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Paradigms of Modeling Complex Systems

Machine Learning
(Data-driven) 

Dynamical Systems
(Theory-driven) 

What can we learn from dynamical systems and control theory?

Residual Networks (ResNets) Differential Equations
Network Architecture Design Numerical Methods

Training Optimal Control

Statistical Modelling
(Data/Theory-driven) 

- Interpretable
- Strong assumptions
- Low expressivity

- Black-box
- No assumptions
- High expressivity

- Gray-box
- Noise ?!
- Robust / Stable



Recent Related Mahoney Lab’s Research Outcomes

I ML to Dynamical Systems:
I Shallow neural networks for fluid flow reconstruction with limited sensors (Erichson et al.)

Machine Learning
(Data-driven) 

Dynamical Systems
(Theory-driven) 

I Ideas from Dynamical Systems to ML:
I ANODEV2: A coupled neural ODE framework (Gholami et al.)
I Stochastic normalizing flows (Hodgkinson et al.)
I Physics-informed autoencoders for lyapunov-stable fluid flow prediction (Erichson et al.)
I Forecasting sequential data using consistent koopman autoencoders (Azencot et al.)
I Improving ResNets with a corrected dynamical systems interpretation (Queiruga et al.)
I Noise-response analysis for rapid detection of backdoors in deep nets (Erichson et al.)



Connection between Deep Learning and Differential Equations

I The essential building blocks of ResNets are so-called residual units.

xt+1 = ε · xt + σt(xt, θt). (1)

I The function σt : Rn → Rn denotes the t-th residual module (a non-linear map),
parameterized by θt, which takes a signal xt ∈ Rn as input. ε is the step size.

I For simplicity, let’s consider a linear unit

xt+1 = ε · xt +Axt. (2)

I Through the lens of differential equations, residual units can be seen as a some (!?)
discretization scheme for the following ordinary differential equation:

∂x

∂t
= Ax. (3)

I This connection between differential equations and residual units can help to study network
architecture as well as provide inspiration for the design of new network architectures.



What can we Learn from Dynamical Systems Theory?

I Dynamical systems theory is mainly concerned with describing the long-term qualitative
behavior of dynamical systems, which typically can be describe as differential equations.

I Stability theory plays an essential role in the analysis of differential equation.

I We might be interested to study whether trajectories of a given dynamical systems, under
small perturbations of the initial condition x0, are stable.

δ ε t
x0

I If the dynamics ∂x
∂t = Ax are linear, stability can be checked with an eigenvalue analysis.

I We can use linearization or input-to-state stability to study nonlinear systems.

I Does stability matter in deep learning? Well, it depends ....

I Feedforward neural networks (FNNs): each residual unit takes only a single step. Thus,
stability might not matter?!

I Recurrent neural networks: stability matters! If the recurrent unit is unstable, then we
observe exploding gradients. We will discuss this later.



How can we Integrate Prior Physical Knowledge?

I Option 1: Physics-informed network architectures. We integrate prior knowledge
(e.g., symmetries) via specialized physics-informed layers or convolution kernels.

θk = T (Wk) := β · (W +WT ) + (1− β) · (W −WT ) (4)

I Option 1: Physics-informed regularizers. We integrate prior knowledge (e.g., stability)
via additional energy terms

min
θ
L(θ) := 1

n

n∑
i=1

`i(hθ(xi), yi)︸ ︷︷ ︸
Loss

+ λ · R(θk)︸ ︷︷ ︸
regularizer

, (5)

I Option 1: Physics-constrained models. We integrate prior knowledge (e.g., an ODE
model) via additional constraints on the outputs

min
θ
L(θ) := 1

n

n∑
i=1

`i(hθ(xi), yi) s.t. R(fθ(x)) ≤ η, (6)
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Physics-constrained learning (PCL)

I Supervised ML aims to learn a model H that best
maps a set of inputs X to a set of outputs Y:

H : X → Y
I We hope that this model also works on new inputs.

hypothesis space of the

unconstrained model

hypothesis space of the physics-constrained model

PCL aims to introduce prior knowledge about the problem into the learning process.



