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A motivating question
Given a SOTA CV or NLP model, can we (or how can we, e.g., what
metric, with or without any data) tell if it is overparameterized?
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A motivating question
Given a SOTA CV or NLP model, can we (or how can we, e.g., what
metric, with or without any data) tell if it is overparameterized?

Can we predict trends in the quality of state-of-the-art neural networks
without access to training or testing data?∗

∗“Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data,” Martin, Peng,

and Mahoney, arXiv:2002.06716, Accepted for publication, Nature Communications.
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A motivating question
Given a SOTA CV or NLP model, can we (or how can we, e.g., what
metric, with or without any data) tell if it is overparameterized?

Can we predict trends in the quality of state-of-the-art neural networks
without access to training or testing data?∗

Odd question for AI/ML people – if forced, they say of course not.
Some other possible answers:

I Yes or no, since a theorem says such-and-such.
I Yes or no, if you assume some Bayesian something-or-other.
I Yes or no, if distributional covariates do such-and-such.
I Maybe, since convolutions smooth, but not for NLP.
I I don’t know, since I build systems that work for any data.

This is not how people build bridges or do brain surgery or explore for
oil or trade stocks or . . .
Why is it the way we do AI/ML?

∗“Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data,” Martin, Peng,

and Mahoney, arXiv:2002.06716, Accepted for publication, Nature Communications.
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What is theory? What is the role of theory?
https://en.wikipedia.org/wiki/Theory

Scientific theory:
“a well-confirmed type of explanation of nature, made in a way
consistent with scientific method . . . described in such a way that
scientific tests should be able to provide empirical support for it, or
empirical contradiction (“falsify”) of it.”
descriptive: this is the way the world is

Mathematical theory:
“a branch of or topic in mathematics . . . an extensive, structured
collection of theorems”
prescriptive/normative: this is the way the world should be

“Working with state-of-the-art neural network models is a practical business, and it demands a
practical theory.”

Mahoney (UC Berkeley) Practical Theory & NN Models April 2021 6 / 51

https://en.wikipedia.org/wiki/Theory


This matters . . . and guides the type of theory we prefer

Describing versus prescribing:
Use a new metric to make a falsifiable prediction.
Use a new metric to make a regularizer for training.

Shape parameters versus size parameters:
Size/norm of matrix = norm of eigenvalues.
Shape of eigenvalue distribution = more refined information.

Constraints on the type of theory:
Worst-case bounds work better with “norms.”
Shape of eigenvalues related to “volumes.”

Determining causes from data.
Does a bounding theorem or a metrics on the data establish causality?
Does successfully making falsifiable predictions establish causality?
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Lots of DNNs analyzed: Look at nearly every
publicly-available SOTA model in CV and NLP

Don’t evaluate your method on one/two/three NNs, evaluate it on:
I dozens (2017)
I hundreds (2019)
I thousands (2021)

Don’t use bad/toy models, use SOTA models.
I If you do, don’t be surprised if low-quality/toy models are different

than high-quality/SOTA models.

Don’t train models, instead validate pre-trained models.
I Validating models is harder than training models.
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Results: LeNet5 (an old/small NN example)

Figure: Full and zoomed-in ESD for LeNet5, Layer FC1.

Older and/or smaller and/or less well-trained models look like bulk+spike.
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Results: AlexNet (a typical modern/large DNN example)

Figure: Zoomed-in ESD for Layer FC1 and FC3 of AlexNet.

Newer SOTA models have heavy-tail structure in their weight matrix
correlations (i.e., not elements but eigenvalues).
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Results: InceptionV3 (one particularly unusual example)

Figure: ESD for Layers L226 and L302 in InceptionV3, as distributed w/ pyTorch.

Lots of “funny stuff” in real data—many models are exceptions, some are
“exceptions that prove the rule.”
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Ubiquity of heavy-tailed ESDs: ImageNet and AllenNLP
(older results, from ca. 2018.)

All these models display remarkable Heavy Tailed Universality
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Ubiquity of heavy-tailed ESDs: BERT and GPT vs GPT2
(older results, from ca. 2018.)

(a) The pretrained BERT model is not
optimal (has large exponents and dis-
plays rank collapse)

(b) GPT versus GPT2: example of a class
of models that “improves” over time.

