
Scientific Machine Learning with Alchemist  
(An Apache Spark <=> MPI Interface) and Beyond 

Michael W. Mahoney 
 

(RISELab, ICSI, and Department of Statistics, UC Berkeley) 
 
 

April 2018 



 
Thoughts on Machine Learning, Scientific Machine Learning, etc. 
 
Spark and Spark performance 
 
Alchemist: an Apache Spark <=> MPI Interface 
 
Communication-avoiding Machine Learning 
 
Current and Future Directions 

 A jupyter/ipython + MPI interface 
 RISELab’s Ray Project 
 Large-scale Graph Processing 
 Neural Network Learning  
 Scalable Second-order Optimization Methods  

 
 

Overview 



 
Thoughts on Machine Learning, Scientific Machine Learning, etc. 
 
Spark and Spark performance 
 
Alchemist: an Apache Spark <=> MPI Interface 
 
Communication-avoiding Machine Learning 
 
Current and Future Directions 

 A jupyter/ipython + MPI interface 
 RISELab’s Ray Project 
 Large-scale Graph Processing 
 Neural Network Learning  
 Scalable Second-order Optimization Methods  

 
 

Overview 



How do we view BIG data? 



E.g., application in: Human Genetics 
 

Scientific data and choosing good columns as features 

 Single Nucleotide Polymorphisms: the most common type of genetic variation in the 
genome across different individuals. 

 They are known locations at the human genome where two alternate nucleotide bases 
(alleles) are observed (out of A, C, G, T). 

SNPs 

in
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 … AG CT GT GG CT CC CC CC CC AG AG AG AG AG AA CT AA GG GG CC GG AG CG AC CC AA CC AA GG TT AG CT CG CG CG AT CT CT AG CT AG GG GT GA AG …!
… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CT AA GG GG CC GG AA GG AA CC AA CC AA GG TT AA TT GG GG GG TT TT CC GG TT GG GG TT GG AA …!

… GG TT TT GG TT CC CC CC CC GG AA AG AG AA AG CT AA GG GG CC AG AG CG AC CC AA CC AA GG TT AG CT CG CG CG AT CT CT AG CT AG GG GT GA AG …!
… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CC GG AA CC CC AG GG CC AC CC AA CG AA GG TT AG CT CG CG CG AT CT CT AG CT AG GT GT GA AG …!

… GG TT TT GG TT CC CC CC CC GG AA GG GG GG AA CT AA GG GG CT GG AA CC AC CG AA CC AA GG TT GG CC CG CG CG AT CT CT AG CT AG GG TT GG AA …!

… GG TT TT GG TT CC CC CG CC AG AG AG AG AG AA CT AA GG GG CT GG AG CC CC CG AA CC AA GT TT AG CT CG CG CG AT CT CT AG CT AG GG TT GG AA …!

… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA TT AA GG GG CC AG AG CG AA CC AA CG AA GG TT AA TT GG GG GG TT TT CC GG TT GG GT TT GG AA …!

 Matrices including thousands of individuals and hundreds of thousands (large for 
some people, small for other people) if SNPs are available. 



HGDP data 

•  1,033 samples 

•  7 geographic regions 

•  52 populations 

Cavalli-Sforza (2005) Nat Genet Rev 

Rosenberg et al. (2002) Science 

Li et al. (2008) Science 

The International HapMap Consortium 
(2003, 2005, 2007) Nature 

Apply SVD/PCA on the 
(joint) HGDP and HapMap 

Phase 3 data. 

 

Matrix dimensions: 

2,240 subjects (rows) 

447,143 SNPs (columns) 

 

Dense matrix:  

over one billion entries 

The Human Genome Diversity Panel (HGDP) 

ASW, MKK, LWK, 
& YRI 

CEU 

TSI 
JPT, CHB, & CHD 

GIH 

MEX 

HapMap Phase 3 data 

•  1,207 samples 

•  11 populations 

HapMap Phase 3 



Africa 

Middle East 

South Central 
Asia 

Europe 

Oceania 

East Asia 

America 

Gujarati 
Indians 

Mexicans 

•  Top two Principal Components (PCs or eigenSNPs)  
(Lin and Altman (2005) Am J Hum Genet) 

•  The figure renders visual support to the “out-of-Africa” hypothesis. 

