
Dynamical systems and machine learning:
combining in a principled way data-driven models

and domain-driven models

Michael W. Mahoney
ICSI and Department of Statistics, UC Berkeley

September 2020

(Joint work with Benjamin Erichson, Alejandro Queiruga,
Dane Taylor, Michael Muehlebach, and others.)

Outline

Introduction and Overview

Physics-informed Autoencoders for Lyapunov-stable Fluid Flow

Prediction (Benjamin Erichson and Michael Muehlebach)

Continuous-in-Depth Neural Networks (Alejandro Queiruga, Benjamin

Erichson, Dane Taylor)

Paradigms of Modeling Complex Systems

Machine Learning
(Data-driven)

Dynamical Systems
(Theory-driven)

What can we learn from dynamical systems and control theory?

Residual Networks (ResNets) Differential Equations
Network Architecture Design Numerical Methods

Training Optimal Control

Statistical Modelling
(Data/Theory-driven)

- Interpretable
- Strong assumptions
- Low expressivity

- Black-box
- No assumptions
- High expressivity

- Gray-box
- Noise ?!
- Robust / Stable

Recent Related Mahoney Lab’s Research Outcomes

I ML to Dynamical Systems:
I Shallow neural networks for fluid flow reconstruction with limited sensors (Erichson et al.)

Machine Learning
(Data-driven)

Dynamical Systems
(Theory-driven)

I Ideas from Dynamical Systems to ML:
I ANODEV2: A coupled neural ODE framework (Gholami et al.)
I Stochastic normalizing flows (Hodgkinson et al.)
I Physics-informed autoencoders for lyapunov-stable fluid flow prediction (Erichson et al.)
I Forecasting sequential data using consistent koopman autoencoders (Azencot et al.)
I Improving ResNets with a corrected dynamical systems interpretation (Queiruga et al.)
I Noise-response analysis for rapid detection of backdoors in deep nets (Erichson et al.)

Connection between Deep Learning and Differential Equations

I The essential building blocks of ResNets are so-called residual units.

xt+1 = ε · xt + σt(xt, θt). (1)

I The function σt : Rn → Rn denotes the t-th residual module (a non-linear map),
parameterized by θt, which takes a signal xt ∈ Rn as input. ε is the step size.

I For simplicity, let’s consider a linear unit

xt+1 = ε · xt +Axt. (2)

I Through the lens of differential equations, residual units can be seen as a some (!?)
discretization scheme for the following ordinary differential equation:

∂x

∂t
= Ax. (3)

I This connection between differential equations and residual units can help to study network
architecture as well as provide inspiration for the design of new network architectures.

What can we Learn from Dynamical Systems Theory?

I Dynamical systems theory is mainly concerned with describing the long-term qualitative
behavior of dynamical systems, which typically can be describe as differential equations.

I Stability theory plays an essential role in the analysis of differential equation.

I We might be interested to study whether trajectories of a given dynamical systems, under
small perturbations of the initial condition x0, are stable.

δ ε t
x0

I If the dynamics ∂x
∂t = Ax are linear, stability can be checked with an eigenvalue analysis.

I We can use linearization or input-to-state stability to study nonlinear systems.

I Does stability matter in deep learning? Well, it depends

I Feedforward neural networks (FNNs): each residual unit takes only a single step. Thus,
stability might not matter?!

I Recurrent neural networks: stability matters! If the recurrent unit is unstable, then we
observe exploding gradients. We will discuss this later.

How can we Integrate Prior Physical Knowledge?

I Option 1: Physics-informed network architectures. We integrate prior knowledge
(e.g., symmetries) via specialized physics-informed layers or convolution kernels.