The pretrained BERT model is not optimal (has large exponents and displays rank collapse)
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Random Matrix Theory 101: Wigner and Tracy-Widom

Wigner: global bulk statistics approach universal semi-circular form
Tracy-Widom: local edge statistics fluctuate in universal way

Problems with Wigner and Tracy-Widom:
Weight matrices usually not square
Typically do only a single training run
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Random Matrix Theory 102: Marchenko-Pastur

Let W be an N ×M random matrix, with elements Wij ∼ N(0, σ2mp).

Then, the ESD of X = WTW, converges to a deterministic function:

ρN(λ) := 1
N

M∑
i=1

δ (λ− λi)

N→∞−−−−→
Q fixed


Q

2πσ2mp

√
(λ+ − λ)(λ− λ−)

λ
if λ ∈ [λ−, λ+]

0 otherwise.

with well-defined edges (which depend on Q, the aspect ratio):

λ± = σ2mp

(
1± 1√

Q

)2
Q = N/M ≥ 1.

Mahoney (UC Berkeley) Practical Theory & NN Models April 2021 17 / 51



Random Matrix Theory 102’: Marchenko-Pastur

(c) Vary aspect ratios (d) Vary variance parameters

Figure: Marchenko-Pastur (MP) distributions.
Important points:

Global bulk stats: The overall shape is deterministic, fixed by Q and σ.
Local edge stats: The edge λ+ is very crisp, i.e.,
∆λM = |λmax − λ+| ∼ O(M−2/3), plus Tracy-Widom fluctuations.

We use both global bulk statistics as well as local edge statistics in our theory.
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Random Matrix Theory 103: Heavy-tailed RMT

Go beyond the (relatively easy) Gaussian Universality class:
model strongly-correlated systems (“signal”) with heavy-tailed random matrices.

Generative Model
w/ elements from
Universality class

Finite-N
Global shape
ρN (λ)

Limiting
Global shape
ρ(λ), N →∞

Bulk edge
Local stats
λ ≈ λ+

(far) Tail
Local stats
λ ≈ λmax

Basic MP Gaussian MP
distribution MP TW No tail.

Spiked-
Covariance

Gaussian,
+ low-rank
perturbations

MP +
Gaussian
spikes

MP TW Gaussian

Heavy tail,
4 < µ

(Weakly)
Heavy-Tailed

MP +
PL tail MP Heavy-Tailed∗ Heavy-Tailed∗

Heavy tail,
2 < µ < 4

(Moderately)
Heavy-Tailed

(or “fat tailed”)

PL∗∗

∼ λ−(aµ+b)
PL

∼ λ−( 12 µ+1) No edge. Frechet

Heavy tail,
0 < µ < 2

(Very)
Heavy-Tailed

PL∗∗

∼ λ−( 12 µ+1)
PL

∼ λ−( 12 µ+1) No edge. Frechet

Basic MP theory, and the spiked and Heavy-Tailed extensions we use, including known, empirically-observed, and conjectured

relations between them. Boxes marked “∗” are best described as following “TW with large finite size corrections” that are likely

Heavy-Tailed, leading to bulk edge statistics and far tail statistics that are indistinguishable. Boxes marked “∗∗” are

phenomenological fits, describing large (2 < µ < 4) or small (0 < µ < 2) finite-size corrections on N →∞ behavior.



RMT-based 5+1 Phases of Training (in pictures)

(a) Random-like. (b) Bleeding-out. (c) Bulk+Spikes.

(d) Bulk-decay. (e) Heavy-Tailed. (f) Rank-collapse.

Figure: The 5+1 phases of learning we identified in DNN training.
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Bulk+Spikes: Small Models ∼ Tikhonov regularization

Low-rank perturbation

Wl 'Wrand
l + ∆large

Perturbative correction

λmax = σ2
(

1
Q + |∆|2

N

)(
1 + N

|∆|2

)
|∆| > (Q)−

1
4

λ+

simple scale threshold

x =
(
X̂ + αI

)−1
ŴTy

eigenvalues > α (Spikes)
carry most of the
signal/information

Bulk → Spikes
↙

Smaller, older models like LeNet5 exhibit traditional regularization and can
be described perturbatively with Gaussian RMT
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Heavy-tailed Self-regularization

W is strongly-correlated and highly non-random
We model strongly-correlated systems by heavy-tailed random matrices
We model signal (not noise) by heavy-tailed random matrices

Then RMT/MP ESD will also have heavy tails.
The eigenvalues are heavy-tailed; the weights are NOT.