•  Mexican population seems out of place: we move to the top three PCs. 

Paschou, et al (2010) J Med Genet 



Africa 
Middle East 

S C Asia & 
Gujarati Europe Oceania 

East Asia 

America 

•  Not altogether satisfactory: the principal components are linear combinations of 
all SNPs, and – of course – can not be assayed! 

•  Can we find actual SNPs that capture the information in the singular vectors? 

•  Relatedly, can we compute them and/or the truncated SVD “efficiently.” 

Paschou, et al. (2010) J Med Genet 



  
 

Two related issues with eigen-analysis 
Computing large SVDs: computational time 
•   In commodity hardware (e.g., a 4GB RAM, dual-core laptop), using MatLab 7.0 (R14), 
the computation of the SVD of the dense 2,240-by-447,143 matrix A takes ca 20 minutes. 

•   Computing this SVD is not a one-liner, since we can not load the whole matrix in RAM 
(runs out-of-memory in MatLab). 

•   Instead, compute the SVD of AAT. 

•   In a similar experiment, compute 1,200 SVDs on matrices of dimensions (approx.) 1,200-
by-450,000 (roughly, a full leave-one-out cross-validation experiment) (DLP2010) 

 

Selecting actual columns that “capture the structure” of the top PCs 
•   Combinatorial optimization problem; hard even for small matrices.  

•   Often called the Column Subset Selection Problem (CSSP). 

•   Not clear that such “good” columns even exist. 

•   Avoid “reification” problem of “interpreting” singular vectors! 

•  (Solvable in “random projection time” with CX/CUR decompositions! (PNAS, MD09)) 



Recent	  application:	  Astronomy	  

XXX	  

 

 

Joint	  work	  with	  David	  Lawlor	  and	  Tamas	  Budavari	  (2015)	  
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Use case2: Galactic spectra from SDSS

x
i

2 R3841, N ⇡ 500k

photon fluxes in ⇡ 10 Å
wavelength bins

preprocessing corrects for
redshift, gappy regions

normalized by median flux
at certain wavelengths
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gap−corrected spectrum in rest frame

2Also results in neuroscience as well as genetics and mass spec imaging.



Recent	  application:	  Astronomy	  

XXX	  
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Global embedding: e↵ect of k

Figure: Eigenvectors 3 and 4 of Lazy Markov operator, k = 2 : 2048



Recent	  application:	  Astronomy	  

XXX	  
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Global embedding: average spectra
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Recent	  application:	  Astronomy	  

XXX	  
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Local embedding: scale parameter and e↵ect of seed
For an appropriate choice of c and � = �() < �2, one can show

w2 = c(L� �D)+Ds

= c(L
G

� �L
k

n

)+Ds

(In practice, binary search to find “correct” �.)

Figure: (left) Global embedding with seeds in black. (middle, right)
Local embeddings using specified seeds.
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Where do you run your linear algebra? 

Single machine 
• Think about RAM, call LAPACK, etc.  

• Someone else thought about numerical issues, memory hierarchies, etc. 

• This is the 99% 
 

Supercomputer 
• High end, compute-intensive. 

• Big emphasis on HPC (High Performance Computing) 

• C+MPI, etc. 
 