θk = T (Wk) := β · (W +WT) + (1− β) · (W −WT) (4)

I Option 1: Physics-informed regularizers. We integrate prior knowledge (e.g., stability)
via additional energy terms

min
θ
L(θ) := 1

n

n∑
i=1

`i(hθ(xi), yi)︸ ︷︷ ︸
Loss

+ λ · R(θk)︸ ︷︷ ︸
regularizer

, (5)

I Option 1: Physics-constrained models. We integrate prior knowledge (e.g., an ODE
model) via additional constraints on the outputs

min
θ
L(θ) := 1

n

n∑
i=1

`i(hθ(xi), yi) s.t. R(fθ(x)) ≤ η, (6)

Outline

Introduction and Overview

Physics-informed Autoencoders for Lyapunov-stable Fluid Flow

Prediction (Benjamin Erichson and Michael Muehlebach)

Continuous-in-Depth Neural Networks (Alejandro Queiruga, Benjamin

Erichson, Dane Taylor)

Physics-constrained learning (PCL)

I Supervised ML aims to learn a model H that best
maps a set of inputs X to a set of outputs Y:

H : X → Y
I We hope that this model also works on new inputs.

hypothesis space of the

unconstrained model

hypothesis space of the physics-constrained model

PCL aims to introduce prior knowledge about the problem into the learning process.

Problem setup: Fluid flow prediction
I We assume that the dynamical system of interest can be modeled as

xt+1 = A(xt) + ηt, t = 0, 1, 2, . . . , T.

I In a data-driven setting we might only have access to (high-dimensional) observations

yt = G(xt) + ξt, t = 0, 1, 2, . . . , T.

I Given a sequence of observations y0,y1, . . . ,yT ∈ Rm for training, the objective of this
work is to learn a model which maps the snapshot yt to yt+1.

shapshot index, t

d
im

e
n
s
io

n

shapshot index, t
d
im

e
n
s
io

n

Physics-agnostic model

I Given the pairs {yt,yt+1}t=1,2,...T , we train a model by minimizing the MSE

min
1

T

T∑
t=0

‖yt+1 −F(yt)‖22.

I During inference time, we can obtain predictions by composing the learned model k-times

ŷk = F ◦ F ◦ F ◦ ... ◦ F(y0).

Black Box

A typical black box model

Automatic differentiation

I I will talk more about the specific architecture later....

From black box to gray box models

I We to add meaningful constraints to our model:

min
1

T

T∑
t=0

‖yt+1 −Φ ◦Ω ◦Ψ(yt)‖22 + λ‖yt −Φ ◦Ψ(yt)‖22.+ρ(Ω)

I If the model obeys the assumption that Ψ approximates G−1, then we have that

ŷk ≈ Φ ◦Ωk ◦Ψ(y0).

encoder dynamics decoder

skip connection

From black box to gray box models

I We start by adding a meaningful constraint to our model:

min
1

T

T∑
t=0

‖yt+1 −Φ ◦Ω ◦Ψ(yt)‖22 + λ‖yt −Φ ◦Ψ(yt)‖22 + κ ρ(Ω).

I If the model obeys the assumption that Ψ approximates G−1, then we have that

ŷk ≈ Φ ◦Ωk ◦Ψ(y0).

encoder dynamics decoder

skip connection

Lyapunov stability in a nutshell

I The origin of a dynamic system

xt+1 = A(xt) + ηt t = 0, 1, 2, . . . , T.

is stable if all trajectories starting arbitrarily close to the origin (in a ball of radius δ)
remain arbitrarily close (in a ball of radius ε).

δ ε k

x0
Ak(x0)

I If the dynamics A are linear, stability can be checked with an eigenvalue analysis.

Lyapunov’s method... an idea from over 120 years ago1

I For linear systems, Lyapunov’s second method states that a dynamic system

xt+1 = Axt + ηt t = 0, 1, 2, . . . , T

is stable if and only if for any (symmetric) positive definite matrix Q ∈ Rn×n there exists
a (symmetric) positive definite matrix P ∈ Rn×n satisfying

A>PA−P = −Q.

I Using this idea, we impose that the symmetric matrix P, defined by

Ω>PΩ−P = −I,

is positive definite.