Problem setup: Fluid flow prediction
I We assume that the dynamical system of interest can be modeled as

xt+1 = A(xt) + ηt, t = 0, 1, 2, . . . , T.

I In a data-driven setting we might only have access to (high-dimensional) observations

yt = G(xt) + ξt, t = 0, 1, 2, . . . , T.

I Given a sequence of observations y0,y1, . . . ,yT ∈ Rm for training, the objective of this
work is to learn a model which maps the snapshot yt to yt+1.
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Physics-agnostic model

I Given the pairs {yt,yt+1}t=1,2,...T , we train a model by minimizing the MSE

min
1

T

T∑
t=0

‖yt+1 −F(yt)‖22.

I During inference time, we can obtain predictions by composing the learned model k-times

ŷk = F ◦ F ◦ F ◦ ... ◦ F(y0).

Black Box



A typical black box model

Automatic differentiation

I I will talk more about the specific architecture later....



From black box to gray box models

I We to add meaningful constraints to our model:

min
1

T

T∑
t=0

‖yt+1 −Φ ◦Ω ◦Ψ(yt)‖22 + λ‖yt −Φ ◦Ψ(yt)‖22.+ρ(Ω)

I If the model obeys the assumption that Ψ approximates G−1, then we have that

ŷk ≈ Φ ◦Ωk ◦Ψ(y0).

encoder dynamics decoder

skip connection



From black box to gray box models

I We start by adding a meaningful constraint to our model:

min
1

T

T∑
t=0

‖yt+1 −Φ ◦Ω ◦Ψ(yt)‖22 + λ‖yt −Φ ◦Ψ(yt)‖22 + κ ρ(Ω).

I If the model obeys the assumption that Ψ approximates G−1, then we have that

ŷk ≈ Φ ◦Ωk ◦Ψ(y0).

encoder dynamics decoder

skip connection



Lyapunov stability in a nutshell

I The origin of a dynamic system

xt+1 = A(xt) + ηt t = 0, 1, 2, . . . , T.

is stable if all trajectories starting arbitrarily close to the origin (in a ball of radius δ)
remain arbitrarily close (in a ball of radius ε).

δ ε k

x0
Ak(x0)

I If the dynamics A are linear, stability can be checked with an eigenvalue analysis.



Lyapunov’s method... an idea from over 120 years ago1

I For linear systems, Lyapunov’s second method states that a dynamic system

xt+1 = Axt + ηt t = 0, 1, 2, . . . , T

is stable if and only if for any (symmetric) positive definite matrix Q ∈ Rn×n there exists
a (symmetric) positive definite matrix P ∈ Rn×n satisfying

A>PA−P = −Q.

I Using this idea, we impose that the symmetric matrix P, defined by

Ω>PΩ−P = −I,

is positive definite.

1https://stanford.edu/~boyd/papers/pdf/springer_15_colloquium.pdf

https://stanford.edu/~boyd/papers/pdf/springer_15_colloquium.pdf
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To gain some intuition...
I ... we consider the case where Ω is diagonalizable and Q chosen appropriately.

I Then, for a particular choice of coordinates the following problem

Ω>PΩ−P = −I, (1)

reduces to the system of linear equations

ωipiωi − pi = −1, (2)

where ωi, pi, for i = 1, 2, . . . , n, denote the eigenvalues of Ω and P, respectively.



Physics-aware model that preserves stability
I The physics-informed autoencoder is trained by minimizing the following objective

min
1

T

T∑
t=0

‖yt+1 −Φ ◦Ω ◦Ψ(yt)‖22 + λ‖yt −Φ ◦Ψ(yt)‖22 + κ
∑
i

ρ(pi).

I The prior p can take various forms. We use the following in our experiments:

ρ(p) :=

{
exp

(
− |p−1|γ

)
if p < 0

0 otherwise.

encoder dynamics decoder

skip connection



Physics-aware model that preserves stability
I The physics-informed autoencoder is trained by minimizing the following objective

min
1

T

T∑
t=0

‖yt+1−Φ◦Ω◦Ψ(yt)‖22+‖yt+2 −Φ ◦Ω ◦Ω ◦Ψ(yt)‖22+λ‖yt−Φ◦Ψ(yt)‖22+κ
∑
i

ρ(pi).