Distributed data center 
• High end, data-intensive 

• BIG emphasis on HPC (High Productivity Computing) 

• Databases, MapReduce/Hadoop, Spark, etc. 
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MPI 

•  MPI = Message Passing Interface 

•  A specification for the developers 

and users of message passing 

libraries 

•  Message-Passing Parallel 

Programming Model: cooperative 

operations between processes, data 

moved from address space of one 

process to that of another  

•  Popular implementations: MPICH, 

Open MPI 

Apache Spark 

•  Cluster computing system 

•  Interoperable with Apache 

Hadoop, much faster 

•  Improved efficiency: 

•  In-memory computing primitives 

•  Computation graphs 

•  Rich and easy-to-use API 

•  Allows for iterative algorithms 

(important for ML and linear 

algebra) 

•  Fault tolerant 



Spark Architecture 

  Data parallel programming model 
  Resilient distributed datasets (RDDs) (think: distributed array type) 
  RDDs can optionally be cached in memory b/w iterations 
  Driver forms DAG, schedules tasks on executors 



Spark Communication 

  Computation operate on one RDD to produce another RDD 
  Each overall job (DAG) broken into stages 
  Stages broken into parallel, independent tasks 
  Communication happens only between stages 



Why do linear algebra in Spark? 

  Classical MPI-based linear algebra algorithms are faster 
and more efficient 

  No way, currently, to leverage legacy parallel linear 
algebra codes 

  JVM matrix size restrictions, and RDD rigidity 

Cons:

 
  Widely used 
  Easier to use for non-experts 
  An entire ecosystem that can be used before and after the 

NLA computations 
  Spark can take advantage of available single-machine 

linear algebra codes (e.g. through netlib-java) 
  Automatic fault-tolerance 
  Transparent support for out of memory calculations 

Pros:



Our Goals 

  Provide implementations of low-rank factorizations (PCA, 
NMF, and randomized CX) in Spark 

  Apply low-rank matrix factorization methods to TB-scale 
scientific datasets in Spark 

  Understand Spark performance on commodity clusters vs 
HPC platforms

  Quantify the scalability gaps between highly-tuned C/MPI 
and current Spark-based implementations 

  Provide a general-purpose interface for matrix-based 
algorithms between Spark and traditional MPI codes 



Three Science Drivers 
Climate Science:  
extract trends in variations of oceanic 
and atmospheric variables (PCA) 

Nuclear Physics:  
learn useful patterns for 
classification of subatomic particles 
(NMF) 

Mass Spectrometry:
location of chemically important ions 
(CX) 



Datasets 

MSI — a sparse matrix from measurements of drift times and mass charge 
ratios at each pixel of a sample of Peltatum; used for CX decomposition 
 
Daya Bay — neutrino sensor array measurements; used for NMF 
 
Ocean and Atmosphere — climate variables (ocean temperature, 
atmospheric humidity) measured on a 3D grid at 3 or 6 hour intervals over 
about 30 years; used for PCA 



Our first (of by now several) results 
Matrix Factorizations at Scale: a Comparison of Scientific Data

Analytics in Spark and C+MPI Using Three Case Studies

Alex Gittens ⇤ Aditya Devarakonda† Evan Racah‡ Michael Ringenburg§

Lisa Gerhardt‡ Jey Kottaalam† Jialin Liu‡ Kristyn Maschho↵§ Shane Canon‡

Jatin Chhugani¶ Pramod Sharma§ Jiyan Yangk James Demmel⇤⇤ Jim Harrell§

Venkat Krishnamurthy§ Michael W. Mahoney⇤ Prabhat ‡

July 1, 2016

Abstract

We explore the trade-o↵s of performing linear algebra using Apache Spark, compared to
traditional C and MPI implementations on HPC platforms. Spark is designed for data analytics
on cluster computing platforms with access to local disks and is optimized for data-parallel
tasks. We examine three widely-used and important matrix factorizations: NMF (for physical
plausability), PCA (for its ubiquity) and CX (for data interpretability). We apply these methods
to TB-sized problems in particle physics, climate modeling and bioimaging. The data matrices
are tall-and-skinny which enable the algorithms to map conveniently into Spark’s data-parallel
model. We perform scaling experiments on up to 1600 Cray XC40 nodes, describe the sources
of slowdowns, and provide tuning guidance to obtain high performance.