1https://stanford.edu/~boyd/papers/pdf/springer_15_colloquium.pdf

https://stanford.edu/~boyd/papers/pdf/springer_15_colloquium.pdf

Lyapunov’s method... an idea from over 120 years ago1

I For linear systems, Lyapunov’s second method states that a dynamic system

xt+1 = Axt + ηt t = 0, 1, 2, . . . , T

is stable if and only if for any (symmetric) positive definite matrix Q ∈ Rn×n there exists
a (symmetric) positive definite matrix P ∈ Rn×n satisfying

A>PA−P = −Q.

I Using this idea, we impose that the symmetric matrix P, defined by

Ω>PΩ−P = −I,

is positive definite.

1https://stanford.edu/~boyd/papers/pdf/springer_15_colloquium.pdf

https://stanford.edu/~boyd/papers/pdf/springer_15_colloquium.pdf

To gain some intuition...
I ... we consider the case where Ω is diagonalizable and Q chosen appropriately.

I Then, for a particular choice of coordinates the following problem

Ω>PΩ−P = −I, (1)

reduces to the system of linear equations

ωipiωi − pi = −1, (2)

where ωi, pi, for i = 1, 2, . . . , n, denote the eigenvalues of Ω and P, respectively.

Physics-aware model that preserves stability
I The physics-informed autoencoder is trained by minimizing the following objective

min
1

T

T∑
t=0

‖yt+1 −Φ ◦Ω ◦Ψ(yt)‖22 + λ‖yt −Φ ◦Ψ(yt)‖22 + κ
∑
i

ρ(pi).

I The prior p can take various forms. We use the following in our experiments:

ρ(p) :=

{
exp

(
− |p−1|γ

)
if p < 0

0 otherwise.

encoder dynamics decoder

skip connection

Physics-aware model that preserves stability
I The physics-informed autoencoder is trained by minimizing the following objective

min
1

T

T∑
t=0

‖yt+1−Φ◦Ω◦Ψ(yt)‖22+‖yt+2 −Φ ◦Ω ◦Ω ◦Ψ(yt)‖22+λ‖yt−Φ◦Ψ(yt)‖22+κ
∑
i

ρ(pi).

I The prior p can take various forms. We use the following in our experiments:

ρ(p) :=

{
exp

(
− |p−1|γ

)
if p < 0

0 otherwise.

encoder dynamics decoder

skip connection

Examples that we consider

I Flow past the cylinder.

I Daily sea surface temperature data of the gulf of Mexico over a period of 6 years.

Prediction performance for flow past the cylinder (without weight decay)

min
1

T

T∑
t=0

‖yt+1−Φ◦Ω◦Ψ(yt)‖22+‖yt+2−Φ◦Ω◦Ω◦Ψ(yt)‖22+λ‖yt−Φ◦Ψ(yt)‖22+κ
∑
i

ρ(pi).

0 50 100
Time step

0.0

0.2

0.4

0.6

0.8

1.0

R
e
la

ti
v
e
 p

re
d
ic

ti
o
n
 e

rr
o
r

Physics-agnostic
Physics-aware

(a) With LR 1e−2. (b) Physics-agnostic (blue). (c) Physics-aware (red).

More results for the flow past the cylinder (with weight decay)

0 50 100
Time step

10 2

10 1

Re
la

tiv
e

pr
ed

ict
io

n
er

ro
r

Physics-agnostic AE
Physics-aware AE

(a) With LR 1e−2 and WD
1e−6.

0 50 100
Time step

10 2

10 1

Re
la

tiv
e

pr
ed

ict
io

n
er

ro
r

Physics-agnostic AE
Physics-aware AE

(b) With LR 1e−2 and WD
1e−8.

0 50 100
Time step

10 2

10 1

Re
la

tiv
e

pr
ed

ict
io

n
er

ro
r

Physics-agnostic AE
Physics-aware AE

(c) With LR 5e−3 and WD
1e−6.

Results for the sea surface temperature data

min
1

T

T∑
t=0

‖yt+1 −Φ ◦Ω ◦Ψ(yt)‖22 + λ‖yt −Φ ◦Ψ(yt)‖22 + κ
∑
i

ρ(pi).

