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Why RandNLA? 

Randomization and sampling allow us to design provably accurate algorithms for 
problems that are: 
 
Ø  Massive  
 
(matrices so large that can not be stored at all, or can only be stored in slow memory devices) 
 
Ø  Computationally expensive or NP-hard  
 
(combinatorial optimization problems, such as the Column Subset Selection Problem) 
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     Randomized algorithms 
•  By (carefully) sampling rows/columns of a matrix, we can construct new, smaller matrices that 
are close to the original matrix (w.r.t. matrix norms) with high probability.  

 

 
 

•  By preprocessing the matrix using “random projection” matrices , we can sample rows/columns 
much less carefully (uniformly at random) and still get nice bounds with high probability.  

Matrix perturbation theory 

•  The resulting smaller matrices behave similarly (e.g., in terms of singular values and singular 
vectors) to the original matrices thanks to the norm bounds. 

RandNLA in a slide 

Example: 
Randomized 

Matrix 
Multiplication 
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Interplay 

Theoretical Computer Science  
Randomized and approximation 

algorithms 

Numerical Linear Algebra 
 Matrix computations and linear 
algebra (ie., perturbation theory) 

Applications in BIG DATA 
 (Data Mining, Information Retrieval, 
Machine Learning, Bioinformatics, etc.) 
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Ø  Approximating matrix multiplication (first lecture) 

Ø  Leverage scores and their applications (second and third lectures) 
 1. Over- (or under-) constrained least squares problems 

 2. Feature selection and the CX decomposition 

Ø  Solving systems of linear equations with Laplacian matrices (fourth lecture)   

Ø  Element-wise sampling (fourth lecture) 

  Roadmap of my lectures 
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Problem Statement 
Given an m-by-n matrix A and an n-by-p matrix B, approximate the product A·B, 

OR, equivalently, 

Approximate the sum of n rank-one matrices. 

Each term in the 
summation is a 

rank-one matrix 

i-th column of A 

i-th row of B 

A*i Bi* 

Approximating Matrix Multiplication 
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A sampling approach 

Algorithm 
1.  Fix a set of probabilities pi, i =1…n, summing up to one.  

2.  For t = 1…c,  

 set jt = i, where Pr(jt = i ) = pi . 

 (Pick c terms of the sum, with replacement, with respect to the pi.) 

3.  Approximate the product AB by summing the c terms, after scaling.  

i-th column of A 

i-th row of B 

A*i Bi* 
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Sampling (cont’d) 

Keeping the terms 
j1, j2, … jc. 

i-th column of A 

i-th row of B 

A*i Bi* 

A*jt Bjt* 
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Sampling (alternative formulation) 

The ci (for all i=1…n) are 
random variables indicating 

how many times the i-th 
column-row pair was sampled. 

i-th column of A 

i-th row of B 

A*i Bi* 

A*i Bi* 
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Sampling (alternative formulation) 

For most i, ci will be zero; 
notice that all possible 

values for ci are 0, 1, 2, … c. 

i-th column of A 

i-th row of B 

A*i Bi* 

A*i Bi* 
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Sampling (alternative formulation) 

Prove: the expectation of ci is equal to cpi. 
This is the simplest way to see why 
(algebraically) we need to rescale by 1/cpi. 

 

i-th column of A 

i-th row of B 

A*i Bi* 

A*i Bi* 
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The algorithm (matrix notation) 

Algorithm 
1.  Pick c columns of A to form an m-by-c matrix C and the corresponding 

c rows of B to form a c-by-p matrix R. 
2.  Approximate A · B by C · R. 

Notes 

3.  We pick the columns and rows with non-uniform probabilities. 

4.  We scale the columns (rows) prior to including them in C (R). 
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The algorithm (matrix notation, cont’d) 

•  Create C and R by performing c i.i.d. trials, with replacement. 
•  For t = 1…c, pick a column A(jt) and a row B(jt) with probability 

 

•  Include A*jt
/(cpjt

)1/2 as a column of C, and Bjt* /(cpjt
)1/2 as a row of R. 
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We can also use the sampling matrix notation: 

Let S be an n-by-c matrix whose t-th column (for t = 1…c) has a single 
non-zero entry, namely 
 

 

The algorithm (matrix notation, cont’d) 

Clearly: 
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We can also use the sampling matrix notation: 

Let S be an n-by-c matrix whose t-th column (for t = 1…c) has a single 
non-zero entry, namely 
 

 

The algorithm (matrix notation, cont’d) 

Clearly: 

rescaling 
factor 

15 



We can also use the sampling matrix notation: 

Let S be an n-by-c matrix whose t-th column (for t = 1…c) has a single 
non-zero entry, namely 
 

 

The algorithm (matrix notation, cont’d) 

Clearly: 

Remark 1:  S is sparse (has exactly c non-zero elements, one per column). 
Remark 2: In some cases, we express S as a product of a sampling matrix 
(exactly as described above, but with the non-zero entries being equal to 
one) and a rescaling c-by-c diagonal matrix whose entries are equal to the 
rescaling factors. 

rescaling 
factor 
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Simple Lemmas 

•  It is easy to implement this particular sampling in two passes, when the 
input matrices are given as a sequence of triplets (i,j,Aij).  

  

• The expectation of CR (element-wise) is AB (unbiased estimator), 
regardless of the sampling probabilities, i.e., 

 

  

• We can also bound the variance of the (i,j)-th entry of CR: 
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Simple Lemmas 

The above two bounds can now be used to bound 

Our particular choice of sampling probabilities minimizes the above 
expectation. 
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A bound for the Frobenius norm 

For the above algorithm, 

•  We can now use Markov’s inequality to directly get a “constant probability” 
bound. 

•  “High probability” follows from a martingale argument (we will skip this 
discussion). 

•  The above bound immediately implies an upper bound for the spectral norm 
of the error AB-CR (but better bounds can be derived). 
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A note on the sampling probabilities 

Recall the sampling probabilities: 

•  It turns out that the aforementioned bound (in expectation) holds even if 
the sampling probabilities have the following form: 

•  The probabilities still need to sum up to one. 

•  In the above, β is a constant in the interval (0,1].  

•  In the upper bound of the expectation, c is replaced by βc. 20 



A note on the sampling probabilities 

Recall the sampling probabilities: 

•  The aforementioned bound (in expectation) holds even if the sampling 
probabilities depend only on A or only on B: 

•  In the above, β is a constant in the interval (0,1].  

•  In the upper bound of the expectation, c is replaced by βc. 

•  The martingale argument though does not work any more... 

or 
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Special case: B = AT 

If B = AT, then the sampling probabilities are 

Also, R = CT, and the error bounds are: 
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Special case: B = AT (cont’d) 
(Drineas et al. Num Math 2011, Theorem 4) 

A better spectral norm bound via matrix Chernoff/Bernstein inequalities: 

 

Assumptions: 
•  Spectral norm of A is at most one (not important, just normalization) 

•  Frobenius norm of A is at least 0.2 (not important, simplifies bounds). 

•  Important: Set  

Then: for any 0 < ε < 1, with probability at least 1 - δ, 
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Proof outline 
(Drineas et al. Num Math 2011, Theorem 4) 

Define the random vector y such that 

Now, it is easy to see that the matrix C has columns 

where y1,y2,…,yc are independent copies of y. It is easy to prove that 

and 
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Proof outline 
(Drineas et al. Num Math 2011, Theorem 4) 

We can now upper bound the norm of the vector y: 

Also, given our assumption that the spectral norm of A is at most one, we get: 

We can now apply a matrix-Bernstein inequality (Lemma 1 of Oliveira 2010) to get 
the desired bound. 
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An inequality by Oliveira 
(Oliveira 2010, Lemma 1) 

Let y1,y2,…,yc be independent identically distributed copies of the m-dimensional 
random vector y with  

 

 
Then, for any a > 0, 

holds with probability at least 

and 
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Special case: B = AT (cont’d) 

Remarks: 

•  The proof is relatively simple, given the matrix-Bernstein inequality. 

•  Even better bounds (in terms of constants) can be derived using tighter 
inequalities; see Ipsen & Wentworth (2014) SIMAX. 

•  We will now take a look at alternative mathematical tools that could be used to 
prove such spectral norm bounds. 
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Bounding the spectral norm of random matrices 

 

Ø  The simplest approach (often very useful) is to bound the Frobenius norm.  

Ø  Today, the most common alternative is to apply matrix-Bernstein inequalities.  
      Check the review by J. Tropp (2015) “An introduction to matrix concentration inequalities”. 

Ø  A tougher approach is to use the moments method, dating back to Wigner (1967) 
SIREV: for symmetric matrices A, compute the trace of the  matrix Ak for large 
(even) values of k and bound its expectation. Then,  

•   The “problem” with this approach is that it typically boils down to tough 
 path-counting combinatorial arguments on graphs. 

•   But, it can sometimes result in tighter bounds than matrix-Bernstein 
 inequalities for certain problems. 
 Check Furedi & Komlos (1981) Combinatorica, Nelson & Huy FOCS 2013. 
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Ø  An even more complicated alternative is the entropy-concentration method, 
developed by M. Rudelson & R. Virshynin.  

•  Given a random matrix A, in order to bound its spectral norm, we could bound 

 

Bounding the spectral norm of random matrices 
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Ø  An even more complicated alternative is the entropy-concentration method, 
developed by M. Rudelson & R. Virshynin.  

•  Given a random matrix A, in order to bound its spectral norm, we could bound 

 

•  Theoretical Computer Science approach: use a so-called ε-net argument on 
the unit sphere (e.g., discretize the unit sphere and compute bounds over all 
possible vectors). However, this simple technique could fail, mainly because 
one cannot treat all vectors in the (discretized) unit sphere the same. 

Bounding the spectral norm of random matrices 
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Ø  An even more complicated alternative is the entropy-concentration method, 
developed by M. Rudelson & R. Virshynin.  

•  Given a random matrix A, in order to bound its spectral norm, we could bound 

 

•  Theoretical Computer Science approach: use a so-called ε-net argument on 
the unit sphere (e.g., discretize the unit sphere and compute bounds over all 
possible vectors). However, this simple technique could fail, mainly because 
one cannot treat all vectors in the (discretized) unit sphere the same. 

•  Rudelson and Virshynin proposed to express all vectors in the unit sphere as 
a sum of two vectors: a sparse vector with a bounded number of non-
zeros (but arbitrarily large entries) and a spread vector, whose entries have 
restricted magnitudes.  

