Scientitic Machine Learning with Alchemist
(An Apache Spark <=> MPI Interface) and Beyond

Michael W. Mahoney

(RISELab, ICSI, and Department of Statistics, UC Berkeley)

April 2018

Rlchemyjst
N

Overview

Thoughts on Machine Learning, Scientific Machine Learning, etc.

Spark and Spark performance
Alchemist: an Apache Spark <=> MPI Interface
Communication-avoiding Machine Learning

Current and Future Directions
A jupyter/ipython + MPI interface
RISELab’s Ray Project
Large-scale Graph Processing
Neural Network Learning
Scalable Second-order Optimization Methods

Overview

Thoughts on Machine Learning, Scientific Machine Learning, etc.
Spark and Spark performance

Alchemist: an Apache Spark <=> MPI Interface
Communication-avoiding Machine Learning

Current and Future Directions
A jupyter/ipython + MPI interface
RISELab’s Ray Project
Large-scale Graph Processing
Neural Network Learning
Scalable Second-order Optimization Methods

How do we view BIG data?

Can’t anybody see who
| am or want to be?

Wow. It's big.
| need fast
algorithms.

Wow. | need
a bigger
machine.

Wow. This is a
mess. | better
clean it up.

Wow. | need
to posit a
model.

Wow. It's not
smooth. | need
regularization.

Scientific data and choosing good columns as features

E.g., application in: Human Genetics

Single Nucleotide Polymorphisms: the most common type of genetic variation in the
genome across different individuals.

They are known locations at the human genome where two alternate nucleotide bases
(alleles) are observed (out of A, C, G, T).

SNPs
]] BN

(_AG CT GT GG CT CC CC CC CC AG AG AG AG AG AACT AAGG GG CC GG AG CG AC CC AACCAAGG TT AGCT|CG CG CG AT CT CT AG CT AG GG GT GAAG ...
...GGTTTTGG TT CC CC CC CC GG AA AG AG AG AA CT AAGG GG CC GG AAGG AACCAACCAAGGTTAATT GG GG GG[TTTTCC GG TT GG GG TT GG AA ...
..GGTTTTGGTT CC CC CC CC GG AAAG AG AAAG CT AAGG GG CC AGAG CGACCCAACCAAGGTTAGLCT CGCGCGIATICTCTAGCTAG GG GTGAAG ...
..GGTTTTGG TT CC CC CC CC GG AA AG AG AG AA CC GG AACC CC AG GG CC AC CC AACG AAGG TT AG|CT|CG CG CG|AT|CT CT AG CT AG GT GT GA AG ...
..GGTTTTGG TTCC CC CC CC GG AAGG GG GG AACTAAGG GG CT GG AACCACCGAACCAAGGTT GG|CC|CGCG CEATICTCTAGCTAGGGTTGGAA ...
...GGTTTTGG TT CC CC CG CC AG AG AG AG AG AACT AAGG GG CT GG AG CCCCCGAACCAAGTTTAGLCTCG CGCGIATICTCT AGCTAG GG TT GG AA ...

!GGTTTTGGTTCCCCCC CC GG AAAG AG AG AATT AA GG GG CC AG AGCG AACCAACGAAGG TT AA[TT GG GG GG|TTTTCC GG TTGG GT TT GG AA ... i,

individuals

Matrices including thousands of individuals and hundreds of thousands (large for
some people, small for other people) if SNPs are available.

"4 ASW, MKK, LWK,
' & YR

HapMap Phase 3

The Human Genome Diversity Panel (HGDP)

Europeans

Africans

5 Mbuti pygmy 12 Fren

6 Biaka 13 North ltalian
7 Mozabite 14 Sardinian
15 Tuscan

Cavalli-Sforza (2005) Nat Genet Rev
Rosenberg et al. (2002) Science
Li et al. (2008) Science

The International HapMap Consortium
(2003, 2005, 2007) Nature

Western Asians

18 Palestinian)
31 Daur

Central and
Southern Asians

19 Balochi
21 Makrani
23 Pathan

24 Burusho
25 Hazara

Eastern Asians

32 Hezhen
33 Lahu
34 Miao
35 Orogen
36 She

37 Tujia
38 Tu

39 Xibo

40 Yi

41 Mongola
42 Naxi

43 Cambodian
44 Japanese
45 Yakut

Oceanians

47 Papuan

Native Americans

HGDP data
* 1,033 samples
* 7 geographic regions

* 52 populations

HapMap Phase 3 data

* 1,207 samples

* 11 populations

Apply SVD/PCA on the
(joint) HGDP and HapMap
Phase 3 data.