0 20 40 60
Time step

0.2

0.4

0.6

0.8

1.0

1.2

Re
la

tiv
e

pr
ed

ict
io

n
er

ro
r

Physics-agnostic AE
Physics-aware AE

(a) With LR 1e−2.

−1 0 1
Real

−1

0

1

Im
ag

in
ar
y

(b) Physics-agnostic (blue).

−1 0 1
Real

−1

0

1

Im
ag

in
ar
y

(c) Physics-aware (red).

Visual results for the sea surface temperature data

example 1 example 2 example 3 example 4

in
p
u
t
(y

t
)

ta
rg
et

(y
t+

5
)

pr
ed
ic
ti
o
n

(a) Physics-agnostic model.

example 1 example 2 example 3 example 4

in
p
u
t
(y

t
)

ta
rg
et

(y
t+

5
)

pr
ed
ic
ti
o
n

(b) Physics-aware model.

Summary

I Physics-informed autoencoders can help to improve the generalization performance.

I Caveat of physics-informed learning are complicated loss functions: L1 + γL2 + κL3 +

I Next steps: non-linear dynamics, recurrent networks and parameterized layers.

encoder dynamics decoder

skip connection

Outline

Introduction and Overview

Physics-informed Autoencoders for Lyapunov-stable Fluid Flow

Prediction (Benjamin Erichson and Michael Muehlebach)

Continuous-in-Depth Neural Networks (Alejandro Queiruga, Benjamin

Erichson, Dane Taylor)

Connection between ResNets and Dynamical Systems

● ResNets are the most popular network architectures on the market.

● Hypothesis: Recent literature notes that ResNets learn a forward Euler
discretization of a dynamical system:

● Spoiler: we show that ResNets are not forward Euler discretizations of a
dynamical system in a meaningful way due to overfitting.

=1 sneak it in

● What does it even mean to say ResNet learns a forward Euler
representation of a dynamical system?

● We need context where a dynamical system is meaningful.

● So … let’s try time series prediction of a dynamical system.

Experiments in Dynamics

Numerical Integration and Machine Learning
work in Opposite Directions

Revisiting a Simple Dynamical System

● Learning a residual makes sense in many contexts:

 Future = Now + Update

● Let’s study training such a F(x) based on a neural network G(x):

x(t+Δt) = F(x(t)) = x(t)+G(x(t)) = NumericalMethod[G(x)]

● Numerical integrators approximate the integral with a discrete series of
applications of f(x,t)=dx/dt for a time step Δt:

Syntactic Similarity is not Sufficient for Correspondence

● Approximations to dynamical systems have richer properties.

A. For a given integrator, as Δt→ 0, error→ 0 (timestep refinement)

B. Integrators have a rate of convergence: log(error) ∝ r log(Δt)

C. The same dx/dt with different integrators should approach the same
x(tmax) at their respective rates

● We can verify these using a convergence test.

● These conditions are critical to deriving integration schemes.
(They also make great integration tests for numerical software!)

Does ResNet Units Satisfies these Properties?

 xk+1=xk+RK4[G,Δt](xk
)

xk+1=xk+Δt G(xk)

xk+1=xk+Δt G(xk
 +Δt/2G(xk))

Plug the frozen G into
other graphs

Given G:

Increase or Decrease Δt

● and predictions should change consistently as expected.

● If no, then the model should behave differently w.r.t. Δt.

● If yes, then we should be able to alter the model:

Experiment
1. Make a dataset with one Δt: {x(0), x(Δt), x(2Δt)... x(T)}
2. Train 3 models using G: a shallow tanh NN with 50 hidden units.
3. Then, freeze G, and perform a convergence test.
4. Hypothesis: A, B, & C should hold.