I The prior p can take various forms. We use the following in our experiments:

ρ(p) :=

{
exp

(
− |p−1|γ

)
if p < 0

0 otherwise.

encoder dynamics decoder
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Examples that we consider

I Flow past the cylinder.

I Daily sea surface temperature data of the gulf of Mexico over a period of 6 years.



Prediction performance for flow past the cylinder (without weight decay)

min
1

T

T∑
t=0

‖yt+1−Φ◦Ω◦Ψ(yt)‖22+‖yt+2−Φ◦Ω◦Ω◦Ψ(yt)‖22+λ‖yt−Φ◦Ψ(yt)‖22+κ
∑
i

ρ(pi).
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Visual results for flow past the cylinder (100 time steps)
example 1 example 2 example 3 example 4
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More results for the flow past the cylinder (with weight decay)
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Results for the sea surface temperature data

min
1

T

T∑
t=0

‖yt+1 −Φ ◦Ω ◦Ψ(yt)‖22 + λ‖yt −Φ ◦Ψ(yt)‖22 + κ
∑
i

ρ(pi).
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Visual results for the sea surface temperature data

example 1 example 2 example 3 example 4
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Have we just proposed a new regularizer?

Every adjustable knob and switch — and there are many2 — is regularization.

(a) Dropout. (b) Early stopping. (c) Bottleneck.
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(d) Stability.

2https://arxiv.org/pdf/1710.10686.pd

https://arxiv.org/pdf/1710.10686.pd


We use shallow networks...

Shallow learning

Pe
rf

o
rm

a
n
ce

Amount of (labeled) data points

Deep learning

Bulk of scientific applications

0.33M

3

very shallow (our) shallow deeper

Computational demands: low ��� high
Time for hyper-parameter tuning: low ��� high
Complexity of architecture design: low ��� high
Inference time: low ��� high
Carbon footprint: low ��� high

3Adapted from https://arxiv.org/pdf/1810.00736.pdf

 https://arxiv.org/pdf/1810.00736.pdf


Summary

I Physics-informed autoencoders can help to improve the generalization performance.

I Caveat of physics-informed learning are complicated loss functions: L1 + γL2 + κL3 + ....

I Next steps: non-linear dynamics, recurrent networks and parameterized layers.

encoder dynamics decoder

skip connection
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Task: Prediction of Future Data



Recurrent Neural Networks

Pascanu et al., ICML ‘13



Vanilla RNN

𝑥$"# = 𝜎 𝑊𝑥$ + 𝑉𝑢$"#

nonlinearity

hidden-to-hidden input-to-hidden

state input



• Weights are shared across time

• RNN can simulate a universal Turing machine (?)
Siegelmann and Sontag, ‘91

• Accomodates all systems in table (?)

Advantages of Vanilla RNN

𝑥$"# = 𝜎 𝑊𝑥$ + 𝑉𝑢$"#



Increasing “nonlinear” powers of 𝑊!

Recursive expansion

𝑥!"# =
=
=

𝜎 𝑊𝑥$ + 𝑉𝑢$"#
𝜎 𝑊𝜎 𝑊𝑥$%# + 𝑉𝑢$ + 𝑉𝑢$"#
𝜎 𝑊𝜎 𝑊𝜎 𝑊𝑥$%& + 𝑉𝑢$%# + 𝑉𝑢$ + 𝑉𝑢$"#



• Exploding/Vanishing gradients

• Analyzed via the spectrum of 𝑊: Arjovsky et al. ‘16

Practical Challenges

1 0 1

1

0

1



• (too) Constrained hidden-to-hidden weights

𝑥!"# = ⋯+ 𝜎𝑊𝜎𝑉𝑢! + 𝜎𝑊 $𝜎𝑉𝑢!%# +⋯

• Powers of 𝜎𝑊 range from tens to hundreds!