Matrix dimensions:

2,240 subjects (rows)
447,143 SNPs (columns)

Dense matrix:

over one billion entries

Paschou, et al (2010) J Med Genet

EigenSNP 2

EigenSNP 1

* Top two Principal Components (PCs or eigenSNPs)
(Lin and Altman (2005) Am J Hum Genet)

* The figure renders visual support to the “out-of-Africa” hypothesis.

* Mexican population seems out of place: we move to the top three PCs.

0.04 i I T '
+ AFRICA
x AMERICA
O CENTRAL SOUTH ASIA
& EASTASIA
0.03+— ¥ EUROPE _
O GUJARATI
Eu rope < MEXICANS
O MIDDLE EAST
O OCEANIA
0.02— —
Gujarati
/ Indians
0.01+— —
¥ gt 2
A %South Central
< o H
oL : " iw ; : Asia u
Africa ‘iﬁ 7
i i Ll < %
i *}ﬁ" + + N °
-0.01— Mﬁ* & o |
Oceania &
%% America
-0.02— : Q\ —1
" East Asia
0,03 W —
- \ | | | \ | |
-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03

0.04

EigenSNP 3

0.02

-0.02

-0.04

-0.06

-0.08

-0.1

Paschou, et al. (2010) J Med Genet

a) Africa
b‘% : i ﬁﬂ" Fit+
+
1)
Oceania e
oW k
S &
East Asia

EigenSNP 1

+</,

o

+ AFRICA

*x AMERICA

0 CENTRAL SOUTH ASIA

< EAST ASIA

* EUROPE

O GUJARATI

“ MEXICANS

O MIDDLE EAST
OCEANIA

0 Togwpg @leyl I -"-

"
S C Asia & ° 2 “n8.% o
Gujarati “5™ i Europe
o
) a
£ 'a(\%
+\C

EigenSNP 2

* Not altogether satisfactory: the principal components are linear combinations of
all SNPs, and — of course — can not be assayed!

« Can we find actual SNPs that capture the information in the singular vectors?

* Relatedly, can we compute them and/or the truncated SVD “efficiently.”

Two related issues with eigen-analysis

Computing large SVDs: computational time

* |In commodity hardware (e.g., a 4GB RAM, dual-core laptop), using MatLab 7.0 (R14),
the computation of the SVD of the dense 2,240-by-447,143 matrix A takes ca 20 minutes.

e Computing this SVD is not a one-liner, since we can not load the whole matrix in RAM
(runs out-of-memory in MatLab).

* Instead, compute the SVD of AAT.

* In a similar experiment, compute 1,200 SVDs on matrices of dimensions (approx.) 1,200-
by-450,000 (roughly, a full leave-one-out cross-validation experiment) (DLP2010)

Selecting actual columns that “capture the structure” of the top PCs

Combinatorial optimization problem; hard even for small matrices.

Often called the Column Subset Selection Problem (CSSP).

Not clear that such “good” columns even exist.

Avoid “reification” problem of “interpreting” singular vectors!

* (Solvable in “random projection time" with CX/CUR decompositions! (PNAS, MD09))

Use case’: Galactic spectra from SDSS

x; € R34 N ~ 500k

photon fluxes in ~ 10 A
wavelength bins

preprocessing corrects for
redshift, gappy regions

normalized by median flux
at certain wavelengths

raw spectrum in observed frame

6 \

41 _

2 - -

0 | | | | |

3000 4000 5000 6000 7000 8000 9000

raw spectrum in rest frame

6 \

4 - -

2 - -

0 | | | | 1

3000 4000 5000 6000 7000 8000 9000
gap-corrected spectrum in rest frame

6 \

4 - -

2 - | -

0 | | i | i | |

3000 4000 5000 6000 7000 8000 9000

Global

embedding: effect of k

k=512

k=2
0.08 0.045
’ 0.04
0.06 /
P 0.035
0.04 0.03
s
o 0.025
.
=7 0.02 3 =002
0.015
4
0 ¥
0.01
-0.02 005
0
-0.04 . . . :] -0.005
-0.02 0 0.02 0.04 0.06 0.08 -0.01
Vs
x10°
k=128 201
0.03
0.025 15+
0.02
10+
0.015 <
- b
g
0.01 5r
0.005
ok
0
-0.005 : -5
-5 0 5 10 15 20 -2

