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Before I start: A public service announcement:

• We are putting randomness into LAPACK.
• Lots of practical and conceptual questions.
• We have a design document, and we want feedback.
• For details, contact me or Jim Demmel or Riley Murray (rjmurray@berkeley.edu, 

who is leading the effort)

mailto:rjmurray@berkeley.edu


What we’ll cover

• Background/overview

• TCS and NLA on CSSP

• Recent developments

• (no rank-revealing)
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A “data” application: choosing good columns as features
In Human Genetics, 

Single Nucleotide Polymorphisms: the most common type of genetic variation in the 
genome across different individuals.

They are known locations at the human genome where two alternate nucleotide bases 
(alleles) are observed (out of A, C, G, T).

SNPs
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… AG CT GT GG CT CC CC CC CC AG AG AG AG AG AA CT AA GG GG CC GG AG CG AC CC AA CC AA GG TT AG CT CG CG CG AT CT CT AG CT AG GG GT GA AG …

… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CT AA GG GG CC GG AA GG AA CC AA CC AA GG TT AA TT GG GG GG TT TT CC GG TT GG GG TT GG AA …
… GG TT TT GG TT CC CC CC CC GG AA AG AG AA AG CT AA GG GG CC AG AG CG AC CC AA CC AA GG TT AG CT CG CG CG AT CT CT AG CT AG GG GT GA AG …

… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CC GG AA CC CC AG GG CC AC CC AA CG AA GG TT AG CT CG CG CG AT CT CT AG CT AG GT GT GA AG …

… GG TT TT GG TT CC CC CC CC GG AA GG GG GG AA CT AA GG GG CT GG AA CC AC CG AA CC AA GG TT GG CC CG CG CG AT CT CT AG CT AG GG TT GG AA …

… GG TT TT GG TT CC CC CG CC AG AG AG AG AG AA CT AA GG GG CT GG AG CC CC CG AA CC AA GT TT AG CT CG CG CG AT CT CT AG CT AG GG TT GG AA …

… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA TT AA GG GG CC AG AG CG AA CC AA CG AA GG TT AA TT GG GG GG TT TT CC GG TT GG GT TT GG AA …

• Matrices with thousands of individuals and hundreds of thousands of SNPs are available.

• This is basically a “term-document” matrix.

• What counts as a “good” set of columns?



TCS versus NLA approaches (1 of 2)

Model of computation
• Streaming: 1 pass: +∆Aij, +/-∆Aij

• Pass efficient: 2 (or t) passes, additional space, 
and additional time

• RAM: space/time

• Communication-aware or not:

• Exact arithmetic or not:

(TLDR: in TCS: no pivoting issues; cache and 
conditioning okay; exact arithmetic)

Ways to choose columns
• i.i.d. sampling: uniform or not; column norms; 
approx. leverage scores: oversampling

• Adaptive sampling: multiple iterations 

• Volume sampling: get exactly k columns

Quantities of interest
• Reconstruction error (spectral, Frobenius, 
unitarily invariant, etc.)

• C is well-spread-out (e.g., volume)

• Find columns fast; ”X” matrix (in A≈CX) fast
to compute

• Good numerical properties: ”X” matrix is 
well conditioned, largest entry ≤ 1, pivot rule 
decisions, etc.

• Good implicit statistical properties (ridge 
regularization in expectation)

• Preserve sparsity; construct “X” using only 
information in C; etc.



TCS versus NLA approaches (2 of 2)

Pre-History (TCS*)

Additive error**: ||A-A’||F ≤ ||A-Ak||F + 𝜖 ||A||F
• Sample columns w.r.t. norms; do SVD on sample

• Random projection; do SVD on sketch (JL on cols)

• Sample columns w.r.t. norms; construct CX/CUR 

Relative error: ||A-A’||F ≤ (1 + 𝜖) ||A-Ak||F
• Sample columns w.r.t. leverage scores***; do SVD 
on sample

• Random projection; do SVD on sketch (JL on cols 
defining left singular subspace)

• Sample columns w.r.t. leverage scores***; construct 
CX/CUR 

Resources
• Traditional: Space, time, etc.

• Non-traditional: Oversampling (c ≫ k), 
randomness (fail w.p. 𝛿), etc.

Things to do
• Sample columns; “do SVD“ on sample

• Random projection; “do SVD“ on sample

• Sample columns; interested in columns

* TLDR: in TCS: no pivoting issues; cache and conditioning okay; exact arithmetic

** Strong lower bounds, i.e., can’t do better, in their streaming model of computation

*** Approx leverage scores: originally O(mn2); then O(SVD); then O(SVDk); then O(random proj time)
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A Column Subset Selection Problem (CSSP*)

PC = CC+ is the projector matrix on the subspace spanned by the columns of C.

Complexity of the problem? O(nkmn) trivially works; NP-hard if k grows as a 
function of n. (NP-hardness in Civril & Magdon-Ismail ’07)

Given an m-by-n matrix A and a rank parameter k, choose exactly k columns of A 
s.t. the m-by-k matrix C minimizes an error over all O(nk) choices for C, e.g.:

* CSSP ≈ CX/CUR ≈ interpolative decomposition / two-sided id ≈ pseudoskeleton approximations ≈ Q from QR



Prior work (circa 2007)
NLA algorithms for the CSSP

1. Deterministic, typically greedy approaches.
2. Deep connection with the RRQR.
3. Strongest results so far (spectral norm): in 

O(mn2) time

(more generally, some function p(k,n))

• Strongest results so far (Frobenius norm): in 
O(nk) time

TCS algorithms for the CSSP

1. Randomized, some failure probability.
2. Pick c ≫ k columns, e.g., O(poly(k)).
3. Very strong bounds for the Frobenius (but 

not spectral) norm in low polynomial time.

Gu-Eisenstat 1996 (and a long line of others):

• Given an m-by-n matrix A, “there exists” an 
algorithm that picks exactly  k columns of A 
such that

Drineas and Mahoney 2006:

• Given an m-by-n matrix A, “there exists” an 
O(mn2) algorithm that picks at most O( k log k / e2 ) 
columns of A s.t. with probability at least 1-10-20

Deshpande and Vempala 2006:

• O(mnk2) time, O(k2 log k/e2) columns -> (1±e)-
approximation.

• They prove the existence of k columns of A s.t.

• Compare to prior best existence result:



A hybrid two-stage algorithm

Boutsidis, Drineas, and Mahoney 2008

Given an m-by-n matrix A (assume m ¸ n for simplicity):

• (Randomized phase) Run a randomized algorithm to pick c = O(k log(k)) columns. 

• (Deterministic phase) Run a deterministic algorithm on the those columns* to pick exactly 
k columns of A and form an m-by-k matrix C.

Algorithm runs in O(mn2) and satisfies, with probability at least 1-10-20,

* actually, not so simple … details matter: the matrix 
consisting of the corresponding columns of the 
transpose of top-k right singular vectors

Compared to NLA:

1. Time is comparable with NLA algorithms.

2. Spectral norm bound grows as (n-k)1/4 instead of 
(n-k)1/2!

3. W.r.t. k, it is k1/4log1/2k worse.

4. First asymptotic improvement of the work of Gu 
& Eisenstat 1996.

Compared to TCS:

1. An efficient algorithmic result.

2. Frobenius norm bound at most (k log k)1/2

worse than the previous best existential result.



Q1: How many columns are needed to get relative-error (Frobenius norm) approximations ?

• DMM06/DMM08 (SIMAX): O( (k/ε2) log (k/ε 2) ) columns -> relative-error

• Deshpande & Rademacher (FOCS ’10): with exactly k columns, we can get

Q2: What about the range between k and O(k log k)?

• Boutsidis, Drineas, & Magdon-Ismail, (FOCS 11): Relative-error by selecting c=2k/ε+o(1) columns! 

(ideas from Batson, Spielman, & Srivastava (STOC ’09) on graph sparsifiers ---

running time is O((mnk+nk3)ε-1), simplicity is gone. )

• Deshpande & Vempala (RANDOM 2006): Relative-error needs at least k/ε columns.

• Guruswami & Sinop (SODA 2012): Approach, based on volume sampling, guarantee

(c+1)/(c+1-k) relative error bounds.

This bound is asymptotically optimal (up to lower order terms). 

Deterministic alg takes O(cnm3 log m) time; randomized alg takes O(cnm2) time

• Guruswami & Sinop (FOCS 2011): Apply column-based reconstruction in Quadratic Integer Programming.

What about between k and  O( (k/ε2) log (k/ε 2) )? 



Adaptive sampling

Deshpande et al. (2006) ToC:

Adaptive sampling algorithm: (pick columns adaptively in multiple rounds):.

Ø First, pick c columns of A using (Euclidean-norm based) probabilities:

Ø At the t-th round, compute the residual matrix E = A – CC+A, 

Ø Iteratively, pick c columns of A using (Euclidean-norm based) probabilities:  

Theorem: After t rounds, where, in each round,

columns of A are sampled, with probability at least 1-tδ, the error is:

Examples of extensions: 

• Drineas and Mahoney (LAA 2007): simple inductive proof, via matrix-matrix multiplication

• Paul, Magdon-Ismail, and Drineas, NIPS 2015: extended to leverage-score sampling: error after t
rounds depends on A-Atk instead of A-Ak !



Volume sampling
Deshpande et al. (2006) ToC:

Ø Algorithm: Sample a set of columns with probability proportional to their volume.

Ø Theorem: In expectation,

Can combine this with O(log k) rounds of adaptive sampling to get 1∓𝜖 relative-error.

BUT: computing the sampling probabilities PS is (very) hard (must be approximated)

BUT BUT: Adaptive sampling can be used to approximate the volume sampling probabilities! 

Overall: Use adaptive sampling to simulate volume sampling; return a set S of k
columns of A to form an m-by-k matrix C such that

Combining with O(k log k) rounds of adaptive sampling reduces the above error to 
relative error by sampling c= O(k/𝜖 + k2 log(k)) each round

Extensions:

• Lots of TCS theoretical follow-up … not really practical … until … 
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Improved guarantees and a multiple-descent curve for
Column Subset Selection and the Nyström method

Micha l Dereziński, Rajiv Khanna and Michael Mahoney

University of California, Berkeley

NeurIPS 2020
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(Won the Best Paper Award at NeurIPS20 (the top ML venue): +1 for Linear Algebra!)



Prior worst-case guarantees

[DRVW06]| {z }
CSSP

, [BW09]| {z }
Nyström

: Approximation factor  k + 1| {z }
worst-case optimal!

E.g., used in ICML 2019 Best Paper [BRVDW19] for GP regression
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We go beyond worst case analysis!
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Multiple-descent in real-world subset selection

Kernel: Gaussian RBF, hai , ajiK = exp(�kai�ajk2/�2)
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New: Improved guarantees under smooth spectral decay

Smooth spectral decay =) no spikes!

1. Polynomial spectral decay: ith singular value ⇣ i
�p

Approximation factor  O(1 + p) for all k

2. Exponential spectral decay: ith singular value ⇣ (1� �)i

Approximation factor  O(1 + �k) for all k

9 / 14



Method: Determinantal Point Processes (DPPs)

Non-i.i.d. randomized selection of column subset S

Negative correlation: Pr(i 2 S | j 2 S) < Pr(i 2 S)

i.i.d. (left) versus DPP (right)

I Fast algorithms: [CDV20] (here at NeurIPS’20)

“Sampling from a k-DPP without looking at all items”

I Learn more: [DM20] (to appear in Notices of the AMS)

“Determinantal point processes in randomized numerical linear algebra”

Image from [KT12]
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