1 Introduction

Modern scientific progress relies upon experimental devices, observational instruments, and scien-
tific simulations. These important modalities produce massive amounts of complex data: in High
Energy Physics, the LHC project produces PBs of data; smaller-scale projects such as Daya Bay
produce 100s of TBs. In Climate science, the worldwide community relies upon distributed access to
the CMIP-5 archive, which is several PBs in size. In Biosciences, multi-modal imagers can acquire
100GBs-TBs of data. These projects spend a considerable amount of e↵ort in data movement and
data management issues, but the key step in gaining scientific insights is data analytics. Several
scientific domains are currently rate-limited by access to productive and performant data analytics
tools.

⇤ICSI and Department of Statistics, UC Berkeley
†EECS, UC Berkeley
‡NERSC, Lawrence Berkeley National Laboratory
§Cray, Inc.
¶Hiperform Consulting LLC
kICME, Stanford University

⇤⇤EECS and Math, UC Berkeley
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Matrix Factorizations at Scale: a Comparison of Scientific Data

Analytics in Spark and C+MPI Using Three Case Studies
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Abstract

We explore the trade-o↵s of performing linear algebra using Apache Spark, compared to
traditional C and MPI implementations on HPC platforms. Spark is designed for data analytics
on cluster computing platforms with access to local disks and is optimized for data-parallel
tasks. We examine three widely-used and important matrix factorizations: NMF (for physical
plausability), PCA (for its ubiquity) and CX (for data interpretability). We apply these methods
to TB-sized problems in particle physics, climate modeling and bioimaging. The data matrices
are tall-and-skinny which enable the algorithms to map conveniently into Spark’s data-parallel
model. We perform scaling experiments on up to 1600 Cray XC40 nodes, describe the sources
of slowdowns, and provide tuning guidance to obtain high performance.

1 Introduction

Modern scientific progress relies upon experimental devices, observational instruments, and scien-
tific simulations. These important modalities produce massive amounts of complex data: in High
Energy Physics, the LHC project produces PBs of data; smaller-scale projects such as Daya Bay
produce 100s of TBs. In Climate science, the worldwide community relies upon distributed access to
the CMIP-5 archive, which is several PBs in size. In Biosciences, multi-modal imagers can acquire
100GBs-TBs of data. These projects spend a considerable amount of e↵ort in data movement and
data management issues, but the key step in gaining scientific insights is data analytics. Several
scientific domains are currently rate-limited by access to productive and performant data analytics
tools.

⇤ICSI and Department of Statistics, UC Berkeley
†EECS, UC Berkeley
‡NERSC, Lawrence Berkeley National Laboratory
§Cray, Inc.
¶Hiperform Consulting LLC
kICME, Stanford University

⇤⇤EECS and Math, UC Berkeley

1

ar
X

iv
:1

60
7.

01
33

5v
1 

 [c
s.D

C]
  5

 Ju
l 2

01
6

BIG thanks in particular to: 
  Mike Ringenberg 
  Kristi Maschoff 

Pramod Sharma 
  Jim Harrell 

Venkat Krishnamurthy 
(and Cray for funding!) 



CFSR Ocean Temperature Dataset (II)!



Cori’s specs:  
•  1630 compute nodes,  
•  128 GB/node,  
•  32 2.3GHz Haswell cores/node  

Running times for NMF and PCA 

•  Anti-scaling! !
•  And it worsens both with concurrency and data size. !



PCA Run Times: rank 20 PCA of 2.2TB Climate 



Rank 20 PCA of 16 TB Climate using 48K+ cores 



NMF Run Times: rank 10 NMF of 1.6TB Daya Bay 



MPI vs Spark: Lessons Learned 

  With favorable data (tall and skinny) and well-adapted 
algorithms, Spark LA is 4x-26x slower than MPI when IO 
is included

  Spark overheads are orders of magnitude higher than 
the computations in PCA (time till stage end, scheduler 
delay, task start delay, executor deserialize time), and it 
anti-scales 