0.04

0.035

0.03

0.025

0.02

0.015

0.01

0.005

-0.005
-0.005

k=32

0 0.005 0.01 0.015 0.02 0.025

Va

k=2048

Figure: Eigenvectors 3 and 4 of Lazy Markov operator, k = 2 : 2048

Global embedding: average spectra

Lazy Markov, k=32, autotuned

0.041
0.035}
0.03f k
| Y 1 A A5
0.025
2
S
0.02f +
x
K =) I Q__L Ad
3
0.015f w©
3
0.01F L L o A3
0.005
e) A A2
o-
| i Al
.)
000536 3000 4000 5000 6000 7000 8000 9000
wavelength (10’10 m)
R5
B 2
° °
+ +
5+ 3
o l 5 R4
3 | . E
8 (- E5 S
(7] L 12}
[il ‘ £ ap——— h ! R3
I— l TV IO FU—
E3
L R2
| il | E2
WWW——-—\ R1
| il | E1

. | . . .))
3000 4000 5000 6000 7000 8000 9000 3000 4000 5000 6000 7000 8000 9000
wavelength (1 o0 m) wavelength (10’10 m)

Local embedding: scale parameter and effect of seed
For an appropriate choice of ¢ and v = (k) < A, one can show

wo = c(L—~D)"Ds
= c(Lg — L) Ds

(In practice, binary search to find “correct” ~.)

Figure: (left) Global embedding with seeds in black. (middle, right)
Local embeddings using specified seeds.

Overview

Thoughts on Machine Learning, Scientific Machine Learning, etc.
Spark and Spark performance

Alchemist: an Apache Spark <=> MPI Interface
Communication-avoiding Machine Learning

Current and Future Directions
A jupyter/ipython + MPI interface
RISELab’s Ray Project
Large-scale Graph Processing
Neural Network Learning
Scalable Second-order Optimization Methods

Where do you run your linear algebra?

Single machine
* Think about RAM, call LAPACK, etc.

® Someone else thought about numerical issues, memory hierarchies, etc.

® This is the 99%

Supercomputer
* High end, compute-intensive.

* Big emphasis on HPC (High Performance Computing)
e C+MPI, etc.

Distributed data center

* High end, data-intensive
* BIG emphasis on HPC (High Productivity Computing)
* Databases, MapReduce/Hadoop, Spark, etc.

Apache Spark MPI

® Cluster computing system ®* MPI = Message Passing Interface
®* Interoperable with Apache * A specification for the developers
Hadoop, much faster and users of message passing
* Improved efficiency: libraries
* In-memory computing primitives ® Message-Passing Parallel

* Computation graphs Programming Model: cooperative

o -
Rich and easy-to-use API operations between processes, data

® Allows for iterative algorithms moved from address space of one

(important for ML and linear process to that of another

lgeb
algebra) ® Popular implementations: MPICH,

® Fault tol t
au oleran Open |\/|P|

4

©2017
RISELab

(¢

@

(@

Spark Architecture

Data parallel programming model

Resilient distributed datasets (RDDs) (think: distributed array type)
RDDs can optionally be cached in memory b/w iterations

Driver forms DAG, schedules tasks on executors

(@

C

Spark Communication

Task

Task

Task

Stage 1 Stage 2

Computation operate on one RDD to produce another RDD
Each overall job (DAG) broken into stages

Stages broken into parallel, independent tasks
Communication happens only between stages

Why do linear algebra in Spark?