“All” larger, modern DNNs exhibit novel Heavy-tailed self-regularization
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Mechanisms and regularization

Mechanisms:
Multiple mechanisms can give rise to heavy-tailed ESDs
We do not need to posit/understand a mechanism to use the theory

Every adjustable knob and switch∗ is regularization:
“Explicit regularization”: replace min f with min f + λg

“Implicit regularization” = regularization due to non-approximate
computation†

“Heavy-tailed self regularization” = regularization due to the data: SOTA
models train to good data, not bad or random or arbitrary data

∗and there are many (https://arxiv.org/pdf/1710.10686.pdf)
†see “Approximate Computation and Implicit Regularization ...”, Mahoney,

arXiv:1203.0786, PODS12
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Implications: Minimizing Frustration and Energy Funnels
As simple as can be?, Wolynes, 1997

Energy Landscape Theory: “random heteropolymer” versus “natural protein” folding

Somewhat like Moore-Penrose inverse for least-squares . . .
Every regime: gives minimum norm solution
Underdetermined regime: many nearby solutions (since it is singular perturbation)
Overdetermined regime: few nearby solutions (depending on smoothness parameters)

. . . except here the model depends on properties of the data.
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Watching weights with WeightWatcher
https://github.com/CalculatedContent/WeightWatcher

“pip install weightwatcher”
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Using the theory

Different ways one could use a theory.
Perform diagnostics for model validation, to develop hypotheses, etc.∗

Make predictions about model quality, generalization, transferability, etc.∗

Did post-training modifications damage my model?∗

Will buying more data help?∗

Will training longer help?∗

Will quantizing or distilling help?∗

Construct a regularizer to do model training.∗∗

∗Ideally, by peeking at very little or no data.
∗∗If you have lots of data, lots of GPUs, etc.
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Batch Size Tuning: Exhibiting the Phases

(a) Batch Size 500. (b) Batch Size 250. (c) Batch Size 100. (d) Batch Size 32.

(e) Batch Size 16. (f) Batch Size 8. (g) Batch Size 4. (h) Batch Size 2.

Figure: Varying Batch Size. ESD for Layer FC1 of MiniAlexNet. We exhibit all 5
of the main phases of training by varying only the batch size.

Decreasing batch size induces strong correlations in W, leading to a more
implicitly-regularized model.
Increasing batch size washes out strong correlations in W, leading to a less
implicitly-regularized model.
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Predicting test accuracies ... lots of metrics ...
Average log norm (a VC-like data-dependent capacity metric):

〈log ‖W‖〉 = 1
N
∑
l,i

log ‖Wl,i‖ = 1
N
∑
l,i

log(λmax
l,i )

Average alpha (also data-dependent, from HT-SR theory):

α = 1
N
∑
l,i
αl,i

Combine the two into a weighted average (weighted to compensate for
different size and scale of feature maps):

α̂ = 1
N
∑
l,i

log(λmax
l,i )αl,i

In a special case (α ≈ 2), for each layer:
PL–Norm Relation: α log λmax ≈ log ‖W‖2F .

“pip install weightwatcher”
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(The first) large-scale study (meta-analysis) of hundreds of
SOTA pretrained models ‡

Different metrics on pre-trained VGG.

Summary statistics: VGG; ResNet; DenseNet.

Summary statistics: hundreds of models.

Lots more plots to prove we can “predict trends . . . without access . . . ”
‡“Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data,” Martin,

Peng, and Mahoney, arXiv:2002.06716, Accepted for publication, Nature Communications.
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Using a theory: on SOTA models

Analyzing pre-trained models.

Alpha versus depth: VGG, ResNet, DenseNet.
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Using a theory: on SOTA models

Analyzing pre-trained models.

Histogram and depth plots of αl,i and λmax
l,i .
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Using a theory: easy to break popular SLT metrics

Easy to “break” popular SLT metrics
they are not validated counterfactually
they drive the development of models

Intel’s distillation “broke” their models.