•  Now the unit sphere can be split in two sets and we can build two ε-net 
arguments.  

Bounding the spectral norm of random matrices 
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Ø  An even more complicated alternative is the entropy-concentration method, 
developed by M. Rudelson & R. Virshynin.  

•  Given a random matrix A, in order to bound its spectral norm, we could bound 

 

•  Their method gave state-of-the-art bounds for the smallest singular value 
of rectangular matrices (Rudelson & Virshynin (2009) Comm Pure App Math). 

•  I also used this method in a tensor sparsification paper (with Nam Nguyen); 
was not fun… 

•  The original proof of the famous input sparsity time random projection 
method of Clarkson and Woodruff STOC 2013 is (at least in my eyes) 
reminiscent of this approach. 

Bounding the spectral norm of random matrices 
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Ø  Finally, some of the original proofs for the spectral norm bound used the 
Khintchine inequality and so-called symmetrization arguments. 

•  At least within the context of RandNLA, I am not aware of applications of 
such inequalities that improve current state-of-the-art.  

•  They are harder to apply and they (typically) involve unknown constants. 

Bounding the spectral norm of random matrices 
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For more details on measure concentration techniques for random matrices (and 
their applications) follow Roman Vershyinin’s mini-course. 



Using a dense S (instead of a sampling matrix…) 

We approximated the product AB as follows:  

Recall that S is an n-by-c sparse matrix (one non-zero entry per column).  

 

Let’s replace S by a dense matrix, the random sign matrix: 
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Using a dense S (instead of a sampling matrix…) 

We approximated the product AB as follows:  

Recall that S is an n-by-c sparse matrix (one non-zero entry per column).  

Let’s replace S by a dense matrix, the random sign matrix: 

If 

then, with high probability (see Theorem 3.1 in Magen & Zouzias SODA 2012) 

st(A): stable rank of A 
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Using a dense S (instead of a sampling matrix…) 
(and focusing on B = AT, normalized) 

Approximate the product AAT (assuming that the spectral norm of A is one):  

Let S by a dense matrix, the random sign matrix: 

If 

then, with high probability: 
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Using a dense S (instead of a sampling matrix…) 
(and focusing on B = AT, normalized) 

Approximate the product AAT (assuming that the spectral norm of A is one):  

Let S by a dense matrix, the random sign matrix: 

If 

then, with high probability: 

Similar structure with the 
sparse S case; some 

differences in the ln factor 
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Using a dense S (cont’d) 

Comments: 

•  This matrix multiplication approximation is oblivious to the input matrices A and B. 
•  Reminiscent of random projections and the Johnson-Lindenstrauss (JL) transform. 

•  Bounds for the Frobenius norm are easier to prove and are very similar to the case 
where S is just a sampling matrix. 

•  It holds for arbitrary A and B (not just B = AT); the sampling-based approach should 
also be generalizable to arbitrary A and B. 
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Using a dense S (cont’d) 

Other choices for dense matrices S? 

Why bother with a sign matrix?  
(Computing the product AS and STB is somewhat slow, taking O(mnc) and O(pnc) time.) 

 

Similar bounds are known for better, i.e., computationally more efficient, choices of 
“random projection” matrices S, most notably: 

•  When S is the so-called subsampled Hadamard Transform Matrix. 
(much faster; avoids full matrix-matrix multiplication; see Sarlos FOCS 2006 and Drineas et al. 
(2011) Num Math) 

•  When S is the input sparsity time projection matrix of Clarkson & Woodruff 
STOC 2013. 

(the matrix multiplication result appears in Mahoney & Meng STOC 2013 and was improved by 
Nelson and Huy FOCS 2013). 
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TA session II 

TA session II will focus on randomized matrix multiplication and is posted at 

http://www.drineas.org/RandNLA-PCMI-2016/ 
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Ø  Approximating matrix multiplication (first lecture) 

Ø  Leverage scores and their applications (second and third lectures) 
 1. Over- (or under-) constrained least squares problems 

 2. Feature selection and the CX decomposition 

Ø  Solving systems of linear equations with Laplacian matrices (fourth lecture)   

Ø  Element-wise sampling (fourth lecture) 

  Roadmap of my lectures 
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RandNLA:  
Randomized Numerical Linear Algebra 

Sampling rows (or columns) from a matrix 

Input: m-by-n matrix A, sampling parameter r 

Output: r-by-n matrix R, consisting of r rows of A 
•  Let pi for i=1…m be sampling probabilities summing up to 1; 

•  In r i.i.d. trials (with replacement) pick r rows of A; 
(In each trial the i-th row of A is picked with probability pi.) 

•  Let R be the matrix consisting of the rows; 
(We rescale the rows of A prior to including them in R by 1/(rpi)1/2.) 
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The pi’s: length-squared sampling 
Length-squared sampling: sample rows with probability proportional to the 
square of their Euclidean norms, i.e.,  

Notation: 
Ai*

 : the i-th row of A 
||A||F : the Frobenius norm of A 
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The pi’s: length-squared sampling 

Leads to additive-error approximations for  

n  low-rank matrix approximations and the Singular Value Decomposition (SVD), 

n  the CUR and CX factorizations, 
n  the Nystrom method, etc. 
(Drineas, Kannan, Mahoney SICOMP 2006a, SICOMP 2006b, SICOMP 2006c, Drineas & Mahoney JMLR 2005, etc.) 

Length-squared sampling: sample rows with probability proportional to the 
square of their Euclidean norms, i.e.,  

Notation: 
Ai*

 : the i-th row of A 
||A||F : the Frobenius norm of A 
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The pi’s: leverage scores 
Leverage score sampling: sample rows with probability proportional to the square 
of the Euclidean norms of the rows of the top k left singular vectors of A. 

Notation: 
Uk: the m-by-k matrix containing the 

top k left singular vectors of A 
(Uk)i* : the i-th row of Uk 

k=||Uk||F: the Frobenius norm of Uk 
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The pi’s: leverage scores 
Leverage score sampling: sample rows with probability proportional to the square 
of the Euclidean norms of the rows of the top k left singular vectors of A. 

Notation: 
Uk: the m-by-k matrix containing the 

top k left singular vectors of A 
(Uk)i* : the i-th row of Uk 

k=||Uk||F: the Frobenius norm of Uk 

and 
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The pi’s: leverage scores 

Leads to relative-error approximations for: 

n  Over- and under- constrained least-squares problems, 

n  low-rank matrix approximations and the Singular Value Decomposition (SVD), 
n  relatedly, the CUR and CX factorizations, and 

n  solving systems of linear equations with Laplacian input matrices 

Notation: 
Uk: the m-by-k matrix containing the 

top k left singular vectors of A 
(Uk)i* : the i-th row of Uk 

k=||Uk||F: the Frobenius norm of Uk 

Leverage score sampling: sample rows with probability proportional to the square 
of the Euclidean norms of the rows of the top k left singular vectors of A. 
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The pi’s: leverage scores 

Column sampling is equivalent to row sampling by focusing on AT and looking at its top k 
left singular vectors… 
(Which, of course, are the top k right singular vectors of A, often denoted as Vk , an n-by-k matrix.) 

Notation: 
Uk: the m-by-k matrix containing the 

top k left singular vectors of A 
(Uk)i* : the i-th row of Uk 

k=||Uk||F: the Frobenius norm of Uk 

Leverage score sampling: sample rows with probability proportional to the square 
of the Euclidean norms of the rows of the top k left singular vectors of A. 
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Leverage scores: tall & thin matrices 
Let A be a (full rank) n-by-d matrix with n>>d whose SVD is: 
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Leverage scores: tall & thin matrices 

(Row) Leverage scores: 
 (set k to d) 

i-th row of Uk 

The (row) leverage scores can now be used to sample rows from A to create a sketch. 

Let A be a (full rank) n-by-d matrix with n>>d whose SVD is: 
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Leverage scores: short & fat matrices 
Let A be a (full rank) d-by-n matrix with n>>d: 
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Leverage scores: short & fat matrices 

(Column) Leverage scores: 

 (set k to d) 

j-th column of VT    
(or j-th row of V) 

The (column) leverage scores can now be used to sample columns from A to create a sketch. 

Let A be a (full rank) d-by-n matrix with n>>d: 
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Leverage scores: general case 
Let A be an m-by-n matrix A and let Ak be its best rank-k approximation (as 
computed by the SVD) : 
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i-th row of Uk 

Leverage scores: general case 

(Row) Leverage scores: (Column) Leverage scores: 

j-th column of Vk
T 

The (row/column) leverage scores 
can now be used to sample rows/
columns from A. 

Let A be an m-by-n matrix A and let Ak be its best rank-k approximation (as 
computed by the SVD) : 
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Computing leverage scores 
Ø  Trivial: via the Singular Value Decomposition  

O(nd2) time for n-by-d matrices with n>d. 

O(min{m2n,mn2}) time for general m-by-n matrices. 

Ø  Non-trivial: relative error (1+ε) approximations for all leverage scores. 

Tall & thin matrices (short & fat are similar): 

Approximating leverage scores: 

1.  Pre-multiply A by – say – the subsampled Randomized 
Hadamard Transform matrix (an s-by-n matrix P). 

2.  Compute the QR decomposition PA = QR. 
3.  Estimate the lengths of the rows of AR-1 (another 

random projection is used for speed) 
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Computing leverage scores 
Ø  Trivial: via the Singular Value Decomposition  

O(nd2) time for n-by-d matrices with n>d. 

O(min{m2n,mn2}) time for general m-by-n matrices. 

Ø  Non-trivial: relative error (1+ε) approximations for all leverage scores. 

Tall & thin matrices (short & fat are similar): 

Running time: 

It suffices to set s = O(dε-2 polylog(n/ε)). 

Overall running time is O(ndε-2 polylog(n/ε)). 
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Computing leverage scores 
Ø  Trivial: via the Singular Value Decomposition  

O(nd2) time for n-by-d matrices with n>d. 

O(min{m2n,mn2}) time for general m-by-n matrices. 

Ø  Non-trivial: relative error (1+ε) approximations for all leverage scores. 

m-by-n matrices: 
Caution: 

A direct formulation of the problem is ill-posed. 
(The k and (k+1)-st singular values could be very close estimating the 
corresponding singular vectors could result in a “swap”.) 