We train three models:
1. Forward Euler: xk+1= xk + Δt G(xk) ← Looks like a ResNet unit
2. Midpoint: xk+1= xk + Δt G(xk

 +Δt/2G(xk))
3. RK4: xk+1= xk + Δt RK4[G,Δt](xk

)

● For ground-truth, use the analytical solution.
● For comparison, plug the known dx/dt into the integrators.

After we train the models, they all perform good

● They are good discrete models without changing Δt.
● Note how using Euler as a numerical method is inaccurate.

But if we cut Δt in half, ODE-Net(Euler) gets worse

● Numerical(Euler) improves, as expected.
● Neural(RK4) is still on top of the analytical solution.

One-off plots aren’t sufficient
● Sweep Δt and calculate errors to do the full convergence test.

More time steps

Part 1: Δt→ 0 with same graph Part 2: Try different integrators

The trajectories on the last slide make one datapoint here:
 error=||xtrue(tmax)-F(F(...F(x0)...))||

More time steps

Part 1: Δt→ 0 on the model Part 2: Try different integrators

Vertical line is the training dataset sample rate

More time steps

Part 1: Δt→ 0 on the model Part 2: Try different integrators

● There’s a noticeable dip in error for ODE-Net(Euler).
● ODE-Net(Euler) is extremely sensitive to perturbations in Δt.
● Thus, it is only a discrete model, i.e., it overfits to Δt.

More time steps

● The models embedded in Midpoint and RK4 have no dip.
● The error changes smoothly for incremental changes in Δt.
● For larger time steps, the slopes match.

More time steps

● If we take the NN G from Euler and put it into another
integrator, the error is large.

More time steps

● But, both of the Gs trained inside of higher order integrators
work as expected when inside of any of the other integrators.

More time steps

● Our results show that our prevalent training methodology does not yield
models that can be interpreted with continuous theory.

● Having a peak says that it’s fragile to the number of timesteps.
That means, we can’t do ``interpolation’’.

● The RK4 scheme enables us to interpolate between domain shifted data.
In turn, this means that we can increase the number of layers (i.e., be
continuous-in-depth).

● Our analysis can be seen as a diagnostic tool to assess if the model has overfit:
how well does it represent a continuous system, and how well does it exhibit
the numerical properties of a continuous operator?

Implications

Hessian Loss Landscape

● "ADAHESSIAN: An Adaptive Second Order Optimizer for Machine Learning," arXiv:2006.00719
● "PyHessian: Neural Networks Through the Lens of the Hessian," arXiv:1912.07145

Continuous-in-Depth Neural Networks
ContinuousNet is a deep model that is a dynamical system:

● Basis functions in depth for parameters.
● High-order Runge Kutta-based computation graphs.
● Right timestep refinement and grid refinement.

Goal: recover (then extend) the exact same graph as ResNet, but phrased as a
function of time.

● ContinuousNet’s governing equation has time-varying parameters:

● Blocks of residual units are replaced by numerical integrators:

● OdeBlocks are assembled into the same ResNet architectures:

ContinuousNet’s governing equation has time-varying parameters:

Blocks of residual units are replaced by numerical integrators:

OdeBlocks are assembled into the same ResNet architectures:

● In the NN perspective, integrators prescribe graphs that nest the residual that
calculate the same thing:

● In the NN perspective, integrators prescribe graphs that nest the residual that
calculate the same thing:

Same R, and the same weights (in the simple case)

● In the NN perspective, integrators prescribe graphs that nest the residual that
calculate the same thing:

● We use edge weights that are well-known in numerical analysis.

● Numerical integration effectively chains
together these units into familiar and unfamiliar
graphs.

● Picking a scheme and a Nt specifies how to
generate a graph.

● Each one is (approximately) equivalent: each is
discrete, but each approximates the same
continuous model.

● In ResNet and NNs, parameters are glued to
computation nodes in the graph.

● ContinuousNet’s computations are assigned
weights by evaluating a continuous θ(t): What’s
the value halfway between steps?

● Basis functions in depth:

● Yields a systematic way to project to different
equivalent basis functions.