GPTx series: how does a model trained to “bad”
data differ from one trained to “good” data?
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Using a theory: leads to predictions

Based on analyzing hundreds of pre-trained SOTA models:
“Correlation flow”:

I “Shape” of ESD of adjacent layers, as well as overlap between
eigenvectors of adjecent layers, should be well-aligned.

“Scale collapse”:
I “Size” of ESD of one or more layers changes dramatically, while the size

of other layers changes very little, as a function of some perturbation of
a model, during training (or post-training modification).

“Correlation traps”:
I Spuriously large eigenvalues§ may appear, and they may even be

important for model convergence.

We can measure these quantities with Weightwatcher—so can you!

§Eigenvalues not due to signal in the data—we have theorems-style theory for Hessians (“Hessian Eigenspectra of More
Realistic Nonlinear Models,” Liao and Mahoney, https://arxiv.org/abs/2103.01519), but it’s still open for Weights.
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More publicly-available data

A contest (Predicting Generalization in Deep Learning, NeurIPS 2020).
Our experiences:

based on a “fantastic” paper (considered many metrics, but not α or α̂)
nominally about causes of generalization; but, like most ML contests,

I ensemblization—good way to win
I information leakage—hard to avoid
I augment data—good way to win
I (But none of those tell us about generalization.)

big difference between 0 error and ≈ 0 error
not worth competing in∗

thanks to organizers for releasing data∗

∗since we want to understand causes of good model performance
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Models and metrics
Models and tasks: can segment models by architecture parameters or solver parameters.

Best-performing metrics.
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Size versus shape

Size (norm) and shape (fitted HT parameters) are different . . .

. . . and there is a lot of heterogeneity across tasks/subtasks.
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Extracting shape parameters from HT ESDs
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Training versus testing

Training and testing error often anti-correlated . . .

. . . and there is a lot of heterogeneity across tasks/subtasks.
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Simpson’s paradox (1 of 2)

Within sub-group: vary solver parameters.
Between sub-groups: vary architecture.

LogSpectralNorm for better models is:
Task1: larger within and between sub-groups.
Task2: larger within—and smaller between—sub-groups.
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Simpson’s paradox (2 of 2)

Within sub-group: vary solver parameters.
Between sub-groups: vary architecture.

Alpha for better models is:
Task1: smaller within and between sub-groups.
Task2: smaller within sub-groups—but larger between sub-groups.
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Lessons learned ...

Extracting causal insight?
Don’t invent causal metrics.
Don’t look for “one size fits all” metric.
We identified Simpson’s paradoxes—and then we used them and
domain knowledge to identify causes of good performance.
A cautionary tale . . .

Size versus shape more generally:
Construct data-dependent versions of size versus shape.
SVDSmoothing—if training data fit exactly, feed data through
low-rank approximation. (No GPUs!)
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What more can we do?
Future directions (all of which demand a practical theory):

Training/testing curves gives limited insight:
I don’t take into account hyperparameter fiddling;
I don’t correlate with robustness/accuracy/fairness/etc.

No access to data / optimization protocols / hyperparameter values / etc.:
I can I evaluate systems-motivated model adjustments?
I batch size, edge, distillation, etc. (without training/retraining)?

Model user is not a model developer:
I sanity check: did you give me a bad/damaged model?
I robustness check: can I look for backdoor adversarial attacks, etc.?

Data costs money:
I Do I have enough data?
I Should I spend money on analysts or machines or data?

If AI/ML is to become an industrial process, beyond FAAMG, it will have
to be compartmentalized to scale: Group-A develops; Group-B validates;
and Group-C deploys
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Data-dependent Theory of Over-param with RMT: Phase
Transition and Double Descent with Zhenyu Liao and Romain Couillet

Random Fourier features Σ = [cos(WX); sin(WX)] ∈ R2N×n of data
X = [x1, . . . , xn] ∈ Rp×n with standard Gaussian W ∈ RN×p

[RR08]: entry-wise convergence of RFF Gram 1
N [Σ>Σ]ij → [KGauss]ij

Gaussian kernel matrix, a.s. as N →∞ (pf: LLN)
NOT true in spectral norm, ‖Σ>Σ/N −KGauss‖ 6→ 0 unless 2N � n