A robust objective is to estimate the leverage scores of 
some rank k matrix X that is “close” to the best rank k 
approximation to A. 
(see Drineas et al. (2012) ICML and JMLR for details) 
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Computing leverage scores 
Ø  Trivial: via the Singular Value Decomposition  

O(nd2) time for n-by-d matrices with n>d. 

O(min{m2n,mn2}) time for general m-by-n matrices. 

Ø  Non-trivial: relative error (1+ε) approximations for all leverage scores. 

m-by-n matrices: 

Algorithm: 

Ø  Approximate the top k left (or right) singular vectors of A. 

Ø  Use the approximations to estimate the leverage scores.  
 

Overall running time is r = O(mnkε-2 polylog(n/ε)). 
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Ridge-leverage scores 
(Cohen, Musco, and Musco 2015) 

A beautiful alternative: ridge-leverage scores. Recall: 

i-th row of Uk 

(Row) Leverage scores: (Column) Leverage scores: 

j-th column of Vk
T 

The (row/column) leverage scores 
can now be used to sample rows/
columns from A. 
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Ridge-leverage scores 
(Cohen, Musco, and Musco 2015) 

A beautiful alternative: ridge-leverage scores. Recall: 

i-th row of Uk 

(Row) Leverage scores: 
We will compare and contrast the leverage scores 
of A (with respect to the rank parameter k) vs. the 
norms of the rows of A. 

This will help us introduce the ridge leverage scores 
for the rows of A. 
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Ridge-leverage scores 

Let A have rank ρ and let U be the matrix of its left singular vectors. 

Consider the matrix: 

The above matrix is actually AAT and its diagonal entries are equal to the (squares 
of the) Euclidean norms of the rows of the matrix A.  
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Ridge-leverage scores 

Now consider the following matrix (k ones and ρ-k zeros in the diagonal): 

We essentially threshold the singular values: the top k are mapped to ones and the 
remaining to zeros. 

The diagonal entries of the above matrix are equal to the (squares of the) 
Euclidean norms of the rows of the matrix Uk, a.k.a. the row leverage scores of A 
with respect to the rank parameter k.  
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Ridge-leverage scores 

Now consider the following “softer” thresholding scheme : 

If a singular value is much larger than λ  then the respective fraction is close to 

one; otherwise, it is close to 𝜆↑−1 . 
The diagonal entries of the above matrix are the ridge leverage scores of A. 

Intuitively, it is a softer thresholding than the “standard” leverage scores. 
63 
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Ridge-leverage scores 

Now consider the following “softer” thresholding scheme : 

The diagonal entries of the above matrix are the ridge leverage scores of A. 

n  The work by Cohen, Musco & Musco 2015 proves that the ridge leverage scores 

(for a specific choice of λ) have many of the good properties of leverage scores 
while being somewhat more intuitive and easier to compute and explain. 

n  Connections to ridge regression are also discussed and explored. 64 
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Ø  Approximating matrix multiplication (first lecture) 

Ø  Leverage scores and their applications (second and third lectures) 
 1. Over- (or under-) constrained least squares problems 

 2. Feature selection and the CX decomposition 

Ø  Solving systems of linear equations with Laplacian matrices (fourth lecture)   

Ø  Element-wise sampling (fourth lecture) 

  Roadmap of my lectures 
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Problem definition and motivation 

 In many applications (e.g., statistical data analysis and scientific 
computation), one has n observations of the form: 

A is an n-by-d “design matrix” (n >> d): 

In matrix-vector notation, 

Model y(t) (unknown) as a linear combination of d basis functions: 
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Least-norm approximation problems 

Recall a linear measurement model: 

In order to estimate x, solve: 
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Application: data analysis in science 

•  First application: Astronomy 

Predicting the orbit of the asteroid Ceres (in 1801!). 

 Gauss (1809) -- see also Legendre (1805) and Adrain (1808). 

 First application of “least squares optimization” and runs in 
 O(nd2) time! 

•   Data analysis: Fit parameters of a biological, chemical, economical, 
physical (astronomical), social, internet, etc. model to experimental data.  
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Norms of common interest 

Least-squares approximation: 

Chebyshev or mini-max approximation: 

Sum of absolute residuals approximation: 

Let y = b and define the residual: 
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Least-squares problems 

We are interested in over-constrained least-squares problems, n >> d. 
 (Under-constrained problems: see Tygert 2009 and Drineas et al. (2012) JMLR)   

 
Typically, there is no xopt such that Axopt = b. 

Want to find the “best” xopt such that Axopt ≈ b. 
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Projection of b on the 
subspace spanned by the 

columns of A 

Exact solution to L2 regression 

Cholesky Decomposition:  
 If A is full rank and well-conditioned,  
 decompose ATA = RTR, where R is upper triangular, and  

 solve the normal equations: RTRx = ATb. 

 
QR Decomposition:  

 Slower but numerically stable, esp. if A is rank-deficient. 
 Write A = QR, and solve Rx = QTb. 

 
Singular Value Decomposition: 

 Most expensive, but best if A is very ill-conditioned. 

 Write A = UΣVT, in which case: xopt = A+b = VΣ-1UTb. 
 

Complexity is O(nd2) , but constant factors differ. 

Pseudoinverse of A 
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Algorithm: Sampling for L2 regression 
(Drineas, Mahoney, Muthukrishnan SODA 2006,  
Drineas, Mahoney, Muthukrishnan, & Sarlos NumMath2011) 

Algorithm 

1.  Compute the row-leverage scores of A 
(pi, i=1…n) 

2.  In r i.i.d. trials pick r rows of A and the 
corresponding elements of b with 
respect to the pi. 
 (Rescale sampled rows of A and sampled 
elements of b by (1/(rpi)1/2.) 

3.  Solve the induced problem. 
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Algorithm: Sampling for least squares 
Drineas, Mahoney, Muthukrishnan SODA 2006,  
Drineas, Mahoney, Muthukrishnan, & Sarlos NumMath2011 

Algorithm 

1.  Compute the row-leverage scores of A 
(pi, i=1…n) 

2.  In r i.i.d. trials pick r rows of A and the 
corresponding elements of b with 
respect to the pi. 
 (Rescale sampled rows of A and sampled 
elements of b by (1/(rpi)1/2.) 

3.  Solve the induced problem. 
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Theorem 
If the pi are the row leverage scores of A, then, with probability at least 0.8, 

The sampling complexity (the value of r) is 
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Proof: a structural result 
Consider the over-constrained least-squares problem: 

 and the “preconditioned” problem 

 Recall: A is n-by-d with n >> d; X is r-by-n with r << n.  

Ø  Think of XA as a “sketch” of A.  

Ø  Our approach (using the leverage scores) focused on sketches of A that consist of 
(rescaled) rows of A, thus X is a sampling matrix (matrix multiplication slides). 

Ø  More general matrices X will come later. 
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Proof: a structural result 

Let UA be the n-by-d matrix of the left singular vectors of A (economy SVD). 

If X satisfies (constants are somewhat arbitrary): 

 then,  
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The second condition 

If X is a sampling and rescaling matrix and if leverage scores (row norms of UA), 
were used as sampling probabilities, both bounds are satisfied. 

 

Let’s start with the second bound: simply apply the matrix multiplication result 
using as matrix A the matrix UA  and as matrix B the vector       : 

Using Markov’s inequality and setting r = O(d/ε) satisfies the second condition with 
probability at least – say – 0.9. 

 

Remark: one subtle point is that the sampling probabilities only depend on UA 
(recall our remark here). 
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The first condition 

Then, with probability at least 1-δ: 

It follows that, for all i: 

The first bound can be proven as follows: 

UA is an orthogonal matrix:  
UA

TUA = Id 

XUA is a full-rank matrix! 
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The first condition 
Recall: with probability at least 1-δ: 

It follows that, for all i: 

Ø  Setting ε = 1/2 and 1 - δ = 0.9 implies the second condition for XUA.  

Ø  Notice that the sampling complexity is O(d ln d). 

Ø  Applying the union bound to bound the failure probability for both conditions 
concludes the proof that both conditions hold with constant probability. 
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Ø  Approximating matrix multiplication (first lecture) 

Ø  Leverage scores and their applications (second and third lectures) 
 1. Over- (or under-) constrained least squares problems 

 2. Feature selection and the CX decomposition 

Ø  Solving systems of linear equations with Laplacian matrices (fourth lecture)   

Ø  Element-wise sampling (fourth lecture) 

  Roadmap of my lectures 
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 Single Nucleotide Polymorphisms: the most common type of genetic variation in the 
genome across different individuals. 

 They are known locations at the human genome where two alternate nucleotide bases 
(alleles) are observed (out of A, C, G, T). 

SNPs 

in
di

vi
du

al
s 

… AG CT GT GG CT CC CC CC CC AG AG AG AG AG AA CT AA GG GG CC GG AG CG AC CC AA CC AA GG TT AG CT CG CG CG AT CT CT AG CT AG GG GT GA AG … 

… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CT AA GG GG CC GG AA GG AA CC AA CC AA GG TT AA TT GG GG GG TT TT CC GG TT GG GG TT GG AA … 

… GG TT TT GG TT CC CC CC CC GG AA AG AG AA AG CT AA GG GG CC AG AG CG AC CC AA CC AA GG TT AG CT CG CG CG AT CT CT AG CT AG GG GT GA AG … 

… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CC GG AA CC CC AG GG CC AC CC AA CG AA GG TT AG CT CG CG CG AT CT CT AG CT AG GT GT GA AG … 

… GG TT TT GG TT CC CC CC CC GG AA GG GG GG AA CT AA GG GG CT GG AA CC AC CG AA CC AA GG TT GG CC CG CG CG AT CT CT AG CT AG GG TT GG AA … 

… GG TT TT GG TT CC CC CG CC AG AG AG AG AG AA CT AA GG GG CT GG AG CC CC CG AA CC AA GT TT AG CT CG CG CG AT CT CT AG CT AG GG TT GG AA … 

… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA TT AA GG GG CC AG AG CG AA CC AA CG AA GG TT AA TT GG GG GG TT TT CC GG TT GG GT TT GG AA … 

 Matrices including thousands of individuals and hundreds of thousands if SNPs are available. 