● ResNet is exactly forward Euler with the same
step size as piecewise constant basis
functions.

● Construct with a continuous map [tk,tk+1)→ θk
to define values between steps:

The original hypothesis can be tested with a convergence test on a DL
problem using ContinuousNet.

Updated hypothesis:

● Expect forward Euler (ResNet) to overfit

● Expect training with Midpoint or RK4 to enable transfer between
depths and graph modules

Experiments for Image Classification

We can perform the same experiment on CIFAR10
● Test set error in place of analytical solution

Train ContinuousNet M=32-32-32 with RK4 and Euler (ResNet-198)
● ContinuousNet(Euler): same dip as pendulum
● ContinuousNet(RK4): re-manifests with many Nt and integrators

We can perform the same experiment on CIFAR10
● Test set error in place of analytical solution

Train ContinuousNet M=32-32-32 with RK4 and Euler (ResNet-198)
● ContinuousNet(Euler): same dip as pendulum
● ContinuousNet(RK4): re-manifests with many Nt and integrators

DeeperShallower

We can perform the same experiment on CIFAR10
● Test set error in place of analytical solution

Train ContinuousNet M=32-32-32 with RK4 and Euler (ResNet-198)
● ContinuousNet(Euler): same dip as pendulum
● ContinuousNet(RK4): re-manifests with many Nt and integrators

We can perform the same experiment on CIFAR-10
● Test set error in place of analytical solution

Train ContinuousNet M=32-32-32 with RK4 and Euler (ResNet-198)
● ContinuousNet(Euler): same dip as pendulum
● ContinuousNet(RK4): re-manifests with many Nt and integrators

We see the same properties CIFAR-100:

And Tiny-Imagenet: (64x64 with 200 classes)

● Infinitely many computer programs exist for a problem.

● We choose to find one that is a continuous trajectory.

● ContinuousNet has infinitely many (approximately) equivalent graph
manifestations and basis set projections.

● This opens the door to better understanding and new tricks
post-training and during-training.

Why ContinuousNet?

Model for CIFAR10 Params Units (Nt) Accuracy Min / Max

ResNet-200 (v2) (baseline) 3.19 M 33-33-33 93.84% 93.56% / 94.03%

Neural ODE (reported by Zhang, 2019) 0.45 M - 67.94% 64.70% / 70.06%

ANODEV2 (Zhang, 2019) 0.45 M - 88.93% 88.65% / 89.19%

Hamiltonian PDE (Ruthotto, 2019) 0.26 M 3-3-3 89.30% -

ContinuousNet(Euler) 3.19 M 32-32-32 93.84% 93.55% / 94.04%

ContinuousNet(RK4-classic) 3.19 M 32-32-32 93.57% 93.40% / 93.70%

ContinuousNet has equivalent accuracy to the corresponding ResNet, and
outperforms previous differential-equation NNs

Model for CIFAR10 Params Units (Nt) Accuracy Inference Time (s)

ContinuousNet(RK4-classic) 3.19 M 32-32-32 93.57% 32.55

↳Manifest as (Euler) Same weights 32-32-32 93.55% 8.93

↳Manifest as (RK4-3/8) Same weights 11-11-11 93.44% 11.06

↳Manifest as (RK4-3/8) Same weights 6-6-6 92.28% 6.25

Manifestation Invariance:
ContinuousNet can remanifest its graph after training, without using data:

● The weights it learns can plug into a ResNet graph.
● It can even be made shorter, without sacrificing much accuracy.
● We can reduce the inference time.