Pros:

Widely used
Easier to use for non-experts
An entire ecosystem that can be used before and after the

NLA computations
Spark can take advantage of available single-machine
linear algebra codes (e.g. through netlib-java)

Automatic fault-tolerance
Transparent support for out of memory calculations

Cons:

Classical MPl-based linear algebra algorithms are faster
and more efficient
No way, currently, to leverage legacy parallel linear

algebra codes
JVM matrix size restrictions, and RDD rigidity

Our Goals

Provide implementations of low-rank factorizations (PCA,
NMF, and randomized CX) in Spark

Apply low-rank matrix factorization methods to TB-scale
scientific datasets in Spark

Understand Spark performance on commodity clusters vs
HPC platforms

Quantify the scalability gaps between highly-tuned C/MPI
and current Spark-based implementations

Provide a general-purpose interface for matrix-based
algorithms between Spark and traditional MPI codes

Three Science Drivers

Climate Science:
extract trends in variations of oceanic
and atmospheric variables (PCA)

Nuclear Physics:

learn useful patterns for
classification of subatomic particles
(NMF)

Mass Spectrometry:
location of chemically important ions
(CX)

Datasets

Science Aree armavbiles Dumessions Sixe

VSl Parquet 2880 8 258,911 ¥ 131,045 1 ITH
Dava Bay HIFS') 1059 413, 914 x 152 "ATH
Lcewn HDEA o4 0o7h < 46, 715 2218
.'umns{:hcrc HIFA) 20, 042,080 x Ss1.4500 i B

MSI — a sparse matrix from measurements of drift times and mass charge
ratios at each pixel of a sample of Peltatum; used for CX decomposition

Daya Bay — neutrino sensor array measurements; used for NMF
Ocean and Atmosphere — climate variables (ocean temperature,

atmospheric humidity) measured on a 3D grid at 3 or 6 hour intervals over
about 30 years; used for PCA

Our ftirst (of by now several) results

Matrix Factorizations at Scale: a Comparison of Scientific Data
Analytics in Spark and C+MPI Using Three Case Studies

Alex Gittens * Aditya Devarakonda' Evan Racah? Michael Ringenburg?
Lisa Gerhardt! Jey Kottaalam! Jialin Liu* Kristyn Maschhoff® ~ Shane Canon?
Jatin Chhugani¥ Pramod Sharma® Jiyan Yangl — James Demmel™ Jim Harrell®

Venkat Krishnamurthy? Michael W. Mahoney* Prabhat *

July 1, 2016

BIG thanks in particular to:
Mike Ringenberg
Kristi Maschoff

arX1v:1607.01335v1 [cs.DC] 5 Jul 2016

*ICSI and Department of Statistics, UC Berkeley

"EECS, UC Berkeley Pramod Sharma
'NERSC, Lawrence Berkeley National Laboratory Ji H |

SCray, Inc. Im rmarre

THiperform Consulting LLC Venkat Krishnamurthy
ITCME, Stanford University (and Cray for funding |)

“*EECS and Math, UC Berkeley

CFSR Ocean Temperature Dataset (1)

SST portian of hrst EOF

First two years of first temporal eof

0.008
0.006/ 0.006

0.004| 0.004/

0.002} 0.002} §

o

~0.004} Do

0006k . ~0.004

—0.008| ¥ ~0.006}

~0-0195—550 1000 1500 2000 2500 3000 0098500 1000 1500 2000 2500 3000

date index date index

Running times for NMF and PCA

Cori's specs:

« 1630 compute nodes,
e« 128 GB/node,
e 32 2.3GHz Haswell cores/node

Nodes / cores MPI Time Spark Time | Gap
50/ 1,600 1minés 4 min 38 s 4.2x
NMF |[{100/ 3,200 45 s 3min27s 4.6x
300/ 9,600 30s 70 s 2.3x
PCA 100/ 3,200 1 min 34 s 15min34s | 9.9x
300/ 9,600 1 min 13min47 s | 13.8x
(2.2TB) | '550 716,000 56 s 19min 20s | 20.7x
PCA ||MPI: 1,600/ 51,200 : .
(16TB) | Spark: 1,522 /48,704 2Min40s | 69min35s 126X

» Anti-scaling!

* And it worsens both with concurrency and data size.

PCA Run Times: rank 20 PCA of 2.2TB Climate

800

600

Time (s)

400

200

-
Spark 100 MP1 100 Spark 300 MPI 300 Spark 500 MPI 500

Parallel HDFS Read m Gram Matrix Vector Product = Distributed A«V
m Local SVD AsV u Task Start Delay - Scheduler Delay « Task Overheads

m Time Waiting Until Stage End

Rank 20 PCA of 16 TB Climate using 48K+ cores

1000

100
10
1

Spark MPI Spark MPlI Spark MPI Spark MPI Spark Overheads

Time (s)

Parallel HDFS Read m Gram Matrix Vector Product = Distributed A«V
m Local SVD AV u Task Start Delay - Scheduler Delay « Task Overheads

m Time Waiting Until Stage End

NMF Run Times: rank 10 NMF of 1.6TB Daya Bay

150

100

Time (s)

50

1 41

Spark 50 MPI 50 Spark 100 MPI 100 Spark 300 MPI 300

w Parallel HDFS Read = TSQR m XRay
w Task Start Delay « Scheduler Delay » Task Overheads
= Time Waiting Until Stage End

MPI vs Spark: Lessons Learned

With favorable data (tall and skinny) and well-adapted

algorithms, Spark LA is 4x-26x slower than MPI when 10
is included

Spark overheads are orders of magnitude higher than
the computations in PCA (time till stage end, scheduler
delay, task start delay, executor deserialize time), and it
anti-scales

The large gaps mean it is worthwhile to investigate
efficiently interfacing MPI-based codes with Spark

Overview

Thoughts on Machine Learning, scientific Machine Learning, etc.
Spark and Spark performance

Alchemist: an Apache Spark <=> MPI Interface
Communication-avoiding Machine Learning

Current and Future Directions
A jupyter/ipython + MPI interface
RISELab’s Ray Project
Large-scale Graph Processing
Neural Network Learning
Scalable Second-order Optimization Methods

The Next Step: Alchemist

Since Spark is 4+x slower than MPI, propose sending the
matrices to MPI codes, then receiving the results

For efficiency, want as little overhead as possible (File 1/0,
RAM, network usage, computational efficiency)

Alternative approaches:
Write to HDFS: slow file I/O, manual data layout
Other MPI-Spark bridges: assume sparse data
sets, use ram disk or write to file
3. Apache Ignite (and Alluxio, etc.): requires using
C/C++ interfaces, manual data layout, extra
copy in memory, TCP/IP

N —

Alchemist:
Uses in-memory transfer, transparently provides data
relayout, explicitly handles dense data sets

Using Alchemist

<

Alchemist

Spark:
1) Sends the metadata for input and output matrices to
Alchemist
2) Sends the matrix to Alchemist using sockets
3) Sends commands to the Alchemist driver
Alchemist:
1) Repartitions the matrix for MPI using Elemental
2) Driver coordinates workers in executing the MPI codes
3) Returns outputs to Spark

Current Alchemist Architecture

I Sockets

I MPI

. Exploit locality to reduce communication
. Allow for hybrid OpenMP/MPI

Main Challenges

c e e .. Row-
Minimizing communication distributed.

time between Spark workers
and Alchemist workers

while also

Switching between the matrix
distribution schemes imposed
by Spark and NLA codes, as

needed Block Cyclic,
NLA

Currently Implemented Operations

Operations Implemented Library/Memory Cost

Matrix Send -/ 1X
Matrix Retrieve -/ 11X
Matrix Transpose Elemental / 2X
Matrix Multiply Elemental / 2X
KMeans -/ 11X
SvD Elemental / 2X
Truncated SVD ARPACK / 2X
LSQR linear solver LibSkylark / 1X
Regularized CG linear solver LibSkylark / 1X
Kernel Solver (regression, LibSkylark / 1X

classification, regularization)
HDF5 Reader -/ 2X

Example: Matrix Multiplication

==~ 5

Requires expensive shuffles in Spark:

- Matrices/RDDs are row partitioned

- One must be converted to be column-partitioned

- This requires an all-to-all shuffle that often fails even

for matrices that could fit in memory on one executor

Simplest Example: Matrix Multiplication

A: 100K-by-10K (8 GB)
B: 10K-by-70K (5.6 GB)
C=AB: 100K-by-70K (56 GB)

Setup:
-128 GB RAM and 32 cores per node
-2 Spark and 2 Alchemist nodes (need 2 nodes due to 2x overhead)

Send Compute Receive
Alchemist 35.18s 207.21s 56.25s
Spark - Fail after 465 s -

Larger Example: Matrix Multiplication

A: 300K-by-10K (24 GB)
B: 10K-by-60K (4.8 GB)
C=AB: 300K-by-60K (144 GB)

Setup:
-128 GB RAM and 32 cores per node
-10 Spark and 10 Alchemist nodes

Send Compute Receive
Alchemist 83.8s 98s 36.65s
Spark - Fail after 30 -

min

Scaling of Truncated SVD

" Spark =>MPIsendtime [MPI compute time
~ MPI => Spark send time
e Use Alchemist and MLlIib to

500s
get rank 20 truncated SVD
* Setup: 3755
® Each node of Cori has 128GB
RAM and 32 cores
® Spark: 22 nodes; Alchemist: 8 250s
nodes
® A: m-by-10K, where m = 5M, 125s
2.5M, 1.25M, 625K, 312.5K
® Ran jobs for at most 30 minutes 0s
(1800 s) 25GB 50GB 100GB 200GB 400GB

©2017 /4
RISELab

Scaling of Truncated SVD

~ Alchemist execution time [Spark compute time
e Use Alchemist and MLlIib to

2000s
get rank 20 truncated SVD
* Setup: 1500s
® Each node of Cori has 128GB
RAM and 32 cores
1000s
® Spark: 22 nodes; Alchemist: 8
nodes
® A: m-by-10K, where m = 5M, 500s
2.5M, 1.25M, 625K, 312.5K
® Ran jobs for at most 30 minutes 0s
(1800 s) 25GB 50GB 100GB 200 GB 400 GB

©2017 /4
RISELab

50
0

Scaling of Truncated SVD

Each node of Cori has 128GB RAM and 32 cores
Replicated the 2.2 TB Climate data set (row-wise)
Use Alchemist to get rank 20 truncated SVD

Prior work shows Spark requires 934s on 100 nodes

for just 2.2 TB

Alchemist SVD Timing

338.406

276.052
254.084

233.302

184.769

114.258 107.915

92.224

61.413 . l 59.278

2.2 TB (38 nodes) 4.4 TB (76 nodes) 8.8 TB (154 nodes) 17.6 TB (308 nodes)

load time(s) "~ svd (s) ™receive (s) ™overall (s)

A Climate Science Application

- Problem: extract the top principal components of a
3D ocean temperature data set collected over 30
years at 3 hour increments on a 360-by-720-by-40 lat-
long-depth grid

- Yields a 2.2TB matrix, 6M-by-46K and dense

Visualization of the 5™ principal component

Alchemist: Next Steps

Eliminate 2X overhead of GEMM (ongoing)
Allow dynamic loading (ongoing)
More thorough logging, error-handling, and profiling

(ongoing)

Integration with container management frameworks
(Kubernetes)

Exploit locality to minimize communication costs
Support sparse matrices

Provide interface for ScaLAPACK codes

Increased ML functionality via LibSkylark, MCMC
clustering codes, Cyclops tensor framework

Overview

Thoughts on Machine Learning, scientific Machine Learning, etc.
Spark and Spark performance

Alchemist: an Apache Spark <=> MPI Interface
Communication-avoiding Machine Learning

Current and Future Directions
A jupyter/ipython + MPI interface
RISELab’s Ray Project
Large-scale Graph Processing
Neural Network Learning
Scalable Second-order Optimization Methods

« Trade-offs and existing approaches

4
Newton

-

O

i)

8 Some

= o algorithm

&

8 Coordinate

Descent
O

»
Communication

45

Current approach:
choose an algorithm based
on computation and

communication trade-off

« Trade-offs and existing approaches

Newton

-

O

e

S Some

= o algorithm

&
8 Coordinate

Descent
O

Communication

46

« QOur approach

4

Computation

Newton

9
vo Some
L algorithm

Coordinate

9
scent
Vg.

Take existing algorithms
and make them

communication avoiding

Communication

W e ss——

« Outline of the approach and results

Choose your favorite algorithm

Re-organize it to make it communication avoiding

Load balanced processors

Scalability to 1000+ of processors or more

48

e For what problems?

« How to avoid communication: basic idea

Coordinate descent is a recurrence; unroll “s” iterations

i

Compute matrix multiplication in parallel by communicating only once

F

Define the anticipated computations
to perform “s” iterations. In this S
case that is matrix multiplication.

Compute “s” iterations redundantly on each processor

50

« An example: coordinate descent

] Sample a column of data

50—
1 communication per

lteration

] Compute partial derivativeD = -l

] Update solution .3.4'[]

] Repeat

51

« An example: communication avoiding coordinate descent

w .

1 communication

round per s iterations

for the next “s” iterations

] Redundantly store the result

in all processors . . .

11)

] Each processor independently computes the next “s” iterations

] Repeat y/

52

o More details about the results

« Scalable results for all data layouts

| aa aout |

[1DRowPation | [2D Block Partiion | 1D Column Partion]

*
Best performance depends on dataset and algorithm

54

o Datasets

Summary of (LIBSVM) datasets

3,231,961 2,396,130 0.0036%

news20 62,021 15,935

C++ using the Message Passing Interface (MPI). Intel
MKL library for sparse and dense BLAS routines. All
methods were tested on a Cray XC30.

55

« Convergence of re-organized algorithms

Convergence rate remains the same in exact arithmetic

Empirically stable convergence: no divergence between methods

- | | | | _. | |)
><106

—Baseline -
0 Qurs

Objective function

0 100 200 300
lterations
56

Scalability performance

The more processors the better
The gap between CA and non-CA increases w.r.t. #processors

Performance scaling: url Performance scaling: epsilon
173+ ’ ——] ‘ .
-©-Baseline - Baseline
- O\S\mv-Ours A6-4’ 7-0urs
0 e
Sin v SN 8
0 037 w.
E T Ey Vo
e R
g) 70 V 8)
s | - € 2 V.
- c .
3 . 3 | T,
i co
39 B 72
] | il 1 l v
3072 6144 12288 3072 6144 12288
Processors (P) Processors (P)

57

Scalability performance

The more processors the better

The gap between CA and non-CA increases w.r.t. #processors

Performance scaling: news20 Performance scaling: covtype
- Baseline -%-Baseline
A366 r \ ‘.v.Ours 1 - 15 ..”V..Ou[-s .
230.7: X —X Q
o 91,07
S~ S~ 0'9
£22 V., :
= =
o o)
= =
c. T, c
c128 V... 5083 V...
o 0 I
192 384 768 768 1536 3072
Processors (P) Processors (P)

58

Speed up breakdown

A A M IR I OIS

Large ¢ommunication speedup until bandwidth takes a hit
Computation is maintained due to local cache-efficient (BLAS-3)
computations

Speedup: url Speedup: epsilon
10'56[—‘9(—1ttl | | | ,Q '] | —>-total | | e
9.67 -g c%;munication P 10.94 -g c%;munication /@\
8.99 - computation @ v computation S
—speedup = 1 I \ —speedup = 1 2t \
speedup /i 833 speedup -
Q :
- :
?
0 4.96 -
7}
3.16 -
1.65 i
1 :
Recurrence unrolling parameter (s) Recurrence unrolling parameter (s)

59

e Speed up breakdown

Large ¢ommunication speedup until bandwidth takes a hit
Computation is maintained due to local cache-efficient (BLAS-3)

computations
Speedup: news20 o1 Speedup: covtype
-total 6.53 [%total T
icat | icat il
42 Q cmmnicaton = 587 R computton 0
—speedup = 1 L& \ —speedup = 1 {
345 ...Bests=16 0o 4 e
Q . : Q
-] e : -
VL. ©
0 o)
Q 032
Q
0 1. (2.56
1.6 i
N
1 A
9 N i 9 o0 N o
Recurrence unrolling parameter (s) Recurrence unrolling parameter (s)

60

Circles = best speedups

Speedups (Ridge Regression)

mnist8m

8 2.41x 2.71x 2.58x2.53x

(&2}

o)
o4 25@<gnn€l|}amxzsa< |4
N
(%)
S
02 °
m

—

BCD 352 S:A 3583;163:32

64 nodes of Edison

mnist8m
8 5.07x 5.79x5.15x

5}

o 4 2.59x 3.47x 4.23x

N

D

S

Q2 i
0

bk g=8g-16g 232

BCD 3:2 g=

1K nodes of Edison

Joint with A. Devarakonda, K. Fountoulakis, and J. Demmel

o Other examples

O Block coordinate descent
O Accelerated block coordinate descent
O Gradient descent

O Any proximal method

62

e SumMmary

Overview

Thoughts on Machine Learning, scientific Machine Learning, etc.

Spark and Spark performance
Alchemist: an Apache Spark <=> MPI Interface
Communication-avoiding Machine Learning

Current and Future Directions
A jupyter/ipython + MPI interface
RISELab’s Ray Project
Large-scale Graph Processing
Neural Network Learning
Scalable Second-order Optimization Methods

A jupyter/ipython + MPI interface

® /""-f_-\ ®
“Project Jupyter exists to develop open-source software, g \
open-standards, and services for interactive computing u te r
across dozens of programming languages.” J py

N

0

Most of the functionality is in place.
* Once the Alchemist rewrite is complete, should be straightforward.

+ For simple workflows, e.g., load a large dataset from a file, do some
computations, and then return the results.

* More complex, e.g, if there are special kind of distributed matrices
that are being used by the jupyter/ipython application

Extend from a Spark <=> MPI interface to a X <=> MPI interface.

RISELab’s Ray Project

A platform for high-performance distributed execution
 Philipp Moritz, Robert Nishihara, Richard Liaw, lon Stoica

Problem: AI/ML applications require more than neural networks

 Simulations, streaming and processing sensor data, serving decisions, rendering
actions (e.g., actuate robotic joins)

« ML practitioners often build their own systems infrastructure in addition to deep
learning frameworks

Ray is a distributed execution framework for Al applications.
« High throughput, low latency tasks
« Fine-grained, nested, heterogeneous tasks

Ray provides Task parallel APl and actor APl built on dynamic task
graphs

* These APIs are used to build distributed applications, libraries and systems

(They want input---we coordinate with them as Alchemist winds up.)

Large-scale Graph Processing

"Parallel Local Clustering Algorithms"”
* Shun, Roosta-Khorasani, Fountoulakis, and Mahoney (arXiv:1604.07515)

« Code: https://github.com/jshun/ligra/

"LocalGraphClustering”
» Fountoulakis, Gleich, Mahoney (Proc IEEE 2017)
 Code: https://github.com/kfoynt/LocalGraphClustering

100 | 100 | |

1L \W\R . Vi W ! - \\H m i

10 g I . “r‘"”u"fu”u"""NWW\JMH\
102 - iL“ \ﬂ : 102 - |]
1073 |- | | | |]

1073
100 10! 102 103 104 10° 100 10! 102 10 T10* 100

Conductance
Conductance

Cluster size Cluster size

L4 42M vertices friznds’rer@ 125M vertices
1.2B edges 1.8B edges

Neural Network Learning

 Characterize properties on
NN learning algorithms i.t.o.

hyperparameters . A
* Develop interpretable NNs :
. .]
that incorporate domain g

. o Perfect
science 2

* Provide GPU implementations
of stochastic optimization

algorithms Load o

Scalable Second-order Optimization Methods

Use second derivative information: more expensive & more powertful

* Resiliency to problem ill-conditioning
* Good generalization error and robustness to hyper-parameter tuning

(
10°
——Alg 1: A =500
V) \ ——Alg 1: A, = 1200
” L ——Alg 1: A= 3000
8 P\ L T W \ W Sub-Sampled GN 5
B,' (o \ = = Momentum SGD: alpha = 0.001 b=
£ AN Momentum SGD: alpha = 0.005 u 101 b [——Alg 1: 2, = 500 -
@ \\ \ — = Momentum SGD: alpha = 0.01 8 — Al A = 1200 - ~.
= \}’\'\\ . = = Momentum SGD: alpha = 0.1 = S R A\ S
SN Momentum SGD: alpha = 0.5 ——Alg 1: A, = 3000
e e — === e Sub-Sampled GN
102 > == = Momentum SGD: alpha =
Momentum SGD: alpha = 0.005
ol |=™ =Momentum SGD: alpha =0.01
10 == = Momentum SGD: alpha = 0.1
) Momentum SGD: alpha = 0.5
4 5 6 7 8 : = - ! :
10 10 10 10 10 10* 10° 108 107 108
of Props
of Props

* Ability to escape undesirable saddle-points
* Low-communication costs in distributed settings
« Computational advantages offered by leveraging the power of GPUs

Conclusion

Goal

* Do computationally-intensive scientific machine learning at scale

Progress Report
 Characterize performance loss
* Develop Alchemist: An Apache Spark <=> MPI Interface

Future Directions

* A jupyter/ipython + MPI interface

« RISELab’s Ray Project

* Large-scale Graph Processing

* Neural Network Learning

* Scalable Second-order Optimization Methods

And THANKS to Cray, DARPA, and NSF for financial support!

