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Convex optimization

Find w∗ = argmin
w

L(w)

w∗

w̃ = w − pw
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Why use second-order methods...

...when there is SGD?

Sensitive to hyper-parameters

Limited effectiveness for large batch training

See, e.g., [DMK+18, GVY+18]

Second-order:

No hyper-parameter tuning

Supports large batch training

Recent interest in second-order methods:

theoretical analysis [RKM19, RLXM18, WRKXM18]

empirical (including DNNs) [GKC+19, FKR+18, KRMG18]
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Newton’s method

Newton’s method

L(w) =
1

n

n∑
j=1

`j(w
>xj) +

λ

2
‖w‖2

p =
[
∇2L(w)︸ ︷︷ ︸
Hessian H

]−1 ∇L(w)︸ ︷︷ ︸
gradient g

w∗

wt+1 = wt − pwt
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Newton’s method

Approximate Newton’s method

L̂(w) =
1

m

∑
j∈S

`j(w
>xj) +

λ

2
‖w‖2

p̂ =
[
∇2L̂(w)︸ ︷︷ ︸

Hessian estimate Ĥ

]−1 ∇L(w)︸ ︷︷ ︸
gradient g

w∗

wt+1 = wt − p̂wt
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Distributed Newton’s method

w

L̂1 L̂2 · · · L̂q

p̂1 p̂2 · · · p̂q

p̂

w̃ = w − p̂

Question: How to combine local Newton estimates p̂1, ..., p̂q?
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Model averaging

Standard averaging leads to biased estimates:

lim
q→∞

1

q

q∑
t=1

p̂t 6= p (q is the number of machines)

E
[
Ĥ−1

]
6= H−1, even though E

[
Ĥ
]

= H.
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General phenomenon: Inversion bias

Inversion bias: E[X−1] 6=
(
E[X]

)−1
for random X

Extends to inverting high-dimensional random matrices

X−1

(
E[X]

)−1

E[X−1]

a−1

b−1

X = a X = bE[X]
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Inversion bias in model averaging

1 Bagging

2 Distributed optimization

3 Federated learning

w∗ − 1

q

∑
i

ŵi
q→∞−→ w∗ − E[ŵi]︸ ︷︷ ︸

Bias

D

S1 S2 · · · Sq

ŵ1 ŵ2 · · · ŵq

1
q

∑
i ŵi
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Determinantal correction

Hessian estimate: Ĥ = ∇2L̂(w)

Inversion bias: E
[
Ĥ−1

]
6= H−1

Correction:
E
[
det(Ĥ)Ĥ−1

]
E
[
det(Ĥ)

] = H−1

Two strategies of using the correction:

1 Weighted averaging instead of uniform averaging

Determinantal averaging [DM19]

2 Joint sampling instead of uniform sampling

Surrogate sketches [DBPM20]
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Ĥ−1

]
6= H−1

Correction:
E
[
det(Ĥ)Ĥ−1
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Inversion bias: E
[
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Comparison of two strategies

Determinantal averaging

consistent global estimate: p̂ −→
m→∞

p

works with uniform sampling

Surrogate sketching

unbiased local estimates: E[p̂t] = p

samples from a Determinantal Point Process (DPP)
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Determinantal Point Processes (DPPs)

Non-i.i.d. randomized selection of a data subset S

Negative correlation: Pr(i ∈ S | j ∈ S) < Pr(i ∈ S)

i.i.d. (left) versus DPP (right)

Fast algorithms: [CDV20] (NeurIPS’20)

“Sampling from a k-DPP without looking at all items”

Learn more: [DM20] (Notices of the AMS)

“Determinantal point processes in randomized numerical linear algebra”

Image from [KT12]
11 / 19



Correcting inversion bias in Distributed Newton

Baseline: Uniform averaging of biased estimates [WRKXM18]

Convergence rate: ‖wt+1 −w∗‖ = Õ
( √
|dqm + d

m

)
· ‖wt −w∗‖

“variance” “bias”

q - number of machines

m - data points per machine
d - number of parameters

Method Convergence rate Trade-offs

Baseline
√
|d
qm

+ d
m

Var Bias Cost

[DM19] Determinantal averaging d√
qm

Var Bias Cost

[DBPM20] Surrogate sketching
√
|d
qm

Var Bias Cost

[DLDM20] LESS embeddings
√
|d
qm

+
√

d
m

Var Bias Cost

[DM19] “Distributed estimation of the inverse Hessian by

determinantal averaging”, at NeurIPS’19.
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( √
|dqm + d

m

)
· ‖wt −w∗‖

“variance” “bias”

q - number of machines

m - data points per machine
d - number of parameters

Method Convergence rate Trade-offs

Baseline
√
|d
qm

+ d
m

Var Bias Cost

[DM19] Determinantal averaging d√
qm

Var Bias Cost

[DBPM20] Surrogate sketching
√
|d
qm

Var Bias Cost

[DLDM20] LESS embeddings
√
|d
qm

+
√

d
m

Var Bias Cost

[DBPM20] “Debiasing distributed second order optimization with

surrogate sketching and scaled regularization”, at NeurIPS’20.
12 / 19



Correcting inversion bias in Distributed Newton

Baseline: Uniform averaging of biased estimates [WRKXM18]

Convergence rate: ‖wt+1 −w∗‖ = Õ
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[DLDM20] LESS embeddings
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Var Bias Cost

[DLDM20] “Sparse sketches with small inversion bias”, Preprint at

arXiv:2011.10695.
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Bias-variance trade-offs in model averaging

estimation error =
∥∥∥1

q

q∑
i=1

p̂i − p∗
∥∥∥
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Experiments: Effect of implicit regularization

Question: Should local regularizer match the global λ?

Distributed Newton with 100 machines for logistic regression

dashed lines: local regularizer = λ ·
(
1− dλ

m

)

regularized loss: L(w) =
1

n

n∑
j=1

`j(w
>xj) +

λ

2
‖w‖2

[DBPM20] “Debiasing distributed second order optimization with

surrogate sketching and scaled regularization”, at NeurIPS’20.
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Conclusions

Distributed Newton’s method suffers from inversion bias

We can correct this bias with:

Weighted averaging instead of uniform averaging

Determinantal averaging

Joint sampling instead of uniform sampling

Surrogate sketches

Scaled local regularization in place of the global regularizer

λ′ = λ · (1− dλ
m

)
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Thank you!
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editors, Advances in Neural Information Processing Systems 32, pages 11401–11411.

Curran Associates, Inc., 2019.
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