  An example in human genetics 

81 



HGDP data 

•  1,033 samples 

•  7 geographic regions 
•  52 populations 

Cavalli-Sforza (2005) Nat Genet Rev 

Rosenberg et al. (2002) Science 

Li et al. (2008) Science 

The Human Genome Diversity Panel (HGDP) 
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HGDP data 

•  1,033 samples 

•  7 geographic regions 
•  52 populations 

Cavalli-Sforza (2005) Nat Genet Rev 

Rosenberg et al. (2002) Science 

Li et al. (2008) Science 

The International HapMap Consortium 
(2003, 2005, 2007) Nature 

The Human Genome Diversity Panel (HGDP) 

ASW, MKK, 
LWK, & YRI 

CEU 

TSI 
JPT, CHB, & CHD 

GIH 

MEX 

HapMap Phase 3 data 

•  1,207 samples 

•  11 populations 

HapMap Phase 3 
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HGDP data 

•  1,033 samples 

•  7 geographic regions 
•  52 populations 

Cavalli-Sforza (2005) Nat Genet Rev 

Rosenberg et al. (2002) Science 

Li et al. (2008) Science 

The International HapMap Consortium 
(2003, 2005, 2007) Nature 

We will apply SVD/PCA 
on the (joint) HGDP and 
HapMap Phase 3 data. 

 
Matrix dimensions: 

2,240 subjects (rows) 

447,143 SNPs (columns) 
 

Dense matrix:  
over one billion entries 

The Human Genome Diversity Panel (HGDP) 

ASW, MKK, 
LWK, & YRI 

CEU 

TSI 
JPT, CHB, & CHD 

GIH 

MEX 

HapMap Phase 3 data 

•  1,207 samples 

•  11 populations 

HapMap Phase 3 
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Africa 

Middle East 

South Central 
Asia 

Europe 

Oceania 

East Asia 

America 

Gujarati 
Indians 

Mexicans 

•  Top two Principal Components (PCs or eigenSNPs)  
(Lin and Altman (2005) Am J Hum Genet) 

•  Very good correlation between geography and the top two eigenSNPs. 

•  Mexican population seems out of place: we move to the top three PCs. 

Paschou, Lewis, Javed, & Drineas (2010) J Med Genet 
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Africa 
Middle East 

S C Asia & 
Gujarati Europe 

Oceania 

East Asia 

America 

Not altogether satisfactory: the principal components are linear combinations 
of all SNPs, and – of course – can not be assayed! 

Can we find actual SNPs that capture the information in the singular vectors? 

Formally: spanning the same subspace. 

Paschou, Lewis, Javed, & Drineas (2010) J Med Genet 
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Paschou, Drineas, et. al. (2014) PNAS 

•  PCA plots of genetic data from multiple populations around the Mediterranean Sea 
indicate that the Mediterranean acted as a “barrier” during the colonization of 
Europe from our species. 

•  Using PCA (and many other analyses) we proposed what is a called a maritime route 
for the colonization of Europe. 

•  Interpreting the singular vectors is, again, tricky; we are now working on identifying 
actual SNPs that capture the information in the singular vectors. 
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SVD decomposes a matrix as… 

Top k left singular vectors 

The SVD has strong 
optimality properties. 

Ø  It is easy to see that X = Uk
TA=ΣkVk

T. 

Ø  SVD has strong optimality properties. 

Ø  The columns of Uk are linear combinations of up to all columns of A. 
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The CX decomposition 
Mahoney & Drineas (2009) PNAS 

c columns of A, with c  being 
as close to k  as possible 

Carefully 
chosen X 

Goal: make (some norm) of A-CX small. 

Why? 

If A is a data matrix with rows corresponding to objects and columns to 
features, then selecting representative columns is equivalent to selecting 
representative features to capture the same structure as the top eigenvectors. 

We want c as close to k as possible! 
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CX decomposition 

Easy to prove that optimal X = C+A. 
(with respect to unitarily invariant norms; C+ is the Moore-Penrose pseudoinverse of C) 

Thus, the challenging part is to find good columns (features) of A to include in C. 

Also known as: the Column Subset Selection Problem (CSSP). 

c columns of A, with c  being 
as close to k  as possible 
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Column Subset Selection Problem (CSSP) 

 
Given an m-by-n matrix A, find k columns of A forming an m-by-k matrix C 
that minimizes the above error over all O(nk) choices for C. 
 
C+: pseudoinverse of C. 

(just in case: if C = UΣVT, then C+ = VΣ-1UT) 
 

PC = CC+ is the projector matrix on the subspace spanned by the columns of C. 
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Column Subset Selection Problem (CSSP) 

 
Given an m-by-n matrix A, find k columns of A forming an m-by-k matrix C 
that minimizes the above error over all O(nk) choices for C. 
 
Complexity of the problem? O(nkmn) trivially works; at least one variant is 
NP-hard if k grows as a function of n.  
 
(NP-hardness in Civril & Magdon-Ismail ’07) 
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Spectral norm 

 
Given an m-by-n matrix A, find k columns of A forming an m-by-k matrix C 
such that 

 
is minimized over all O(nk) possible choices for C. 
 
Remarks: 
 
1.  PCA is the projection of A on the subspace spanned by the columns of C. 
2.  More generally, any Schatten p-norm could be used.  
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A lower bound for the CSSP problem 

 
For any m-by-k matrix C consisting of at most k columns of A 

Remarks: 
 
1.  This is also true if we replace the spectral norm by the Frobenius norm 

or any unitarily invariant norm. 

2.  This is a – potentially – weak lower bound. 

Ak 
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TA session III 

TA session III will focus on leverage scores and randomized solvers for least-
squares problem and is posted at 

http://www.drineas.org/RandNLA-PCMI-2016/ 
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Ø  Approximating matrix multiplication (first lecture) 

Ø  Leverage scores and their applications (second and third lectures) 
 1. Over- (or under-) constrained least squares problems 

 2. Feature selection and the CX decomposition (cont’d) 

Ø  Solving systems of linear equations with Laplacian matrices (fourth lecture)   

Ø  Element-wise sampling (fourth lecture) 

  Roadmap of my lectures 
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Back to the CX decomposition 

  We would like to get theorems of the following form: 
 

 Given an m-by-n matrix A, there exists an efficient  algorithm that picks 
a small  number of columns of A such that with reasonable  probability: 

 

 

 

 Let’s start with a simpler, weaker result, connecting the spectral  norm 
of A-CX to matrix multiplication. 
  

 (A similar result can be derived for the Frobenius norm, but takes more effort to prove; see 
Drineas, Kannan, & Mahoney (2006) SICOMP) 

low-degree polynomial 
in m, n, and k 

Close to k/ε constant, high, almost 
surely, etc. 
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Title: 
C:\Petros\Image Processing\baboondet.eps 
Creator: 
MATLAB, The Mathworks, Inc. 
Preview: 
This EPS picture was not saved 
with a preview included in it. 
Comment: 
This EPS picture will print to a 
PostScript printer, but not to 
other types of printers. 

Original matrix Sampling (c = 140 columns) 

1.  Sample c (=140) columns of the original matrix A and rescale them 
appropriately to form a 512-by-c matrix C. 

2.  Show that A-CX is “small”. 

(C+ is the pseudoinverse of C and X= C+A) 

Approximating singular vectors 
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Title: 
C:\Petros\Image Processing\baboondet.eps 
Creator: 
MATLAB, The Mathworks, Inc. 
Preview: 
This EPS picture was not saved 
with a preview included in it. 
Comment: 
This EPS picture will print to a 
PostScript printer, but not to 
other types of printers. 

Original matrix Sampling (c = 140 columns) 

Approximating singular vectors 

1.  Sample c (=140) columns of the original matrix A and rescale them 
appropriately to form a 512-by-c matrix C. 

2.  Show that A-CX is “small”. 

(C+ is the pseudoinverse of C and X= C+A) 99 



Approximating singular vectors (cont’d ) 
Title: 
C:\Petros\Image Processing\baboondet.eps 
Creator: 
MATLAB, The Mathworks, Inc. 
Preview: 
This EPS picture was not saved 
with a preview included in it. 
Comment: 
This EPS picture will print to a 
PostScript printer, but not to 
other types of printers. 

A 

The fact that AAT – CCT is small will imply that A-CX is small as well. 

CX 
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Proof (spectral norm) 

Using the triangle inequality and properties of norms, 

projector matrices 

We used the fact that (I-CC+)CCT is equal to zero. 
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Proof (spectral norm), cont’d 

We can use our matrix multiplication result: 
(For simplicity, we will just upper bound the spectral norm by the Frobenius norm.) 

Assume that our sampling is done in c  i.i.d. trials and the sampling probabilities are: 
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Is this a good bound? 

Problem 1: If c = n we do not get zero error. 

That’s because of sampling with replacement.  
(We know how to analyze uniform sampling without replacement, but we have no bounds on 
non-uniform sampling without replacement.) 

Problem 2: If A had rank exactly k, we would like a column selection procedure 
that drives the error down to zero when c = k. 
This can be done deterministically simply by selecting k  linearly independent columns. 

Problem 3: If A had numerical rank k, we would like a bound that depends on 
the norm of A-Ak and not on the norm of A. 
Such deterministic bounds exist when c = k  and depend on (k (n – k ))1/2 ||A-Ak||2 
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A relative error algorithm 

Sampling algorithm 
•  Let pj be the column leverage scores of A, for j=1…n. 

•  In c i.i.d. trials pick columns of A, where in each trial the j-th column of A is picked with 
probability pj. 

    (c is a function of ε and k) 

•  Let C be the matrix consisting of the chosen columns. 

Input:  m-by-n matrix A, target rank k 
  0 < ε < .5, the desired accuracy 

Output:  C, the matrix consisting of the selected columns 

104 



A relative error algorithm 

Sampling algorithm 
•  Let pj be the column leverage scores of A, for j=1…n. 

•  In c i.i.d. trials pick columns of A, where in each trial the j-th column of A is picked with 
probability pj. 

    (c is a function of ε and k) 

•  Let C be the matrix consisting of the chosen columns. 

Input:  m-by-n matrix A, target rank k 
  0 < ε < .5, the desired accuracy 

Output:  C, the matrix consisting of the selected columns 

 
Note: there is no rescaling of the columns of C in this algorithm; however, since our error 
matrix is A-CX = A-CC+A, rescaling the columns of C (as we did in our matrix multiplication 
algorithms), does not change A-CX = A-CC+A. 
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i-th row of Uk 

Remember the leverage scores? 

(Row) Leverage scores: (Column) Leverage scores: 

j-th column of Vk
T 

The (row/column) leverage scores 
can now be used to sample rows/
columns from A. 