  The large gaps mean it is worthwhile to investigate 
efficiently interfacing MPI-based codes with Spark
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The Next Step: Alchemist 
  Since Spark is 4+x slower than MPI, propose sending the 

matrices to MPI codes, then receiving the results 
  For efficiency, want as little overhead as possible (File I/O, 

RAM, network usage, computational efficiency) 

Alternative approaches: 
1.  Write to HDFS: slow file I/O, manual data layout
2.  Other MPI–Spark bridges: assume sparse data 

sets, use ram disk or write to file 
3.  Apache Ignite (and Alluxio, etc.): requires using 

C/C++ interfaces, manual data layout, extra 
copy in memory, TCP/IP

 

Alchemist: 
Uses in-memory transfer, transparently provides data 
relayout, explicitly handles dense data sets 



Using Alchemist 

Spark: 
1) Sends the metadata for input and output matrices to 

Alchemist  
2) Sends the matrix to Alchemist using sockets  
3) Sends commands to the Alchemist driver 

Alchemist: 
     1) Repartitions the matrix for MPI using Elemental 

 2) Driver coordinates workers in executing the MPI codes 
     3) Returns outputs to Spark 

Spark MPI 

Alchemist 



Current Alchemist Architecture 

  Exploit locality to reduce communication 
  Allow for hybrid OpenMP/MPI 



Main Challenges 

Minimizing communication 
time between Spark workers 
and Alchemist workers 
 

while also 
 
Switching between the matrix 
distribution schemes imposed 
by Spark and NLA codes, as 
needed 
 
 

Row-
distributed, 

Spark 

Block Cyclic, 
NLA 



Currently Implemented Operations 

Operations Implemented Library/Memory Cost 

Matrix Send - / 1X 

Matrix Retrieve 
 

- / 1X 

Matrix Transpose Elemental / 2X 

Matrix Multiply Elemental / 2X 

KMeans - / 1X 

SVD Elemental / 2X 

Truncated SVD ARPACK / 2X 

LSQR linear solver LibSkylark / 1X 

Regularized CG linear solver LibSkylark / 1X 

Kernel Solver (regression, 
classification, regularization) 

LibSkylark / 1X 

HDF5 Reader - / 2X 



Example: Matrix Multiplication 

Requires expensive shuffles in Spark: 
-  Matrices/RDDs are row partitioned 
-  One must be converted to be column-partitioned 
-  This requires an all-to-all shuffle that often fails even 

for matrices that could fit in memory on one executor 



Simplest Example: Matrix Multiplication 

A: 100K-by-10K (8 GB) 
B: 10K-by-70K (5.6 GB) 

C=AB: 100K-by-70K (56 GB) 

Setup:  
-128 GB RAM and 32 cores per node 
-2 Spark and 2 Alchemist nodes (need 2 nodes due to 2x overhead) 

Send Compute Receive 
Alchemist 35.18s 207.21s 56.25s 

Spark - Fail after 465 s - 



Larger Example: Matrix Multiplication 

A: 300K-by-10K (24 GB)!
B: 10K-by-60K (4.8 GB)!

C=AB: 300K-by-60K (144 GB)!

Setup: !
-128 GB RAM and 32 cores per node!
-10 Spark and 10 Alchemist nodes!

Send! Compute! Receive!
Alchemist! 83.8s! 98s! 36.65s!

Spark! -! Fail after 30 
min!

-!
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Scaling of Truncated SVD 

● Use Alchemist and MLlib to 

get rank 20 truncated SVD 

● Setup: 

•  Each node of Cori has 128GB 

RAM and 32 cores 

•  Spark: 22 nodes; Alchemist: 8 

nodes 

•  A: m-by-10K, where m = 5M, 

2.5M, 1.25M, 625K, 312.5K 

•  Ran jobs for at most 30 minutes 

(1800 s) 
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Scaling of Truncated SVD 

● Use Alchemist and MLlib to 

get rank 20 truncated SVD 

● Setup: 

•  Each node of Cori has 128GB 

RAM and 32 cores 

•  Spark: 22 nodes; Alchemist: 8 

nodes 

•  A: m-by-10K, where m = 5M, 

2.5M, 1.25M, 625K, 312.5K 

•  Ran jobs for at most 30 minutes 

(1800 s) 



Scaling of Truncated SVD 
-  Each node of Cori has 128GB RAM and 32 cores  
-  Replicated the 2.2 TB Climate data set (row-wise) 
-  Use Alchemist to get rank 20 truncated SVD 
-  Prior work shows Spark requires 934s on 100 nodes 

for just 2.2 TB 

184.769!