Practical Challenges

zero hidden state



Physics-based “RNN”

Lagrangian mechanics, Lutter et al., ’19

Hamiltonian dynamics, Greydanus et al., ‘19, …

Koopman methods, Takeishi et al. ‘17, …



Dynamical Systems via Koopman

𝑧&"# = 𝜑 𝑧& ⟹ 𝒦'𝑓 𝑧& = 𝑓 𝜑 𝑧&

𝒦(



Dynamical Systems via Koopman

𝒦(



Koopman Operators

𝒦'𝑓 𝑧& = 𝑓 𝜑 𝑧&



Linearizing Data Transformation

nonlinear linear

𝜒$

𝜒%



1. Time series data in matrices

𝐹 = 𝑓& , 𝐺 = 𝑔& ,

2. Compute PCA\POD modes

𝐹 = 𝑈'𝑆'𝑉'∗, 𝐺 = 𝑈)𝑆)𝑉)∗

3. Solve 

min
*

𝐶𝑈'+𝐹 − 𝑈)+𝐺 '
,

Dynamic Mode Decomposition

Schmid, JFM ‘10



Our Approach

Time 1 Time 2

𝒰)

𝒦(



Deep Koopman Autoencoders

Azencot*, Erichson*, Lin, and Mahoney, ‘19

𝜒*| 𝜒+ 𝜒+| 𝜒*

𝐶

𝐷



Deep Koopman Autoencoders

Reconstruction/fwd prediction/bwd prediction:

!𝑢2 = 𝜒3 ∘ 𝜒4(𝑢2)
(𝑢256 = 𝜒3 ∘ 𝐶 ∘ 𝜒4(𝑢2)
*𝑢276 = 𝜒3 ∘ 𝐷 ∘ 𝜒4(𝑢2)

Our hidden state: 𝑥! = 𝜒$(𝑢!)

short-term dependencies



Forward Prediction in Linear Space

Prediction	over	𝑙 steps	=	Apply	𝑙 times	𝐶:

(𝑢258 = 𝜒3 ∘ 𝐶8 ∘ 𝜒4 𝑢2

given	that	𝜒% ∘ 𝜒$ = id!



Loss Function Terms

Long-term	(fwd+bwd)	predictions:

ℰ!"# =
1

2𝜆$𝑛
'
%&'

(!

'
)&'

*

𝑢)+% − *𝑢)+% ,,

ℰ-"# =
1

2𝜆$𝑛
'
%&'

(!

'
)&'

*

𝑢).% − +𝑢).% ,,

Reconstruction:

ℰ'( =
1
2𝑛
G
$)#

*

𝑢$ − I𝑢$ &&



Bijections and invertible Koopman

Theorem:

The mapping 𝜑 is bijective, if and only if 
the associated Koopman operators satisfy 

𝜉, , 𝒰𝒦𝜉- ℳ
= 𝛿,-



Consistent Maps

Important: 𝐶 and 𝐷 must come from point-to-point maps 

Theorem:

The discrete map 𝜑 is consistent, if and only if 
the following condition holds

(
/
𝐷/∗𝐶∗/ − 𝐼/ 1

2 = 0



Consistency Loss Term

Penalize	symmetrically:

ℰ()* = :
&+#

,
1
2𝑘

𝐷&∗𝐶∗& − 𝐼& .
$

+ :
&+#

,
1
2𝑘

𝐶&∗𝐷∗& − 𝐼& $
$



Soft Unitary Weights

1 0 1

1

0

1

RNN Ours



Results



Nonlinear Pendulum

𝑑2𝜃
𝑑𝑡2 +

𝑔
𝑙 sin 𝜃 = 0, 𝜃 0 = 𝜃3,

𝑑𝜃
𝑑𝑡 0 = 0



Nonlinear Pendulum



Flow Past a Cylinder

𝜕!𝜔 = − 𝑣, ∇𝜔 + 𝜈Δ𝜔



Flow Past a Cylinder
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Summary

I Ideas from dynamical systems theory can help to develop novel algorithmic tools.

I We need to rethink DNNs in order to improve interpretability and explainability.

I Should we expect rigorous mathematical analysis of deep learning? Maybe, but...
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