Let A be an m-by-n matrix A and let Ak be its best rank-k approximation (as 
computed by the SVD) : 
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Relative-error Frobenius norm bounds 

 Given an m-by-n matrix A, let C be formed as described in the previous 
algorithm. Then, with probability at least 0.9, 

The sampling complexity (the value of c) is 

The running time of the algorithm is dominated by the computation of the (column) 
leverage scores.  

107 



- 

Burunge 

Mbuti 
 

Mende 

Africa Europe 

Spanish 

Japanese 

E Asia 

South Altaians 
- 

America 

Quechua 

Nahua 

274 individuals, 9 populations, ~10,000 SNPs  
Shriver et al. (2005) Hum Genom 

Mala 

Worldwide data 
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Ø  PCA projection on the top three left singular vectors.  
Ø  Populations are clearly separated, but recall that: 

  The principal components are linear combinations of all SNPs. 

  Hard to interpret or genotype. 

Ø  Can we find actual SNPs that capture the information in the left singular vectors? 
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SNPs by chromosomal order 

Le
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ge

 
sc

or
es

 

* top 30 SNPs 

Africa 

Europe 

Asia 

America 

BACK TO POPULATION GENETICS DATA 
Selecting PCA SNPs for individual assignment to four continents  

(Africa, Europe, Asia, America) 

Paschou et al (2007; 2008) PLoS Genetics 
Paschou et al (2010) J Med Genet 

Drineas et al (2010) PLoS One 



SNPs by chromosomal order 

Africa 

Europe 

Asia 

America 

Afr 

Eur 

Asi 

Ame 

Selecting PCA SNPs for individual assignment to four continents  
(Africa, Europe, Asia, America) 

Paschou et al (2007; 2008) PLoS Genetics 
Paschou et al (2010) J Med Genet 

Drineas et al (2010) PLoS One 
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* top 30 SNPs 



 Leverage Scores: concerns 

Ø  Highly correlated SNPs (features) get similar scores.  
Ø  As a result, correlated features could be selected multiple times, thus introducing 

redundancy in the selected features. 

Ø  How do we remove this redundancy?  

 

Ø  Stability of the selected features 
Ø  How sensitive are the leverage scores on perturbations of the input data?  

Ø  What happens if we randomly remove a few samples (objects)? 

Ø  Some empirical evidence. 

Ø  Some recent theory by Holodnak, Wentworth, & Ipsen (2015) SIMAX. 

Ø  Some SNPs (features) are only relevant for a subset of the samples (objects).  
Ø  It would be nice to have leverage scores at a finer resolution than columns/rows. 

Ø  A notion of element-wise leverage scores? 
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Is running time an issue? 
•  Computing large SVDs: computational time 

•  In commodity hardware (e.g., a 4GB RAM, dual-core laptop), using MatLab 7.0 (R14), the 
computation of the SVD of the dense 2,240-by-447,143 matrix A takes about 12 minutes. 

•  Computing this SVD is not a one-liner, since we can not load the whole matrix in RAM (runs 
out-of-memory in MatLab); we compute the eigendecomposition of AAT. 

•  In a similar experiment, we computed 1,200 SVDs on matrices of dimensions (approx.) 
1,200-by-450,000 (roughly speaking a full leave-one-out cross-validation experiment). 
(Drineas, Lewis, & Paschou (2010) PLoS ONE) 

•  To compare mtDNA derived from 37 ancient Minoan bones to 120 extant and ancient 
populations we ran (multiple) SVDs on (approx.) 14,000-by-14,000 matrices. 
(Hughey, Paschou, Drineas, et al. (2013) Nat Comm; used the random projection ideas that will come later) 
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Is running time an issue? 
•  Computing large SVDs: computational time 

•  In commodity hardware (e.g., a 4GB RAM, dual-core laptop), using MatLab 7.0 (R14), the 
computation of the SVD of the dense 2,240-by-447,143 matrix A takes about 12 minutes. 

•  Computing this SVD is not a one-liner, since we can not load the whole matrix in RAM (runs 
out-of-memory in MatLab); we compute the eigendecomposition of AAT. 

•  In a similar experiment, we computed 1,200 SVDs on matrices of dimensions (approx.) 
1,200-by-450,000 (roughly speaking a full leave-one-out cross-validation experiment). 
(Drineas, Lewis, & Paschou (2010) PLoS ONE) 

•  To compare mtDNA derived from 37 ancient Minoan bones to 120 extant and ancient 
populations we ran (multiple) SVDs on (approx.) 14,000-by-14,000 matrices. 
(Hughey, Paschou, Drineas, et al. (2013) Nat Comm; used the random projection ideas that will come later) 

•  Running time is always a concern, but 

•  machine-precision accuracy is not necessary! 
•  Data are noisy. 

•  Approximate singular vectors work well in our setting. 
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Towards a relative error bound… 

Structural result (deterministic): 

This holds for any n-by-c  matrix S  such that C = AS  as long as the k-by-c matrix 
Vk

TS has full rank (equal to k). 
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Towards a relative error bound… 

Structural result (deterministic): 

•  The proof of the structural result critically uses the fact that with X = C+A is the 
argmin for any unitarily invariant norm of the error A-CX. 

•  Variants of this structural result have appeared in various papers. 
( e.g., (i) Drineas, Mahoney, Muthukrishnan (2008) SIMAX, (ii) Boutsidis, Drineas, Mahoney SODA 2011, (iii) Halko, 
Martinsson, Tropp (2011) SIREV, (iv) Boutsidis, Drineas, Magdon-Ismail FOCS 2011, etc.) 

This holds for any n-by-c  matrix S  such that C = AS  as long as the k-by-c matrix 
Vk

TS has full rank (equal to k). 
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Structural result (deterministic): 

Let S be a sampling and rescaling matrix, where the sampling probabilities are the 
leverage scores: our matrix multiplication results (and the fact that the square of the Frobenius 
norm of Vk if equal to k) guarantee that, for our choice of c (with constant probability): 

The rank of Vk
TS 

This holds for any n-by-c  matrix S  such that C = AS  as long as the k-by-c matrix 
Vk

TS has full rank (equal to k). 
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From matrix perturbation theory, if 

it follows that all singular values (σi ) of Vk
TS satisfy: 

The rank of Vk
TS (cont’d) 

By choosing ε small enough, we can guarantee that Vk
TS has full rank (with constant probability). 
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Bounding the second term 

Structural result (deterministic): 

Using strong submultiplicativity for the second term: 

This holds for any n-by-c  matrix S  such that C = AS  as long as the k-by-c matrix 
Vk

TS has full rank (equal to k). 
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Bounding the second term (cont’d) 

To conclude: 

(i) We already have a bound for all singular values of Vk
TS (go back two slides). 

(ii) It is easy to prove that, using our sampling and rescaling, 

Collecting, we get a (2+ε) constant-factor approximation.  
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Bounding the second term (cont’d) 

To conclude: 

(i) We already have a bound for all singular values of Vk
TS (go back two slides). 

(ii) It is easy to prove that, using our sampling and rescaling, 

Collecting, we get a (2+ε) constant-factor approximation. 

A more careful (albeit, longer) analysis can improve the result to a (1+ε) relative-
error approximation.  
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Using a dense matrix S 

Our proof would also work if instead of the sampling matrix S, we used, for 
example, the dense random sign matrix S: 

The intuition is clear: the most critical part of the proof is based on approximate 
matrix multiplication to bound the singular values of Vk

TS.  

This also works when S is a dense random projection matrix. 
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Using a dense matrix S 

Notes:  

Negative: C=AS does not consist of columns of A (interpretability is lost). 

Positive: It can be shown that the span of C=AS contains “relative-error” approximations 
to the top k left singular vectors of A, which can be computed in O(nc2) time. 

Thus, we can compute approximations to the top k left singular vectors of A in O(mnc
+nc2) time, already faster than the naïve O(min{mn2,m2n}) time of the full SVD. 
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Using a dense matrix S 

Notes:  

Negative: C=AS does not consist of columns of A (interpretability is lost). 

Positive: It can be shown that the span of C=AS contains “relative-error” approximations 
to the top k left singular vectors of A, which can be computed in O(nc2) time. 

Thus, we can compute approximations to the top k left singular vectors of A in O(mnc
+nc2) time, already faster than the naïve O(min{mn2,m2n}) time of the full SVD. 

Even better: Using very fast random projections (the Fast Hadamard Transform, or the 
Clarkson-Woodruff input sparsity time random projection), we can reduce the (first term 
of the) running time further. 

Implementations are simple and work very well in practice! 
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Better approaches for PCA 
(more details and related topics in Gunnar Martinsson’s mini-course) 

To get highly accurate approximations for singular vectors, use iterative methods. 

 

1. Block subspace iteration 
Given an m-by-n matrix A and a positive integer q, compute 

 

 

where X is an n-by-p (with p ≈ k) random matrix, e.g., a random Gaussian matrix.  

Compute the best rank-k approximation to A within the subspace spanned by the columns 

of K (much easier to do than it sounds…): denote it by 𝐴 ↓𝑘 . 
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Better approaches for PCA 
To get highly accurate approximations for singular vectors, use iterative methods. 

 

1. Block subspace iteration 
Given an m-by-n matrix A and a positive integer q, compute 

 

 

where X is an n-by-p (with p ≈ k) random matrix, e.g., a random Gaussian matrix.  

Compute the best rank-k approximation to A within the subspace spanned by the columns 
of K (much easier to do than it sounds…): denote it by .  
n  Strong bounds can be proven for the Frobenius and spectral norms of the matrix  . 

n  We will skip details for block subspace iteration and move on to Block Lanczos methods. 
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Better approaches for PCA 
2. Block Lanczos methods 
Given an m-by-n matrix A (of rank ρ) and a positive integer q, compute 

 
 

where X is an n-by-p (with p ≈ k) random matrix, e.g., a random Gaussian matrix.  

Compute the best rank-k approximation to A within the subspace spanned by the columns 

of K (much easier to do than it sounds…): denote it by 𝐴 ↓𝑘 .  
n  Assume a gap g(>0) between the k and (k+1)-st singular values (can be relaxed): 
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Better approaches for PCA 
2. Block Lanczos methods 
Given an m-by-n matrix A (of rank ρ) and a positive integer q, compute 

 
 

where X is an n-by-p (with p ≈ k) random matrix, e.g., a random Gaussian matrix.  

Compute the best rank-k approximation to A within the subspace spanned by the columns 

of K (much easier to do than it sounds…): denote it by 𝐴 ↓𝑘 .  
n  Assume a gap g(>0) between the k and (k+1)-st singular values (can be relaxed): 

 

n  Also assume (γ1 and γ2 are constants): 

and 

Bottom ρ-k singular 
vectors of A 
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Better approaches for PCA 
(Musco & Musco NIPS 2015, Drineas, Ipsen, Iyer, and Magdon-Ismail 2016) 

2. Block Lanczos methods 
Given an m-by-n matrix A (of rank ρ) and a positive integer q, compute 

 
 

where X is an n-by-p (with p ≈ k) random matrix, e.g., a random Gaussian matrix.  

Compute the best rank-k approximation to A within the subspace spanned by the columns 

of K (much easier to do than it sounds…): denote it by 𝐴 ↓𝑘 . Then, 
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Problem   

How many columns do we need to include in the matrix C in order to get relative-error 
approximations ? 

 
Recall: with O( (k/ε2) log (k/ε 2) ) columns, we get (subject to a failure probability) 

 

 

Deshpande & Rademacher (FOCS ’10): with exactly k columns, we get 

 

 
What about the range between k and O(k log k)? 

Selecting fewer columns 
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Selecting fewer columns (cont’d) 
(Boutsidis, Drineas, & Magdon-Ismail, FOCS 2011) 

Question: 

What about the range between k  and O(k logk)?  

 

Answer: 

A relative-error bound is possible by selecting c=2k/ε+o(1) columns! 
 

Technical breakthrough;  

A combination of sampling strategies with a novel approach on column selection, 
inspired by the work of Batson, Spielman, & Srivastava (STOC ’09) on graph sparsifiers.  

•    The running time is O((mnk+nk3)ε-1). 

•    Simplicity is gone… 
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Towards such a result 
First, let the top-k right singular vectors of A be Vk. 

A structural result (deterministic):  

Again, this holds for any n-by-c matrix S assuming that the matrix Vk
TS has full 

rank (equal to k). 
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Towards such a result (cont’d) 

Again, this holds for any n-by-c matrix S assuming that the matrix Vk
TS has full 

rank (equal to k) 

We would like to get a sampling and rescaling matrix S such that, simultaneously, 

(for some small, fixed constant c0; actually c0 = 1 in our final result). 

Setting c = O(k/ε), we get a (2+ε) constant factor approximation (for c0 = 1).  

and 

First, let the top-k right singular vectors of A be Vk. 

A structural result (deterministic):  
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Towards such a result (cont’d) 

We would like to get a sampling and rescaling matrix S such that, simultaneously, 

(for some small, fixed constant c0).  

and 

Lamppost: the work of Batson, Spielman, & Srivastava STOC 2009 (graph sparsification) 
 
[We had to generalize their work to use a new barrier function which controls the Frobenius and 
spectral norm of two matrices simultaneously. We then used a second phase of adaptive sampling to 
reduce the (2+ε) approximation to (1+ε).] 
 
We will omit these details, and instead state the Batson, Spielman, & Srivastava STOC 
2009 result as approximate matrix multiplication. 
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The Batson-Spielman-Srivastava result 

Let Vk be an n-by-k matrix such that Vk
TVk = Ik, with k < n, and let c be a sampling 

parameter. 

There exists a deterministic algorithm which runs in O(cnk2) time and constructs 
an n-by-c sampling and rescaling matrix S such that for c = k/ε2. 
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The Batson-Spielman-Srivastava result 

•  It is essentially a matrix multiplication result! 
•  Expensive to compute, but very accurate and deterministic. 
•  Works for small values of the sampling parameter c. 
•  The rescaling in S is critical and non-trivial. 
•  The algorithm is basically an iterative, greedy approach that uses two potential 

functions to guarantee that the singular values of Vk
TS stay “away” from an 

upper and lower barrier. 
•  The algorithm selects any column that “respects’’ the two potential functions: 

at any iteration it does a linear search to find such columns. 
 

Let Vk be an n-by-k matrix such that Vk
TVk = Ik, with k < n, and let c be a sampling 

parameter. 

There exists a deterministic algorithm which runs in O(cnk2) time and constructs 
an n-by-c sampling and rescaling matrix S such that for c = k/ε2.   
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Lower bounds and alternative approaches 
Deshpande & Vempala, RANDOM 2006 

A relative-error approximation necessitates at least k/ε columns. 

Guruswami & Sinop, SODA 2012  
Alternative approaches, based on volume sampling, guarantee 

  (c+1)/(c+1-k) relative error bounds. 

This bound is asymptotically optimal (up to lower order terms).  

The proposed deterministic algorithm runs in O(cnm3 log m) time, while the 
randomized algorithm runs in O(cnm2) time and achieves the bound in expectation. 

Guruswami & Sinop, FOCS 2011 

Applications of column-based reconstruction in Quadratic Integer Programming. 
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Adaptive sampling 

Adaptive sampling: pick columns in rounds. 

Ø  In the first round, pick c columns of A using our prototypical column sampling 
algorithm with the simple (Euclidean-norm based) probabilities: 

 
 

Ø  At the t-th round, compute the residual matrix E = A – CC+A, where C is now the 
matrix containing all the columns that have been selected in the previous t-1 
rounds. 

Ø  Compute simple (Euclidean-norm based) column sampling probabilities on E and 
sample columns of A according to these probabilities: 

 

138 



Adaptive sampling 
Nice, simple, intuitive idea: first appeared in Deshpande et al. (2006) ToC. 

One can prove the following error bound: after t rounds, with probability at least 
1-tδ, the resulting error is: 

 

where, in each round, 

 

 
columns of A are sampled.  

Simple, inductive proof from Mahoney and Drineas (2007) LAA, using the 
randomized matrix multiplication bounds. 
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Adaptive sampling 

where, in each round, 

 

 
columns of A are sampled.  

In Paul, Magdon-Ismail, and Drineas NIPS 2015 we  extended the above result to 
leverage-score sampling (a new idea was necessary there): the error after t 
rounds depends on A-Atk

  instead of A-Ak
 ! 

Nice, simple, intuitive idea: first appeared in Deshpande et al. (2006) ToC. 

One can prove the following error bound: after t rounds, with probability at least 
1-tδ, the resulting error is: 
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Volume sampling 
Fundamental idea: Sample a set of columns with probability proportional to the 
volume that they span! 

Let S be a subset of k columns of A and let Δ(S) be the volume of the simplex 
formed by these columns and the origin. Then, volume sampling picks a set S of 
columns with probability proportional to: 

 

  

If one could sample a set of k columns of A to form an m-by-k matrix C with 
respect to the above probabilities, then, in expectation, 

 

141 



Volume sampling 

The above bound could be combined with O(log k) rounds of adaptive sampling (with 
slightly different number of columns selected in each round to minimize the overall 
number of columns) to achieve a relative-error guarantee. 

Fundamental idea: Sample a set of columns with probability proportional to the 
volume that they span! 

Let S be a subset of k columns of A and let Δ(S) be the volume of the simplex 
formed by these columns and the origin. Then, volume sampling picks a set S of 
columns with probability proportional to: 

 

  

If one could sample a set of k columns of A to form an m-by-k matrix C with 
respect to the above probabilities, then, in expectation, 
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Volume sampling 

BUT: computing the sampling probabilities PS is not an easy task…they must be 
approximated! 

Fundamental idea: Sample a set of columns with probability proportional to the 
volume that they span! 

Let S be a subset of k columns of A and let Δ(S) be the volume of the simplex 
formed by these columns and the origin. Then, volume sampling picks a set S of 
columns with probability proportional to: 

 

  

If one could sample a set of k columns of A to form an m-by-k matrix C with 
respect to the above probabilities, then, in expectation, 

 

143 



Volume sampling 
Let S be a subset of k columns of A and let Δ(S) be the volume of the simplex 
formed by these columns and the origin. Then, volume sampling picks a set S of 
columns with probability proportional to: 

 

  

Interestingly, adaptive sampling can be used to approximate the volume sampling 
probabilities! 

Roughly speaking, a k-round adaptive sampling algorithm where in each round one 

column of A is picked will pick a subset of columns S with probability 𝑃 ↓𝑆  that 
satisfies: 
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Let S be a subset of k columns of A and let Δ(S) be the volume of the simplex 
formed by these columns and the origin. Then, volume sampling picks a set S of 
columns with probability proportional to: 

 

  

Interestingly, adaptive sampling can be used to approximate the volume sampling 
probabilities! 

Roughly speaking, a k-round adaptive sampling algorithm where in each round one 

column of A is picked will pick a subset of columns S with probability 𝑃 ↓𝑆  that 
satisfies: 

 

Volume sampling 

Using adaptive sampling to simulate volume sampling returns a set S of k columns 
of A to form an m-by-k matrix C such that, in expectation, 
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Volume sampling 

Using adaptive sampling to simulate volume sampling returns a set S of k 
columns of A to form an m-by-k matrix C such that, in expectation, 

Combining with O(k log k) rounds of adaptive sampling reduces the above error 
to relative error by sampling 

columns. 
 
For more developments on volume sampling (including faster algorithms and 
relative error accuracy guarantees by selecting fewer columns) see Deshpande 
& Rademacher FOCS 2010 and Guruswami & Sinop SODA 2012. 
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Creating matrix sketches 
Ø  Sampling based 

Ø  Adaptive sampling 

Ø  Volume sampling (work by Deshpande, Guruswami, Rademacher, Sinop, Vempala, etc.) 
Ø  Element-wise sampling 

Ø  Sample elements with probabilities that depend on the absolute value (squared or not) of the matrix entries 
(work by Achlioptas, Drineas, McSherry, Zouzias, etc.) 

Ø  Sample elements with respect to an element-wise notion of leverage scores 
Ø  Deterministic/streaming sketches 

Ø  Select columns/rows deterministically (work by Spielman, Srivastava, etc.) 
Ø  From item frequencies to matrix sketching (work by Liberty, Woodruff, etc.) 

Ø  Random projections 

Ø  (Slow) Pre or post-multiply by Gaussian random matrices, random sign matrices, etc. 
(work by Drineas, Magen, Zouzias, etc.) 

Ø  (Faster) Pre or post-multiply by the sub-sampled Hadamard Transform 
(work by Drineas, Sarlos, Mahoney, Muthukrishnan, etc.) 

Ø  (Sparsity) Pre- or post-multiply by ultra-sparse matrices  

(work by Clarkson, Woodruff, Mahoney, Meng, Nelson, etc.)  



TA session IV 

TA session IV will focus on structural inequalities and the CX decomposition and is 
posted at http://www.drineas.org/RandNLA-PCMI-2016/ 
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Ø  Approximating matrix multiplication (first lecture) 

Ø  Leverage scores and their applications (second and third lectures) 
 1. Over- (or under-) constrained least squares problems 

 2. Feature selection and the CX decomposition 

Ø  Solving systems of linear equations with Laplacian matrices (fourth lecture)   

Ø  Element-wise sampling (fourth lecture) 

  Roadmap of my lectures 
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Leverage scores & Laplacians 

Consider a weighted (positive weights only!) undirected graph G and let L be the 
Laplacian matrix of G. 

Assuming n vertices and m > n edges, L is an n-by-n matrix, defined as follows: 
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Leverage scores & Laplacians 

Diagonal matrix 
of edge weights 

Edge-incidence matrix 
 
(each row has two non-zero 
entries and corresponds to 
an edge; pick arbitrary 
orientation and use +1 and 
-1 to denote the “head” and 
“tail” node of the edge). 

Clearly, L = (BTW1/2)(W1/2B)= (BTW1/2)(BTW1/2)T. 

Consider a weighted (positive weights only!) undirected graph G and let L be the 
Laplacian matrix of G. 

Assuming n vertices and m > n edges, L is an n-by-n matrix, defined as follows: 

0 

0 
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Effective resistances:  
 
Let G denote an electrical network, in which each edge e corresponds to a resistor of 
resistance 1/we (the edge weight). 
 
The effective resistance Re between two vertices is equal to the potential difference 
induced between the two vertices when a unit of current is injected at one vertex and 
extracted at the other vertex. 

Leverage scores & effective resistances 
(Spielman & Srivastava STOC 2008) 
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Leverage scores & effective resistances 
(Spielman & Srivastava STOC 2008) 

Formally, the effective resistances are the diagonal entries of the m-by-m matrix:  

R = BL+BT= B(BTWB)+BT 

Effective resistances:  
 
Let G denote an electrical network, in which each edge e corresponds to a resistor of 
resistance 1/we (the edge weight). 
 
The effective resistance Re between two vertices is equal to the potential difference 
induced between the two vertices when a unit of current is injected at one vertex and 
extracted at the other vertex. 
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Leverage scores & effective resistances 
(Drineas & Mahoney ArXiv 2010) 

Diagonal matrix 
of edge weights 

Edge-incidence matrix 

Lemma: The (row) leverage scores of the m-by-n matrix W1/2B are equal (up to 
rescaling) to the effective resistances of the edges of G. 
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Lemma: The (row) leverage scores of the m-by-n matrix W1/2B are equal (up to 
rescaling) to the effective resistances of the edges of G. 

Diagonal matrix 
of edge weights 

Edge-incidence matrix 

GRAPH SPARSIFICATION 

Ø  Sample r edges to sparsify our graph G with respect to the row leverage scores of 
W1/2B (equivalently, the effective resistances of the edges of G). 

Ø  This process sparsifies the Laplacian L to construct a sparser Laplacian. 
  

Leverage scores & effective resistances 
(Drineas & Mahoney ArXiv 2010) 
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Then, with probability at least 2/3: 

Let 

Leverage scores & effective resistances 
(Drineas & Mahoney ArXiv 2010) 

Notation: 
xTLx=||x||L: energy norm 

(as in the Spielman & Teng work) 

Theorem: Let   𝐿    be the sparsified Laplacian that emerges by sampling r edges of G 
with respect to the row leverage scores of the m-by-n matrix W1/2B.  

Consider the following two least-squares problems (for any vector b): 
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Then, with probability at least 2/3: 

Let 

The proof is relatively simple: we write down the SVD-based closed-form formulas 
for the xopt and 𝑥 opt and bound their energy norm difference directly; we need to use 
the fact that sampling edges amounts to sampling rows of B.  

Leverage scores & effective resistances 
(Drineas & Mahoney ArXiv 2010) 

Theorem: Let   𝐿    be the sparsified Laplacian that emerges by sampling r edges of G 
with respect to the row leverage scores of the m-by-n matrix W1/2B.  

Consider the following two least-squares problems (for any vector b): 
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Then, with probability at least 2/3: 

Let 

Computational savings depend on (i) efficiently computing leverage scores/effective 
resistances, and (ii) efficiently solving the “sparse” problem.  

Leverage scores & effective resistances 
(Drineas & Mahoney ArXiv 2010) 

Theorem: Let   𝐿    be the sparsified Laplacian that emerges by sampling r edges of G 
with respect to the row leverage scores of the m-by-n matrix W1/2B.  

Consider the following two least-squares problems (for any vector b): 
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Running time issues 
(Spectral graph theory will also be discussed in Mauro Maggioni’s mini-course.) 

Approximating effective resistances (Spielman & Srivastava STOC 2008) 
They can be approximated using the Laplacian solver of Spielman and Teng.  

 

Breakthrough by Koutis, Miller, & Peng (FOCS 2010, FOCS 2011):  

Low-stretch spanning trees provide a means to approximate effective resistances!  

This observation (and a new, improved algorithm to approximate low-stretch spanning trees) led 
to almost optimal algorithms for solving Laplacian systems of linear equations. 
 
Are leverage scores a viable alternative to approximate effective resistances?  

Not yet!  Our approximation algorithms are not good enough for W1/2B, which is very sparse.  

(2m non-zero entries).   

We must take advantage of the sparsity and approximate the leverage scores/effective 
resistances in O(m polylog(m)) time.  

159 



Running time issues 

Approximating effective resistances (Spielman & Srivastava STOC 2008) 
They can be approximated using the Laplacian solver of Spielman and Teng.  

 

Breakthrough by Koutis, Miller, & Peng (FOCS 2010, FOCS 2011):  

Low-stretch spanning trees provide a means to approximate effective resistances!  

This observation (and a new, improved algorithm to approximate low-stretch spanning trees) led 
to almost optimal algorithms for solving Laplacian systems of linear equations. 
 
Are leverage scores a viable alternative to approximate effective resistances?  

Not yet!  Our approximation algorithms are not good enough for W1/2B, which is very sparse.  

(2m non-zero entries).   

We must take advantage of the sparsity and approximate the leverage scores/effective 
resistances in O(m polylog(m)) time.  
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Ø  Approximating matrix multiplication (first lecture) 

Ø  Leverage scores and their applications (second and third lectures) 
 1. Over- (or under-) constrained least squares problems 

 2. Feature selection and the CX decomposition 

Ø  Solving systems of linear equations with Laplacian matrices (fourth lecture)   

Ø  Element-wise sampling (fourth lecture) 

  Roadmap of my lectures 

161 



     RandNLA: from row/column sampling 
Sampling rows (or columns) from a matrix 

Input: m-by-n matrix A, sampling parameter r 

Output: r-by-n matrix R, consisting of r rows of A 
•  Let pi for i=1…m be sampling probabilities summing up to 1; 

•  In r i.i.d. trials (with replacement) pick r rows of A; 
(In each trial the i-th row of A is picked with probability pi.) 

•  Let R be the matrix consisting of the rows; 
(We rescale the rows of A prior to including them in R by 1/(rpi)1/2.) 
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… to element-wise sampling 
Sampling algorithm 

Input: m-by-n matrix A, sampling parameter s 

Output: sparse m-by-n matrix SΩ(A) consisting of s elements of A 
•  Let pij (for all (i,j) in {1…m}x{1…n}) be sampling probabilities summing up to 1; 

•  In s i.i.d. trials (with replacement) pick s elements of A; 
(In each trial the (i,j)-th element of A is picked with probability pij) 

•  Let SΩ(A) be the matrix consisting of the selected elements, rescaled; 
(Ω = {(it,jt), t=1…s} is the set of sampled pairs of indices) 
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Element-wise sampling 

is A 

Sampling algorithm 

Input: m-by-n matrix A, sampling parameter s 

Output: sparse m-by-n matrix SΩ(A) consisting of s elements of A 
•  Let pij (for all (i,j) in {1…m}x{1…n}) be sampling probabilities summing up to 1; 

•  In s i.i.d. trials (with replacement) pick s elements of A; 
(In each trial the (i,j)-th element of A is picked with probability pij) 

•  Let SΩ(A) be the matrix consisting of the selected elements, rescaled; 
(Ω = {(it,jt), t=1…s} is the set of sampled pairs of indices) 
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Element-wise sampling 
Sampling algorithm 

Input: m-by-n matrix A, sampling parameter s 

Output: sparse m-by-n matrix SΩ(A) consisting of s elements of A 
•  Let pij (for all (i,j) in {1…m}x{1…n}) be sampling probabilities summing up to 1; 

•  In s i.i.d. trials (with replacement) pick s elements of A; 
(In each trial the (i,j)-th element of A is picked with probability pij) 

•  Let SΩ(A) be the matrix consisting of the selected elements, rescaled; 
(Ω = {(it,jt), t=1…s} is the set of sampled pairs of indices) 

is SΩ(A) 
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Motivation 

A is an m-by-n data matrix, representing m objects with respect to n features. 
 
Succinct Representation of Data Matrices 
 
Sparsify the input matrix and work with the sparse “sketch” in downstream data analysis 
applications (e.g., clustering and/or classification tasks). 
 
Potential advantages of a sparse sketch: (i) faster computation, (ii) less communication 
across different processors, and (iii) regularization of the input problem. 
 
Exploratory Data Analysis 
 
Goal: identify object-feature combinations that exert disproportionate influence on the 
matrix based on a notion of element-wise leverage scores.  
Such entries of A could be outliers or really important object-feature combinations. 
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•  Achlioptas and McSherry STOC 2001 (JACM 2007) introduced element-wise sampling and 

presented additive-error bounds, similar to the work on row/column sampling with respect 
to row/column Euclidean norms. 

•  Matrix completion: introduced by Candes and Recht in 2008. Massive amount of follow-up 
work, guarantees exact reconstruction of a matrix from a uniform (!) sample of entries, 
under (very) strong assumptions on incoherence (in our parlance, the leverage scores). 

•  Current state-of-the-art in matrix completion (Chen et al. ICML 2014): exact 
reconstruction (zero relative error) for arbitrary low-rank matrices using element-wise 
leverage scores. 

•  Even more recent results exist; will be discussed later… 

•  Open (?) problem: relative error guarantees for arbitrary matrices. 

Element-wise sampling: overview 
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Element-wise sampling: additive error 

Recall that SΩ(A) is a matrix consisting of the (rescaled) sampled entries of A. 

 
Let the sampling probabilities pij  be (roughly): 

Let the number of sampled entries s be at least: 

Then, with high probability (typically at least 1-(m+n)-1): 
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Let the sampling probabilities pij  be (roughly): 

Element-wise sampling: additive error 

Let the number of sampled entries s be at least: 

Then, with high probability (typically at least 1-(m+n)-1): 

Let (SΩ(A))k be the best rank-k approximation to SΩ(A); then, we can prove that: 
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Let the sampling probabilities pij  be (roughly): 

Element-wise sampling: additive error 

Let the number of sampled entries s be at least: 

Then, with high probability (typically at least 1-(m+n)-1): 

Let (SΩ(A))k be the best rank-k approximation to SΩ(A); then, we can prove that: 

We need to worry about 
small entries; rescaling 
them causes trouble. 
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Proving the last inequality 

Let SΩ(A) be denoted by 𝐴  for notational simplicity. 

Sparsification 
error  

Ideal error 

171 

This result actually holds for any two matrices A and 𝐴  and allows us to 
approximate the best rank-k approximation to A by the best rank-k approximation 

to 𝐴 . 
 
Very simple proof.  



Achlioptas & McSherry STOC 2001, JACM 2007 

Dealing with small entries: Sample them with higher probability, proportional to the absolute 
value of Aij (times polylog factors); relatively large exponent in the polylog factor. 

The proof is straight-forward using a wonderful “blackbox”: a result of Füredi & Komlós 
(Combinatorica 1981) on the largest eigenvalue of a random symmetric matrix. 

The Füredi & Komlós proof is based on the “moments method” (dating back to Wigner 1955) : 

 

   

Element-wise sampling: additive error 
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Element-wise sampling: additive error 

•  The above equality holds for the eigenvalues of a symmetric A and all k. 

•  It can be applied for a large even k to upper bound the largest eigenvalue of A. 

•  Nice and elegant as an idea, but bounding the trace of Ak boils down to a tough and tricky 
combinatorial exercice.  

•  Also used by Nelson & Huy FOCS 2013 to improve the analysis of the sparse random projection 
presented by Clarkson & Woodruff STOC 2013 (also analyzed by Mahoney & Meng STOC 2013).  

Achlioptas & McSherry STOC 2001, JACM 2007 

Dealing with small entries: Sample them with higher probability, proportional to the absolute 
value of Aij (times polylog factors); relatively large exponent in the polylog factor. 

The proof is straight-forward using a wonderful “blackbox”: a result of Füredi & Komlós 
(Combinatorica 1981) on the largest eigenvalue of a random symmetric matrix. 

The Füredi & Komlós proof is based on the “moments method” (dating back to Wigner 1955) : 
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Drineas & Zouzias IPL 2011  

•  Zero out “sufficiently small” entries of A and sample from the remaining entries with 
probabilities that depend on Aij

2.   

•  But, one needs to know the threshold a priori… 

•  A major plus: we used a matrix-Bernstein inequality and the proof is very simple. 

 

Tensor extension: Nguyen, Drineas & Tran (Information and Inference, IMA 2014): 

Ø  Since no tensor-Bernstein inequality exists, we had to come up with an appropriate 
inequality using the entropy-concentration method of Rudelson & Vershynin. 

Ø  Extremely complicated (and under-appreciated …) 

 

Element-wise sampling: additive error 
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Achlioptas, Karnin & Liberty NIPS 2013  

•  Sample entries with respect to the absolute value of Aij.  

•  No need to zero out small entries, so no a priori thresholds. 

•  The bounds are comparable to Drineas & Zouzias IPL 2011. 

•  Again, a simple proof via matrix-Bernstein. 

Kundu & Drineas ArXiv 2014  

Sample entries with respect to both their absolute value and the square of the absolute value, 
without zeroing out any small entries; more precisely, for all (i,j) in {1…m}x{1…n}: 

Element-wise sampling: additive error 

Obvious variant: use different weights for the two sampling probabilities.  
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The proof 

Recall: 

Easy to prove: 

Sampling 
probabilities: 
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A matrix-Bernstein inequality 
(Recht 2009) 
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A matrix-Bernstein inequality 
(Recht 2009) 

178 

We will complete the proof using this 
matrix-Bernstein inequality and the 
sampling probabilities of slide 175 in 

the TA session. 



Given an m-by-n matrix A and a set Ω = {(it,jt), t=1…s} consisting of pairs of indices, 
consider the following optimization problem: 

Matrix completion 
(Landmark papers: Candes and Recht 2009, Candes and Tao 2010, Recht 2011, Gross 2011) 
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Matrix completion 
(Landmark papers: Candes and Recht 2009, Candes and Tao 2010, Recht 2011, Gross 2011) 

In words, given a set of entries of A, we seek a matrix Φ that agrees with the 
matrix A on the given entries and has minimal nuclear norm. 

Given an m-by-n matrix A and a set Ω = {(it,jt), t=1…s} consisting of pairs of indices, 
consider the following optimization problem: 
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Matrix completion 
(Landmark papers: Candes and Recht 2009, Candes and Tao 2010, Recht 2011, Gross 2011) 

In words, given a set of entries of A, we seek a matrix Φ that agrees with the 
matrix A on the given entries and has minimal nuclear norm. 
 
•  This problem is convex and can be solved in polynomial time. 
•  Assume that A is low-rank and incoherent: e.g., A has rank ρ << min{m,n} and 

the leverage scores of the left and right singular vectors of A are uniform. 
•  Then, with high probability, A can be reconstructed exactly from a uniform 

sample of s = O ( (m+n) ρ polylog(m+n) ) entries. 
•  In other words, solving the above optimization problem, returns A as the 

unique minimizer.  

Given an m-by-n matrix A and a set Ω = {(it,jt), t=1…s} consisting of pairs of indices, 
consider the following optimization problem: 
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The input matrix A 
Our input is an m-by-n matrix A of rank ρ << min{m,n}: 

Ui* 
Vj* 
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The input matrix A 
Our input is an m-by-n matrix A of rank ρ << min{m,n}: 

Ui* 
Vj* 

Incoherence assumptions  

Appear in almost all prior work on matrix 
completion – recently removed 
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Ø  For any m-by-n matrix A of rank ρ, A = UΣVT, keep entry (i,j) with probability pij such that 

 
 
Here, µi and νj  are a rescaled version of the leverage scores for row i and column j. 
 
Then, solving the nuclear norm minimization problem returns A as the unique solution (with 
probability at least 1 – (m+n)-1) by keeping (in expectation) O((m+n)ρ log2(m+n)) entries of A. 

Ø  Improves Version 1 of their Aug 2013 ArXiv paper which necessitated O((m+n)1.5ρlog2 (m+n)) 
samples. 

Ø  A very involved proof. 
 

Element-wise leverage scores 
Y Chen et al, ArXiv 2014 and ICML 2014 
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Ø  We adapt the notation of the ArXiv Oct 16, 2014 version of their paper. 

Ø  Main result: for any m-by-n matrix A with m › n of arbitrary rank, we can get an approximation 
Ãk to A that is almost as good as Ak (with probability at least 1-δ): 

More progress 
Bhojanapalli, Jain & Sanghavi SODA 2015  
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Ø  We adapt the notation of the ArXiv Oct 16, 2014 version of their paper. 

Ø  Main result: for any m-by-n matrix A with m › n of arbitrary rank, we can get an approximation 
Ãk to A that is almost as good as Ak (with probability at least 1-δ): 

More progress 
Bhojanapalli, Jain & Sanghavi SODA 2015  

Ø  What kind of info do we need from the matrix? A sample of s entries, where 
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Ø  We adapt the notation of the ArXiv Oct 16, 2014 version of their paper. 
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More progress 
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Ø  What kind of info do we need from the matrix? A sample of s entries, where 
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Ø  We adapt the notation of the ArXiv Oct 16, 2014 version of their paper. 

Ø  Main result: for any m-by-n matrix A with m › n of arbitrary rank, we can get an approximation 
Ãk to A that is almost as good as Ak (with probability at least 1-δ): 

More progress 
Bhojanapalli, Jain & Sanghavi SODA 2015  

Ø  What kind of info do we need from the matrix? A sample of s entries, where 

Ø  How do we sample? We sample each entry, independently, with probability 
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Ø  We adapt the notation of the ArXiv Oct 16, 2014 version of their paper. 

Ø  Main result: for any m-by-n matrix A with m › n of arbitrary rank, we can get an approximation 
Ãk to A that is almost as good as Ak (with probability at least 1-δ): 

More progress 
Bhojanapalli, Jain & Sanghavi SODA 2015  

Ø  The algorithm:  

§  An alternating minimization approach attempting to find the best fit to the observed entries. 

§  Runs in rounds, but only uses the samples that have been collected a priori. 

Ø  The running time is  
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Table 1 in the paper claims a relative error bound with respect to the Frobenius norm, e.g., 

Observations… 
Bhojanapalli, Jain & Sanghavi SODA 2015  

A great result!  
 

§  The proof does not seem to be included in the paper… 

§  The above result is achieved via element-wise sampling and without any use of leverage scores or some 
adaptive sampling procedure!  

§  Not sure if we even have an analog of this for row/column sampling! 

§  The number of samples depends on κ, but (imho) this is quite mild and the authors even claim that they 
might be able to reduce this to log(κ) ! 

Comparison to matrix completion?  
 
If A = Ak, the resulting error does not reduce to zero. 
 
Is the dependency on this (weak) condition number κ so powerful? 
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TA session V 

TA session V will focus on effective resistances vs. leverage scores and element-
wise sampling and is posted at 

http://www.drineas.org/RandNLA-PCMI-2016/ 
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Conclusions 

•  Randomization and sampling can be used to solve problems that are massive and/or 
computationally expensive. 

•  By (carefully) sampling rows/columns of a matrix, we can construct new smaller 
matrices that behave like the original matrix. 

•  Row/column/element-wise leverage scores are fundamental in sampling-based 
approaches. 
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