I due to ‖A‖∞ ≤ ‖A‖ ≤ n‖A‖∞
I double descent test curves on real-world data? Yes, proved for RFF!
I direct consequence of phase transition from under- to over-param of

the resolvent Q = ( 1nΣ>Σ + λI)−1 in the ridgeless λ→ 0 limit

0 0.5 1
0

0.5

1
λ = 10−7

N/n
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M
SE
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0
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1
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N/n
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Exact expressions for double descent and
implicit regularization with Michał Dereziński and Feynman Liang

Double descent

“Classical” ML: parameters � data
“Modern” ML: parameters � data
Phase transition: parameters ∼ data

Our contribution:
New exact analysis for a linear model

0 50 100 150 200

data size

0.5

1

1.5

M
S

E

isotropic theory

isotropic empirical

 = 1e2 theory

 = 1e2 empirical

 = 1e5 theory

 = 1e5 empirical

Hastie, Montanari, Rosset, Tibshirani (2019). arXiv:1903.08560
Bartlett, Long, Lugosi, Tsigler (2019).
arXiv:1906.11300

Implicit regularization

Why does “Modern” ML work?
Because it induces implicit regularization

Our contribution:
Implicit ridge regularization of the
minimum-norm solution X†y

E[X†y] ' argminwE
[
(x>w− y)2

]
+

ridge︷ ︸︸ ︷
λ ‖w‖2

when parameters � data

Mahoney (2012). arXiv:1203.0786
Neyshabur, Tomioka, Srebro (2014).
arXiv:1412.6614
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Good classifiers are abundant in the interpolating regime
with Ryan Theisen and Jason Klusowski

Most classifiers have test error much
smaller than the worst-case classifier.

As dimension d gets large, with n/d
fixed, test errors concentrate around a

critical value ε∗.

Worst case versus average/typical case learning
Classical uniform convergence approach to learning studies
worst-case model we could fit:

εunif = sup
f

Test Error(f )

How likely are we to actually observe the worst-case?
We develop a methodology to compute the full distribution of
test errors for interpolating binary classification models:

Rn(ε) = P(Test Error(f ) ≤ ε | f (xi ) = yi ∀i = 1, . . . , n)

Main conclusions:
An overwhelming proportion of interpolating models have
very small test error, even though worst-case models do
exist.
As model sizes grow, test errors concentrate sharply around
a critical value ε∗.
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Multiplicative noise and heavy tails in stochastic
optimization with Liam Hodgkinson

Types of noise
Iterations of stochastic gradient descent

often behave like

Wk+1 = Wk − Ak∇f (Wk) + Bk ,

multiplicative noise (Ak);
additive noise (Bk)

What role does multiplicative noise play?

Our Findings
Multiplicative noise results in

heavy-tailed fluctuations

P(‖Wk+1 −Wk‖ > t) ∼ ct−α

Investigate dependence of α on
model, data, and optimizer
Theory applies to other optimizers
(e.g. Newton, Adam)

Heavier tails =⇒ improved exploration

Figure: Histogram of iterates on 1D
non-convex objective & initial point.
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Hessian information at scale¶: pyHessian and ADAHessian
with Amir Gholami, Zhewei Yao, etc.

PyHessian is a pytorch library for Hessian based analysis of
neural network models. It enables computing:

Top Hessian eigenvalues
The trace of the Hessian matrix
The full Hessian Eigenvalues Spectral Density (ESD)

Compute lots of Hessian
information for:

Training (ADAHESSIAN)
Quantization (HAWQ,
QBERT, I-BERT)
Pruning
Inference

Also used for:
Validation: loss landscape
Validation: model robustness
Validation: adversarial data
Validation: test hypotheses

¶TLDR: It takes 2X backprop time!
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Conclusions
“Practical theory” is not an oxymoron:

not all theory is practical, but some is

“Practical theory” is theory for practical things:
like data
like SOTA DNNs

“Practical theory” can be used to address practical questions:
is my network fully optimized?
should I buy more data?
can I use labels and/or domain knowledge more efficiently?
can I design better ensembles, or improve model post-modification?
is my pre-trained SOTA DNN overparameterized or underparameterized?

If you want more ... “pip install weightwatcher” ...
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