimal design

Given the Bayesian assumptions, we have

w | yS ∼ N
(

(X>SXS + A)−1X>SyS , σ2(X>SXS + A)−1
)
,

Bayesian A-optimality criterion:

fA(X>SXS) = tr
(
(X>SXS + A)−1

)
.

Goal: Efficiently find subset S of size k such that:

fA(X>SXS) ≤ (1 + ε) · min
S ′:|S ′|=k

fA(X>S ′XS ′)︸ ︷︷ ︸
OPTk
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Relaxation to a semi-definite program

SDP relaxation

The following can be found via an SDP solver in polynomial time:

p∗ = argmin
p1,...,pn

fA

( n∑
i=1

pixix
>
i

)
,

subject to ∀i 0 ≤ pi ≤ 1,
∑
i

pi = k .

The solution p∗ satisfies fA
(∑

i pixix
>
i

)
≤ OPTk .

Question: For what k can we efficiently round this to S of size k?
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Efficient rounding for effective dimension many points

Definition

Define A-effective dimension as dA = tr
(
X>X(X>X + A)−1

)
≤ d .

Theorem ([DLM19])

If k = Ω
(
dA
ε + log 1/ε

ε2

)
, then there is a polynomial time algorithm

that finds subset S of size k such that

fA
(
X>SXS

)
≤ (1 + ε) ·OPTk .

Remark: Extends to other Bayesian criteria: C/D/V-optimality.

Key idea: Rounding with A-regularized volume-rescaled sampling,
a new kind of determinantal point process.
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Comparison with prior work

Criteria Bayesian k = Ω(·)

[WYS17] A,V x d2

ε

[AZLSW17] A,C,D,E,G,V d
ε2

[NSTT19] A,D x d
ε + log 1/ε

ε2

our result [DLM19] A,C,D,V dA
ε + log 1/ε

ε2
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Outline

Correcting the bias in least squares regression

Volume-rescaled sampling

Minimax experimental design

Bayesian experimental design

Conclusions
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Conclusions

Unbiased estimators for least squares, uses volume sampling

Recent developments:

I Experimental design without any noise assumptions, i.e.,

arbitrary response

I Minimax experimental design: bridging the gap bw statistical

and worst-case perspectives

I Applications in Bayesian experimental design: bridging the

gap bw experimental design and determinantal point processes

Going beyond least squares:

I extensions to non-square losses,

I applications in distributed optimization.
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