OdeBlock2:R:conv1:w[0,1,2,0](t)

ContinuousNet can also iteratively deepen its graph during training:
➔ Just like mesh refinement

OdeBlock2:R:conv1:w[0,1,2,0](t)

ContinuousNet can also iteratively deepen its graph during training:
➔ Just like mesh refinement

OdeBlock2:R:conv1:w[0,1,2,0](t)

ContinuousNet can also iteratively deepen its graph during training:
➔ Just like mesh refinement

OdeBlock2:R:conv1:w[0,1,2,0](t)

ContinuousNet can also iteratively deepen its graph during training:
➔ Just like mesh refinement

OdeBlock2:R:conv1:w[0,1,2,0](t)

ContinuousNet can also iteratively deepen its graph during training:
➔ Just like mesh refinement

OdeBlock2:R:conv1:w[0,1,2,0](t)

ContinuousNet can also iteratively deepen its graph during training:
➔ Just like mesh refinement

OdeBlock2:R:conv1:w[0,1,2,0](t)

ContinuousNet can also iteratively deepen its graph during training:
➔ Just like mesh refinement

OdeBlock2:R:conv1:w[0,1,2,0](t)

Save time by training on shorter graphs initially

OdeBlock2:R:conv1:w[0,1,2,0](t)

ContinuousNet(RK4): the final parameters are
smoother functions in time.
Iterative operations change uniformly.

Euler Network: ||θk|| may be uniform, but actual
steps are not continuous.
ResNets aren’t uniform iterations.

Key Advantages Compared to Previous ODE-Nets

● 1-to-1 correspondence with ResNets

● Basis functions yield introspectable and controllable depth

● Disentangle computation from parameters

● We focus on fixed step integrators instead of adaptive:
○ Control Δt to answer a scientific question.

● Think static graphs should be a better engineering solution:
○ Infrastructure and tools already exist
○ Ahead-of-time graph generation for different needs

● A ResNet will overfit a continuous dynamical system.

● Physical time series models are improved by embedding inside of a higher
order integrator.

● ContinuousNet finds deep dynamical systems that are as expressive as
ResNets using basis-function weights.

● ContinuousNet can manifest as different discrete graphs: iteratively
deepening during training or compressing post-training.

Outro

1. Reimplement in JAX

2. Training
a. Train lightning fast with the adjoint equation!
b. Explore refinement strategies and schedules
c. Nonuniform splitting (think hp-adaptivity)

3. Compression
a. New Basis Functions
b. Compress the parameter coefficients through projection
c. Nonuniform steps

4. Noise/Adversarial Robustness

Next Steps

●
●

https://arxiv.org/pdf/2008.02389.pdf
https://github.com/afqueiruga/ContinuousNet

	Introduction and Overview
	Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction (Benjamin Erichson and Michael Muehlebach)
	Continuous-in-Depth Neural Networks (Alejandro Queiruga, Benjamin Erichson, Dane Taylor)

	0:
	0:
	1:
	2:
	3:
	4:
	5:
	6:
	7:
	8:
	9:
	10:
	11:
	12:
	13:
	14:
	15:
	16:
	17:
	18:
	19:
	20:
	21:
	22:
	23:
	24:
	25:
	26:
	27:
	28:
	29:
	30:
	31:
	32:
	33:
	34:
	35:
	36:
	37:
	38:
	39:
	40:
	41:
	42:
	43:
	44:
	45:
	46:
	47:
	48:
	49:
	50:
	51:
	52:
	53:
	54:
	55:
	56:
	57:
	58:
	59:
	60:
	61:
	62:
	63:
	64:
	65:
	66:
	67:
	68:
	69:
	70:
	71:
	72:
	73:
	74:
	75:
	76:
	77:
	78:
	79:
	80:
	81:
	82:
	83:
	84:
	85:
	86:
	87:
	88:
	89:
	90:
	91:
	92:
	93:
	94:
	95:
	96:
	97:
	98:
	99:
	100:
	101:
	102:
	103:
	104:
	105:
	106:
	107:
	108:
	109:
	110:
	111:
	112:
	113:
	114:
	115:
	116:
	117:
	118:
	119:
	120:
	121:
	122:
	123:
	124:
	125:
	126:
	127:
	128:
	129:
	130:
	131:
	132:
	133:
	134:
	135:
	136:
	137:
	138:
	139:
	140:
	141:
	142:
	143:
	144:
	145:
	146:
	147:
	148:
	149:

	anm0:

