
Scientific Machine Learning with Alchemist
(An Apache Spark <=> MPI Interface) and Beyond

Michael W. Mahoney

(RISELab, ICSI, and Department of Statistics, UC Berkeley)

April 2018

Thoughts on Machine Learning, Scientific Machine Learning, etc.

Spark and Spark performance

Alchemist: an Apache Spark <=> MPI Interface

Communication-avoiding Machine Learning

Current and Future Directions

 A jupyter/ipython + MPI interface
 RISELab’s Ray Project
 Large-scale Graph Processing
 Neural Network Learning
 Scalable Second-order Optimization Methods

Overview

Thoughts on Machine Learning, Scientific Machine Learning, etc.

Spark and Spark performance

Alchemist: an Apache Spark <=> MPI Interface

Communication-avoiding Machine Learning

Current and Future Directions

 A jupyter/ipython + MPI interface
 RISELab’s Ray Project
 Large-scale Graph Processing
 Neural Network Learning
 Scalable Second-order Optimization Methods

Overview

How do we view BIG data?

E.g., application in: Human Genetics

Scientific data and choosing good columns as features

 Single Nucleotide Polymorphisms: the most common type of genetic variation in the
genome across different individuals.

 They are known locations at the human genome where two alternate nucleotide bases
(alleles) are observed (out of A, C, G, T).

SNPs

in
di

vi
du

al
s

 … AG CT GT GG CT CC CC CC CC AG AG AG AG AG AA CT AA GG GG CC GG AG CG AC CC AA CC AA GG TT AG CT CG CG CG AT CT CT AG CT AG GG GT GA AG …!
… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CT AA GG GG CC GG AA GG AA CC AA CC AA GG TT AA TT GG GG GG TT TT CC GG TT GG GG TT GG AA …!

… GG TT TT GG TT CC CC CC CC GG AA AG AG AA AG CT AA GG GG CC AG AG CG AC CC AA CC AA GG TT AG CT CG CG CG AT CT CT AG CT AG GG GT GA AG …!
… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CC GG AA CC CC AG GG CC AC CC AA CG AA GG TT AG CT CG CG CG AT CT CT AG CT AG GT GT GA AG …!

… GG TT TT GG TT CC CC CC CC GG AA GG GG GG AA CT AA GG GG CT GG AA CC AC CG AA CC AA GG TT GG CC CG CG CG AT CT CT AG CT AG GG TT GG AA …!

… GG TT TT GG TT CC CC CG CC AG AG AG AG AG AA CT AA GG GG CT GG AG CC CC CG AA CC AA GT TT AG CT CG CG CG AT CT CT AG CT AG GG TT GG AA …!

… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA TT AA GG GG CC AG AG CG AA CC AA CG AA GG TT AA TT GG GG GG TT TT CC GG TT GG GT TT GG AA …!

 Matrices including thousands of individuals and hundreds of thousands (large for
some people, small for other people) if SNPs are available.

HGDP data

•  1,033 samples

•  7 geographic regions

•  52 populations

Cavalli-Sforza (2005) Nat Genet Rev

Rosenberg et al. (2002) Science

Li et al. (2008) Science

The International HapMap Consortium
(2003, 2005, 2007) Nature

Apply SVD/PCA on the
(joint) HGDP and HapMap

Phase 3 data.

Matrix dimensions:

2,240 subjects (rows)

447,143 SNPs (columns)

Dense matrix:

over one billion entries

The Human Genome Diversity Panel (HGDP)

ASW, MKK, LWK,
& YRI

CEU

TSI
JPT, CHB, & CHD

GIH

MEX

HapMap Phase 3 data

•  1,207 samples

•  11 populations

HapMap Phase 3

Africa

Middle East

South Central
Asia

Europe

Oceania

East Asia

America

Gujarati
Indians

Mexicans

•  Top two Principal Components (PCs or eigenSNPs)
(Lin and Altman (2005) Am J Hum Genet)

•  The figure renders visual support to the “out-of-Africa” hypothesis.

•  Mexican population seems out of place: we move to the top three PCs.

Paschou, et al (2010) J Med Genet

Africa
Middle East

S C Asia &
Gujarati Europe Oceania

East Asia

America

•  Not altogether satisfactory: the principal components are linear combinations of
all SNPs, and – of course – can not be assayed!

•  Can we find actual SNPs that capture the information in the singular vectors?

•  Relatedly, can we compute them and/or the truncated SVD “efficiently.”

Paschou, et al. (2010) J Med Genet

Two related issues with eigen-analysis
Computing large SVDs: computational time
•  In commodity hardware (e.g., a 4GB RAM, dual-core laptop), using MatLab 7.0 (R14),
the computation of the SVD of the dense 2,240-by-447,143 matrix A takes ca 20 minutes.

•  Computing this SVD is not a one-liner, since we can not load the whole matrix in RAM
(runs out-of-memory in MatLab).

•  Instead, compute the SVD of AAT.

•  In a similar experiment, compute 1,200 SVDs on matrices of dimensions (approx.) 1,200-
by-450,000 (roughly, a full leave-one-out cross-validation experiment) (DLP2010)

Selecting actual columns that “capture the structure” of the top PCs
•  Combinatorial optimization problem; hard even for small matrices.

•  Often called the Column Subset Selection Problem (CSSP).

•  Not clear that such “good” columns even exist.

•  Avoid “reification” problem of “interpreting” singular vectors!

•  (Solvable in “random projection time” with CX/CUR decompositions! (PNAS, MD09))

Recent	 application:	 Astronomy	

XXX	

Joint	 work	 with	 David	 Lawlor	 and	 Tamas	 Budavari	 (2015)	

18/43

Use case2: Galactic spectra from SDSS

x
i

2 R3841, N ⇡ 500k

photon fluxes in ⇡ 10 Å
wavelength bins

preprocessing corrects for
redshift, gappy regions

normalized by median flux
at certain wavelengths

3000 4000 5000 6000 7000 8000 9000
0

2

4

6
raw spectrum in observed frame

3000 4000 5000 6000 7000 8000 9000
0

2

4

6
raw spectrum in rest frame

3000 4000 5000 6000 7000 8000 9000
0

2

4

6
gap−corrected spectrum in rest frame

2Also results in neuroscience as well as genetics and mass spec imaging.

Recent	 application:	 Astronomy	

XXX	

Joint	 work	 with	 David	 Lawlor	 and	 Tamas	 Budavari	 (2015)	

22/43

Global embedding: e↵ect of k

Figure: Eigenvectors 3 and 4 of Lazy Markov operator, k = 2 : 2048

Recent	 application:	 Astronomy	

XXX	

Joint	 work	 with	 David	 Lawlor	 and	 Tamas	 Budavari	 (2015)	

23/43

Global embedding: average spectra

3000 4000 5000 6000 7000 8000 9000

A1

A2

A3

A4

A5

wavelength (10−10 m)

sc
a

le
d

 f
lu

x
+

 o
ff

se
t

3000 4000 5000 6000 7000 8000 9000

E1

E2

E3

E4

E5

wavelength (10−10 m)

sc
a

le
d

 f
lu

x
+

 o
ff

se
t

3000 4000 5000 6000 7000 8000 9000

R1

R2

R3

R4

R5

wavelength (10−10 m)

sc
a

le
d

 f
lu

x
+

 o
ff

se
t

Recent	 application:	 Astronomy	

XXX	

Joint	 work	 with	 David	 Lawlor	 and	 Tamas	 Budavari	 (2015)	

26/43

Local embedding: scale parameter and e↵ect of seed
For an appropriate choice of c and � = �() < �2, one can show

w2 = c(L� �D)+Ds

= c(L
G

� �L
k

n

)+Ds

(In practice, binary search to find “correct” �.)

Figure: (left) Global embedding with seeds in black. (middle, right)
Local embeddings using specified seeds.

Thoughts on Machine Learning, Scientific Machine Learning, etc.

Spark and Spark performance

Alchemist: an Apache Spark <=> MPI Interface

Communication-avoiding Machine Learning

Current and Future Directions

 A jupyter/ipython + MPI interface
 RISELab’s Ray Project
 Large-scale Graph Processing
 Neural Network Learning
 Scalable Second-order Optimization Methods

Overview

Where do you run your linear algebra?

Single machine
• Think about RAM, call LAPACK, etc.

• Someone else thought about numerical issues, memory hierarchies, etc.

• This is the 99%

Supercomputer
• High end, compute-intensive.

• Big emphasis on HPC (High Performance Computing)

• C+MPI, etc.

Distributed data center
• High end, data-intensive

• BIG emphasis on HPC (High Productivity Computing)

• Databases, MapReduce/Hadoop, Spark, etc.

16 ©2017
RISELab!

MPI

•  MPI = Message Passing Interface

•  A specification for the developers

and users of message passing

libraries

•  Message-Passing Parallel

Programming Model: cooperative

operations between processes, data

moved from address space of one

process to that of another

•  Popular implementations: MPICH,

Open MPI

Apache Spark

•  Cluster computing system

•  Interoperable with Apache

Hadoop, much faster

•  Improved efficiency:

•  In-memory computing primitives

•  Computation graphs

•  Rich and easy-to-use API

•  Allows for iterative algorithms

(important for ML and linear

algebra)

•  Fault tolerant

Spark Architecture

  Data parallel programming model
  Resilient distributed datasets (RDDs) (think: distributed array type)
  RDDs can optionally be cached in memory b/w iterations
  Driver forms DAG, schedules tasks on executors

Spark Communication

  Computation operate on one RDD to produce another RDD
  Each overall job (DAG) broken into stages
  Stages broken into parallel, independent tasks
  Communication happens only between stages

Why do linear algebra in Spark?

  Classical MPI-based linear algebra algorithms are faster
and more efficient

  No way, currently, to leverage legacy parallel linear
algebra codes

  JVM matrix size restrictions, and RDD rigidity

Cons:

  Widely used
  Easier to use for non-experts
  An entire ecosystem that can be used before and after the

NLA computations
  Spark can take advantage of available single-machine

linear algebra codes (e.g. through netlib-java)
  Automatic fault-tolerance
  Transparent support for out of memory calculations

Pros:

Our Goals

  Provide implementations of low-rank factorizations (PCA,
NMF, and randomized CX) in Spark

  Apply low-rank matrix factorization methods to TB-scale
scientific datasets in Spark

  Understand Spark performance on commodity clusters vs
HPC platforms

  Quantify the scalability gaps between highly-tuned C/MPI
and current Spark-based implementations

  Provide a general-purpose interface for matrix-based
algorithms between Spark and traditional MPI codes

Three Science Drivers
Climate Science:
extract trends in variations of oceanic
and atmospheric variables (PCA)

Nuclear Physics:
learn useful patterns for
classification of subatomic particles
(NMF)

Mass Spectrometry:
location of chemically important ions
(CX)

Datasets

MSI — a sparse matrix from measurements of drift times and mass charge
ratios at each pixel of a sample of Peltatum; used for CX decomposition

Daya Bay — neutrino sensor array measurements; used for NMF

Ocean and Atmosphere — climate variables (ocean temperature,
atmospheric humidity) measured on a 3D grid at 3 or 6 hour intervals over
about 30 years; used for PCA

Our first (of by now several) results
Matrix Factorizations at Scale: a Comparison of Scientific Data

Analytics in Spark and C+MPI Using Three Case Studies

Alex Gittens ⇤ Aditya Devarakonda† Evan Racah‡ Michael Ringenburg§

Lisa Gerhardt‡ Jey Kottaalam† Jialin Liu‡ Kristyn Maschho↵§ Shane Canon‡

Jatin Chhugani¶ Pramod Sharma§ Jiyan Yangk James Demmel⇤⇤ Jim Harrell§

Venkat Krishnamurthy§ Michael W. Mahoney⇤ Prabhat ‡

July 1, 2016

Abstract

We explore the trade-o↵s of performing linear algebra using Apache Spark, compared to
traditional C and MPI implementations on HPC platforms. Spark is designed for data analytics
on cluster computing platforms with access to local disks and is optimized for data-parallel
tasks. We examine three widely-used and important matrix factorizations: NMF (for physical
plausability), PCA (for its ubiquity) and CX (for data interpretability). We apply these methods
to TB-sized problems in particle physics, climate modeling and bioimaging. The data matrices
are tall-and-skinny which enable the algorithms to map conveniently into Spark’s data-parallel
model. We perform scaling experiments on up to 1600 Cray XC40 nodes, describe the sources
of slowdowns, and provide tuning guidance to obtain high performance.

1 Introduction

Modern scientific progress relies upon experimental devices, observational instruments, and scien-
tific simulations. These important modalities produce massive amounts of complex data: in High
Energy Physics, the LHC project produces PBs of data; smaller-scale projects such as Daya Bay
produce 100s of TBs. In Climate science, the worldwide community relies upon distributed access to
the CMIP-5 archive, which is several PBs in size. In Biosciences, multi-modal imagers can acquire
100GBs-TBs of data. These projects spend a considerable amount of e↵ort in data movement and
data management issues, but the key step in gaining scientific insights is data analytics. Several
scientific domains are currently rate-limited by access to productive and performant data analytics
tools.

⇤ICSI and Department of Statistics, UC Berkeley
†EECS, UC Berkeley
‡NERSC, Lawrence Berkeley National Laboratory
§Cray, Inc.
¶Hiperform Consulting LLC
kICME, Stanford University

⇤⇤EECS and Math, UC Berkeley

1

ar
X

iv
:1

60
7.

01
33

5v
1

 [c
s.D

C]
 5

 Ju
l 2

01
6

M
a
t
r
i
x
F
a
c
t
o
r
i
z
a
t
i
o
n
s
a
t
S
c
a
l
e
:
a
C
o
m
p
a
r
i
s
o
n
o
f
S
c
i
e
n
t
i
fi
c
D
a
t
a

A
n
a
l
y
t
i
c
s
i
n
S
p
a
r
k
a
n
d
C
+
M
P
I
U
s
i
n
g
T
h
r
e
e
C
a
s
e
S
t
u
d
i
e
s

A
lex

G
itten

s
⇤

A
d
itya

D
evarakon

d
a
†

E
van

R
acah

‡

M
ich

ael
R
in
gen

b
u
rg

§

L
isa

G
erh

ard
t
‡

Jey
K
ottaalam

†

Jialin
L
iu

‡

K
risty

n
M
asch

h
o↵

§

S
h
an

e
C
an

on
‡

Jatin
C
h
h
u
gan

i
¶

P
ram

o
d
S
h
arm

a
§

Jiyan
Y
an

g
k

Jam
es

D
em

m
el

⇤
⇤

Jim
H
arrell

§

V
en
kat

K
rish

n
am

u
rth

y
§

M
ich

ael
W

.
M
ah

on
ey

⇤

P
rab

h
at

‡

Ju
ly

1,
2016

A
b
stra

ct

W
e
exp

lore
th
e
trad

e-o↵
s
of

p
erform

in
g
lin

ear
algeb

ra
u
sin

g
A
p
ach

e
S
p
ark,

com
p
ared

to
trad

ition
al

C
an

d
M
P
I
im

p
lem

entation
s
on

H
P
C

p
latform

s.
S
p
ark

is
d
esign

ed
for

d
ata

an
alytics

on
clu

ster
com

p
u
tin

g
p
latform

s
w
ith

access
to

local
d
isks

an
d

is
op

tim
ized

for
d
ata-p

arallel
tasks.

W
e
exam

in
e
th
ree

w
id
ely-u

sed
an

d
im

p
ortant

m
atrix

factorization
s:

N
M
F

(for
p
hysical

p
lau

sab
ility),

P
C
A
(for

its
u
b
iqu

ity)
an

d
C
X
(for

d
ata

interp
retab

ility).
W
e
ap

p
ly

th
ese

m
eth

od
s

to
T
B
-sized

p
rob

lem
s
in

p
article

p
hysics,

clim
ate

m
od

elin
g
an

d
b
ioim

agin
g.

T
h
e
d
ata

m
atrices

are
tall-an

d
-skin

ny
w
h
ich

en
ab

le
th
e
algorith

m
s
to

m
ap

conven
iently

into
S
p
ark’s

d
ata-p

arallel
m
od

el.
W
e
p
erform

scalin
g
exp

erim
ents

on
u
p
to

1600
C
ray

X
C
40

n
od

es,
d
escrib

e
th
e
sou

rces
of

slow
d
ow

n
s,

an
d
p
rovid

e
tu
n
in
g
gu

id
an

ce
to

ob
tain

h
igh

p
erform

an
ce.

1
I
n
t
r
o
d
u
c
t
i
o
n

M
od

ern
scientifi

c
p
rogress

relies
u
p
on

exp
erim

ental
d
evices,

ob
servation

al
in
stru

m
ents,

an
d
scien

-
tifi

c
sim

u
lation

s.
T
h
ese

im
p
ortant

m
od

alities
p
rod

u
ce

m
assive

am
ou

nts
of

com
p
lex

d
ata:

in
H
igh

E
n
ergy

P
hysics,

th
e
L
H
C

p
ro
ject

p
rod

u
ces

P
B
s
of

d
ata;

sm
aller-scale

p
ro
jects

su
ch

as
D
aya

B
ay

p
rod

u
ce

100s
of

T
B
s.

In
C
lim

ate
scien

ce,
th
e
w
orld

w
id
e
com

m
u
n
ity

relies
u
p
on

d
istrib

u
ted

access
to

th
e
C
M
IP

-5
arch

ive,
w
h
ich

is
several

P
B
s
in

size.
In

B
ioscien

ces,
m
u
lti-m

od
al

im
agers

can
acqu

ire
100G

B
s-T

B
s
of

d
ata.

T
h
ese

p
ro
jects

sp
en
d
a
con

sid
erab

le
am

ou
nt

of
e↵

ort
in

d
ata

m
ovem

ent
an

d
d
ata

m
an

agem
ent

issu
es,

b
u
t
th
e
key

step
in

gain
in
g
scientifi

c
in
sights

is
data

an
alytics.

S
everal

scientifi
c
d
om

ain
s
are

cu
rrently

rate-lim
ited

by
access

to
p
rod

u
ctive

an
d
p
erform

ant
d
ata

an
alytics

tools.
⇤IC

S
I
a
n
d
D
ep

a
rtm

en
t
o
f
S
ta
tistics,

U
C

B
erk

eley
†E

E
C
S
,
U
C

B
erk

eley
‡N

E
R
S
C
,
L
aw

ren
ce

B
erk

eley
N
a
tio

n
a
l
L
a
b
o
ra
to
ry

§C
ray,

In
c.

¶

H
ip
erfo

rm
C
o
n
su
ltin

g
L
L
C

kIC
M
E
,
S
ta
n
fo
rd

U
n
iv
ersity

⇤
⇤E

E
C
S
a
n
d
M
a
th
,
U
C

B
erk

eley

1

arXiv:1607.01335v1 [cs.DC] 5 Jul 2016

Matrix Factorizations at Scale: a Comparison of Scientific Data

Analytics in Spark and C+MPI Using Three Case Studies

Alex Gittens ⇤ Aditya Devarakonda† Evan Racah‡ Michael Ringenburg§

Lisa Gerhardt‡ Jey Kottaalam† Jialin Liu‡ Kristyn Maschho↵§ Shane Canon‡

Jatin Chhugani¶ Pramod Sharma§ Jiyan Yangk James Demmel⇤⇤ Jim Harrell§

Venkat Krishnamurthy§ Michael W. Mahoney⇤ Prabhat ‡

July 1, 2016

Abstract

We explore the trade-o↵s of performing linear algebra using Apache Spark, compared to
traditional C and MPI implementations on HPC platforms. Spark is designed for data analytics
on cluster computing platforms with access to local disks and is optimized for data-parallel
tasks. We examine three widely-used and important matrix factorizations: NMF (for physical
plausability), PCA (for its ubiquity) and CX (for data interpretability). We apply these methods
to TB-sized problems in particle physics, climate modeling and bioimaging. The data matrices
are tall-and-skinny which enable the algorithms to map conveniently into Spark’s data-parallel
model. We perform scaling experiments on up to 1600 Cray XC40 nodes, describe the sources
of slowdowns, and provide tuning guidance to obtain high performance.

1 Introduction

Modern scientific progress relies upon experimental devices, observational instruments, and scien-
tific simulations. These important modalities produce massive amounts of complex data: in High
Energy Physics, the LHC project produces PBs of data; smaller-scale projects such as Daya Bay
produce 100s of TBs. In Climate science, the worldwide community relies upon distributed access to
the CMIP-5 archive, which is several PBs in size. In Biosciences, multi-modal imagers can acquire
100GBs-TBs of data. These projects spend a considerable amount of e↵ort in data movement and
data management issues, but the key step in gaining scientific insights is data analytics. Several
scientific domains are currently rate-limited by access to productive and performant data analytics
tools.

⇤ICSI and Department of Statistics, UC Berkeley
†EECS, UC Berkeley
‡NERSC, Lawrence Berkeley National Laboratory
§Cray, Inc.
¶Hiperform Consulting LLC
kICME, Stanford University

⇤⇤EECS and Math, UC Berkeley

1

ar
X

iv
:1

60
7.

01
33

5v
1

 [c
s.D

C]
 5

 Ju
l 2

01
6

BIG thanks in particular to:
  Mike Ringenberg
  Kristi Maschoff

Pramod Sharma
  Jim Harrell

Venkat Krishnamurthy
(and Cray for funding!)

CFSR Ocean Temperature Dataset (II)!

Cori’s specs:
•  1630 compute nodes,
•  128 GB/node,
•  32 2.3GHz Haswell cores/node

Running times for NMF and PCA

•  Anti-scaling! !
•  And it worsens both with concurrency and data size. !

PCA Run Times: rank 20 PCA of 2.2TB Climate

Rank 20 PCA of 16 TB Climate using 48K+ cores

NMF Run Times: rank 10 NMF of 1.6TB Daya Bay

MPI vs Spark: Lessons Learned

  With favorable data (tall and skinny) and well-adapted
algorithms, Spark LA is 4x-26x slower than MPI when IO
is included

  Spark overheads are orders of magnitude higher than
the computations in PCA (time till stage end, scheduler
delay, task start delay, executor deserialize time), and it
anti-scales

  The large gaps mean it is worthwhile to investigate
efficiently interfacing MPI-based codes with Spark

Thoughts on Machine Learning, scientific Machine Learning, etc.

Spark and Spark performance

Alchemist: an Apache Spark <=> MPI Interface

Communication-avoiding Machine Learning

Current and Future Directions

 A jupyter/ipython + MPI interface
 RISELab’s Ray Project
 Large-scale Graph Processing
 Neural Network Learning
 Scalable Second-order Optimization Methods

Overview

The Next Step: Alchemist
  Since Spark is 4+x slower than MPI, propose sending the

matrices to MPI codes, then receiving the results
  For efficiency, want as little overhead as possible (File I/O,

RAM, network usage, computational efficiency)

Alternative approaches:
1.  Write to HDFS: slow file I/O, manual data layout
2.  Other MPI–Spark bridges: assume sparse data

sets, use ram disk or write to file
3.  Apache Ignite (and Alluxio, etc.): requires using

C/C++ interfaces, manual data layout, extra
copy in memory, TCP/IP

Alchemist:
Uses in-memory transfer, transparently provides data
relayout, explicitly handles dense data sets

Using Alchemist

Spark:
1) Sends the metadata for input and output matrices to

Alchemist
2) Sends the matrix to Alchemist using sockets
3) Sends commands to the Alchemist driver

Alchemist:
 1) Repartitions the matrix for MPI using Elemental

 2) Driver coordinates workers in executing the MPI codes
 3) Returns outputs to Spark

Spark MPI

Alchemist

Current Alchemist Architecture

  Exploit locality to reduce communication
  Allow for hybrid OpenMP/MPI

Main Challenges

Minimizing communication
time between Spark workers
and Alchemist workers

while also

Switching between the matrix
distribution schemes imposed
by Spark and NLA codes, as
needed

Row-
distributed,

Spark

Block Cyclic,
NLA

Currently Implemented Operations

Operations Implemented Library/Memory Cost

Matrix Send - / 1X

Matrix Retrieve

- / 1X

Matrix Transpose Elemental / 2X

Matrix Multiply Elemental / 2X

KMeans - / 1X

SVD Elemental / 2X

Truncated SVD ARPACK / 2X

LSQR linear solver LibSkylark / 1X

Regularized CG linear solver LibSkylark / 1X

Kernel Solver (regression,
classification, regularization)

LibSkylark / 1X

HDF5 Reader - / 2X

Example: Matrix Multiplication

Requires expensive shuffles in Spark:
-  Matrices/RDDs are row partitioned
-  One must be converted to be column-partitioned
-  This requires an all-to-all shuffle that often fails even

for matrices that could fit in memory on one executor

Simplest Example: Matrix Multiplication

A: 100K-by-10K (8 GB)
B: 10K-by-70K (5.6 GB)

C=AB: 100K-by-70K (56 GB)

Setup:
-128 GB RAM and 32 cores per node
-2 Spark and 2 Alchemist nodes (need 2 nodes due to 2x overhead)

Send Compute Receive
Alchemist 35.18s 207.21s 56.25s

Spark - Fail after 465 s -

Larger Example: Matrix Multiplication

A: 300K-by-10K (24 GB)!
B: 10K-by-60K (4.8 GB)!

C=AB: 300K-by-60K (144 GB)!

Setup: !
-128 GB RAM and 32 cores per node!
-10 Spark and 10 Alchemist nodes!

Send! Compute! Receive!
Alchemist! 83.8s! 98s! 36.65s!

Spark! -! Fail after 30
min!

-!

39 ©2017
RISELab!

Scaling of Truncated SVD

● Use Alchemist and MLlib to

get rank 20 truncated SVD

● Setup:

•  Each node of Cori has 128GB

RAM and 32 cores

•  Spark: 22 nodes; Alchemist: 8

nodes

•  A: m-by-10K, where m = 5M,

2.5M, 1.25M, 625K, 312.5K

•  Ran jobs for at most 30 minutes

(1800 s)

40 ©2017
RISELab!

Scaling of Truncated SVD

● Use Alchemist and MLlib to

get rank 20 truncated SVD

● Setup:

•  Each node of Cori has 128GB

RAM and 32 cores

•  Spark: 22 nodes; Alchemist: 8

nodes

•  A: m-by-10K, where m = 5M,

2.5M, 1.25M, 625K, 312.5K

•  Ran jobs for at most 30 minutes

(1800 s)

Scaling of Truncated SVD
-  Each node of Cori has 128GB RAM and 32 cores
-  Replicated the 2.2 TB Climate data set (row-wise)
-  Use Alchemist to get rank 20 truncated SVD
-  Prior work shows Spark requires 934s on 100 nodes

for just 2.2 TB

184.769!

114.258!

71.42! 59.278!

92.224! 86.484! 82.085! 86.891!
61.413!

75.31! 79.797!
107.915!

338.406!

276.052!

233.302!
254.084!

0!

50!

100!

150!

200!

250!

300!

350!

400!

2.2 TB (38 nodes)! 4.4 TB (76 nodes)! 8.8 TB (154 nodes)! 17.6 TB (308 nodes)!

Alchemist SVD Timing !

load time(s)! svd (s)! receive (s)! overall (s)!

A Climate Science Application
-  Problem: extract the top principal components of a

3D ocean temperature data set collected over 30
years at 3 hour increments on a 360-by-720-by-40 lat-
long-depth grid

-  Yields a 2.2TB matrix, 6M-by-46K and dense

Visualization of the 5th principal component

Alchemist: Next Steps

-  Eliminate 2X overhead of GEMM (ongoing)
-  Allow dynamic loading (ongoing)
-  More thorough logging, error-handling, and profiling

(ongoing)

-  Integration with container management frameworks
(Kubernetes)

-  Exploit locality to minimize communication costs
-  Support sparse matrices
-  Provide interface for ScaLAPACK codes
-  Increased ML functionality via LibSkylark, MCMC

clustering codes, Cyclops tensor framework

Thoughts on Machine Learning, scientific Machine Learning, etc.

Spark and Spark performance

Alchemist: an Apache Spark <=> MPI Interface

Communication-avoiding Machine Learning

Current and Future Directions

 A jupyter/ipython + MPI interface
 RISELab’s Ray Project
 Large-scale Graph Processing
 Neural Network Learning
 Scalable Second-order Optimization Methods

Overview

•  Trade-offs and existing approaches!

45!

Communication

Co
m
pu
ta
tio
n

Newton

Coordinate
Descent

Some
algorithm

•  Trade-offs and existing approaches!

46!

Communication

Co
m
pu
ta
tio
n

Newton

Coordinate
Descent

Some
algorithm

•  Our approach!

47!

Communication

Co
m
pu
ta
tio
n

Newton

Coordinate
Descent

Some
algorithm

•  Outline of the approach and results!

48!

• Sparse
regression!

•  Elastic net!

•  Group lasso!

•  Sparse group lasso!

Optimization/ML !

•  For what problems?!

Linear!
Regression!

49!

•  How to avoid communication: basic idea!

50!

s
s

•  An example: coordinate descent!

51!

  Sample a column of data!

  Compute partial derivative!

  Update solution!

  Repeat!

•  An example: communication avoiding coordinate descent!

52!

  Compute in parallel anticipated computations!
 for the next “s” iterations!

s
s

  Redundantly store the result !
 in all processors!

  Each processor independently computes the next “s” iterations!

  Repeat!

•  More details about the results!

53!

•  Scalable results for all data layouts!

AA A

* Best performance depends on dataset and algorithm!
54!

•  Datasets!

55!

Summary	 of	 (LIBSVM)	 datasets	

Name	 #Features	 #Data	 points	 Density	 of	
non-‐zeros	

url	 3,231,961	 2,396,130	 0.0036%	

epsilon! 2,000	 400,000	 100%	

news20! 62,021	 15,935	 0.13%	

covtype! 54	 581,012	 22%	

C++ using the Message Passing Interface (MPI). Intel
MKL library for sparse and dense BLAS routines. All
methods were tested on a Cray XC30.!

•  Convergence of re-organized algorithms!

56!

•  Scalability performance!

57!

•  Scalability performance!

58!

•  Speed up breakdown!

59!

•  Speed up breakdown!

60!

Speedups (Ridge Regression)

64 nodes of Edison 1K nodes of Edison

mnist8m mnist8m

Circles = best speedups

Joint with A. Devarakonda, K. Fountoulakis, and J. Demmel

•  Other examples!

62!

  Block coordinate descent!

  Accelerated block coordinate descent!

  Gradient descent!

  Any proximal method!

•  Summary!

63!

Thoughts on Machine Learning, scientific Machine Learning, etc.

Spark and Spark performance

Alchemist: an Apache Spark <=> MPI Interface

Communication-avoiding Machine Learning

Current and Future Directions

 A jupyter/ipython + MPI interface
 RISELab’s Ray Project
 Large-scale Graph Processing
 Neural Network Learning
 Scalable Second-order Optimization Methods

Overview

“Project Jupyter exists to develop open-source software,
open-standards, and services for interactive computing
across dozens of programming languages.”

A jupyter/ipython + MPI interface

Most of the functionality is in place.

•  Once the Alchemist rewrite is complete, should be straightforward.

•  For simple workflows, e.g., load a large dataset from a file, do some
computations, and then return the results.

•  More complex, e.g, if there are special kind of distributed matrices
that are being used by the jupyter/ipython application

Extend from a Spark <=> MPI interface to a X <=> MPI interface.

A platform for high-performance distributed execution
•  Philipp Moritz, Robert Nishihara, Richard Liaw, Ion Stoica

Problem: AI/ML applications require more than neural networks
•  Simulations, streaming and processing sensor data, serving decisions, rendering

actions (e.g., actuate robotic joins)
•  ML practitioners often build their own systems infrastructure in addition to deep

learning frameworks

Ray is a distributed execution framework for AI applications.
•  High throughput, low latency tasks
•  Fine-grained, nested, heterogeneous tasks

Ray provides Task parallel API and actor API built on dynamic task
graphs
•  These APIs are used to build distributed applications, libraries and systems

(They want input---we coordinate with them as Alchemist winds up.)

RISELab’s Ray Project

"Parallel Local Clustering Algorithms"
•  Shun, Roosta-Khorasani, Fountoulakis, and Mahoney (arXiv:1604.07515)
•  Code: https://github.com/jshun/ligra/
"LocalGraphClustering"
•  Fountoulakis, Gleich, Mahoney (Proc IEEE 2017)
•  Code: https://github.com/kfoynt/LocalGraphClustering

Large-scale Graph Processing

10

-3

10

-2

10

-1

10

0

10

0

10

1

10

2

10

3

10

4

10

5

C
o

n
d

u
c
t
a
n

c
e

Cluster size

10-3

10-2

10-1

100

100 101 102 103 104 105

C
on

du
ct

an
ce

Cluster size
42M vertices
1.2B edges

125M vertices
1.8B edges

•  Characterize properties on

NN learning algorithms i.t.o.
hyperparameters

•  Develop interpretable NNs
that incorporate domain
science

•  Provide GPU implementations
of stochastic optimization
algorithms

Neural Network Learning

Use second derivative information: more expensive & more powerful

•  Resiliency to problem ill-conditioning
•  Good generalization error and robustness to hyper-parameter tuning

•  Ability to escape undesirable saddle-points
•  Low-communication costs in distributed settings
•  Computational advantages offered by leveraging the power of GPUs

Scalable Second-order Optimization Methods

Goal
•  Do computationally-intensive scientific machine learning at scale

Progress Report
•  Characterize performance loss
•  Develop Alchemist: An Apache Spark <=> MPI Interface

Future Directions
•  A jupyter/ipython + MPI interface
•  RISELab’s Ray Project
•  Large-scale Graph Processing
•  Neural Network Learning
•  Scalable Second-order Optimization Methods

And THANKS to Cray, DARPA, and NSF for financial support!

Conclusion