114.258!

71.42! 59.278!

92.224! 86.484! 82.085! 86.891!
61.413!

75.31! 79.797!
107.915!

338.406!

276.052!

233.302!
254.084!

0!

50!

100!

150!

200!

250!

300!

350!

400!

2.2 TB (38 nodes)! 4.4 TB (76 nodes)! 8.8 TB (154 nodes)! 17.6 TB (308 nodes)!

Alchemist SVD Timing !

load time(s)! svd (s)! receive (s)! overall (s)!



A Climate Science Application 
-  Problem: extract the top principal components of a 

3D ocean temperature data set collected over 30 
years at 3 hour increments on a 360-by-720-by-40 lat-
long-depth grid 

-  Yields a 2.2TB matrix, 6M-by-46K and dense 

Visualization of the 5th principal component 



Alchemist: Next Steps

-  Eliminate 2X overhead of GEMM (ongoing) 
-  Allow dynamic loading (ongoing) 
-  More thorough logging, error-handling, and profiling 

(ongoing) 

-  Integration with container management frameworks 
(Kubernetes) 

-  Exploit locality to minimize communication costs 
-  Support sparse matrices 
-  Provide interface for ScaLAPACK codes 
-  Increased ML functionality via LibSkylark, MCMC 

clustering codes, Cyclops tensor framework 

 



 
Thoughts on Machine Learning, scientific Machine Learning, etc. 
 
Spark and Spark performance 
 
Alchemist: an Apache Spark <=> MPI Interface 
 
Communication-avoiding Machine Learning 
 
Current and Future Directions 

 A jupyter/ipython + MPI interface 
 RISELab’s Ray Project 
 Large-scale Graph Processing 
 Neural Network Learning  
 Scalable Second-order Optimization Methods  

 
 

Overview 



•  Trade-offs and existing approaches!

45!

Communication

Co
m
pu
ta
tio
n

Newton

Coordinate
Descent

Some  
algorithm



•  Trade-offs and existing approaches!

46!

Communication

Co
m
pu
ta
tio
n

Newton

Coordinate
Descent

Some  
algorithm



•  Our approach!
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•  Outline of the approach and results!

48!



• Sparse 
regression!

•  Elastic net!

•  Group lasso!

•  Sparse group lasso!

Optimization/ML !

•  For what problems?!

Linear!
Regression!

49!



•  How to avoid communication: basic idea!

50!

s
s



•  An example: coordinate descent!

51!

  Sample a column of data!

  Compute partial derivative!

  Update solution!

  Repeat!



•  An example: communication avoiding coordinate descent!

52!

  Compute in parallel anticipated computations!
       for the next “s” iterations!

s
s

  Redundantly store the result !
    in all processors!

  Each processor independently computes the next “s” iterations!

  Repeat!



•  More details about the results!

53!



•  Scalable results for all data layouts!

AA A

* Best performance depends on dataset and algorithm!
54!



•  Datasets!

55!

Summary	  of	  (LIBSVM)	  datasets	  

Name	   #Features	   #Data	  points	   Density	  of	  
non-‐zeros	  

url	   3,231,961	   2,396,130	   0.0036%	  

epsilon! 2,000	   400,000	   100%	  

news20! 62,021	   15,935	   0.13%	  

covtype! 54	   581,012	   22%	  

C++ using the Message Passing Interface (MPI). Intel 
MKL library for sparse and dense BLAS routines. All 
methods were tested on a Cray XC30.!



•  Convergence of re-organized algorithms!

56!



•  Scalability performance!
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•  Scalability performance!
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•  Speed up breakdown!

59!



•  Speed up breakdown!

60!



Speedups (Ridge Regression) 

64 nodes of Edison 1K nodes of Edison 

mnist8m mnist8m 

Circles = best speedups 

 
Joint with A. Devarakonda, K. Fountoulakis, and J. Demmel  



•  Other examples!

62!

  Block coordinate descent!

  Accelerated block coordinate descent!

  Gradient descent!

  Any proximal method!



•  Summary!

63!



 
Thoughts on Machine Learning, scientific Machine Learning, etc. 
 
Spark and Spark performance 
 
Alchemist: an Apache Spark <=> MPI Interface 
 
Communication-avoiding Machine Learning 
 
Current and Future Directions 

 A jupyter/ipython + MPI interface 
 RISELab’s Ray Project 
 Large-scale Graph Processing 
 Neural Network Learning  
 Scalable Second-order Optimization Methods  

 
 

Overview 



“Project Jupyter exists to develop open-source software, 
open-standards, and services for interactive computing 
across dozens of programming languages.” 
 

A jupyter/ipython + MPI interface 

 
Most of the functionality is in place.  
 
•  Once the Alchemist rewrite is complete, should be straightforward. 

•  For simple workflows, e.g., load a large dataset from a file, do some 
computations, and then return the results. 

•  More complex, e.g, if there are special kind of distributed matrices 
that are being used by the jupyter/ipython application 

 
Extend from a Spark <=> MPI interface to a X <=> MPI interface. 
 



 
A platform for high-performance distributed execution 
•  Philipp Moritz, Robert Nishihara, Richard Liaw, Ion Stoica 
 
Problem: AI/ML applications require more than neural networks 
•  Simulations, streaming and processing sensor data, serving decisions, rendering 

actions (e.g., actuate robotic joins) 
•  ML practitioners often build their own systems infrastructure in addition to deep 

learning frameworks 
 
Ray is a distributed execution framework for AI applications. 
•  High throughput, low latency tasks 
•  Fine-grained, nested, heterogeneous tasks 
 
Ray provides Task parallel API and actor API built on dynamic task 
graphs 
•  These APIs are used to build distributed applications, libraries and systems 
 
(They want input---we coordinate with them as Alchemist winds up.) 
 
 

RISELab’s Ray Project 



 
"Parallel Local Clustering Algorithms" 
•  Shun, Roosta-Khorasani, Fountoulakis, and Mahoney (arXiv:1604.07515) 
•  Code: https://github.com/jshun/ligra/  
"LocalGraphClustering" 
•  Fountoulakis, Gleich, Mahoney (Proc IEEE 2017) 
•  Code: https://github.com/kfoynt/LocalGraphClustering 
 
 
 

Large-scale Graph Processing 
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•  Characterize properties on 

NN learning algorithms i.t.o. 
hyperparameters 

•  Develop interpretable NNs 
that incorporate domain 
science 

•  Provide GPU implementations 
of stochastic optimization 
algorithms 

 
 

Neural Network Learning 



 
Use second derivative information: more expensive & more powerful 
 
•  Resiliency to problem ill-conditioning 
•  Good generalization error and robustness to hyper-parameter tuning 

•  Ability to escape undesirable saddle-points 
•  Low-communication costs in distributed settings 
•  Computational advantages offered by leveraging the power of GPUs 
 
 

Scalable Second-order Optimization Methods 



Goal 
•  Do computationally-intensive scientific machine learning at scale 
 
Progress Report 
•  Characterize performance loss 
•  Develop Alchemist: An Apache Spark <=> MPI Interface 

Future Directions 
•  A jupyter/ipython + MPI interface 
•  RISELab’s Ray Project 
•  Large-scale Graph Processing 
•  Neural Network Learning  
•  Scalable Second-order Optimization Methods  
 
 
And THANKS to Cray, DARPA, and NSF for financial support! 
 

Conclusion 


