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Lots of DNNs analyzed: Look at nearly every
publicly-available SOTA model in CV and NLP

Don’t evaluate your method on one/two/three NNs, evaluate it on:
I dozens (2017)
I hundreds (2019)
I thousands (2021)

Don’t use bad/toy models, use SOTA models.
I If you do, don’t be surprised if low-quality/toy models are different

than high-quality/SOTA models.

Don’t train models, instead validate pre-trained models.
I Validating models is harder than training models.

Mahoney (UC Berkeley) WeightWatcher April 2022 11 / 50



Results: LeNet5 (an old/small NN example)

Figure: Full and zoomed-in ESD for LeNet5, Layer FC1.

Older and/or smaller and/or less well-trained models look like bulk+spike.
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Results: AlexNet (a typical modern/large DNN example)

Figure: Zoomed-in ESD for Layer FC1 and FC3 of AlexNet.

Newer SOTA models have heavy-tail structure in their weight matrix
correlations (i.e., not elements but eigenvalues).
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Random Matrix Theory 101: Wigner and Tracy-Widom

Wigner: global bulk statistics approach universal semi-circular form
Tracy-Widom: local edge statistics fluctuate in universal way

Problems with Wigner and Tracy-Widom:
Weight matrices usually not square
Typically do only a single training run
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Random Matrix Theory 102’: Marchenko-Pastur

(c) Vary aspect ratios (d) Vary variance parameters

Figure: Marchenko-Pastur (MP) distributions.
Important points:

Global bulk stats: The overall shape is deterministic, fixed by Q and σ.
Local edge stats: The edge λ+ is very crisp, i.e.,
∆λM = |λmax − λ+| ∼ O(M−2/3), plus Tracy-Widom fluctuations.

We use both global bulk statistics as well as local edge statistics in our theory.
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Random Matrix Theory 103: Heavy-tailed RMT

Go beyond the (relatively easy) Gaussian Universality class:
model strongly-correlated systems (“signal”) with heavy-tailed random matrices.

Generative Model
w/ elements from
Universality class

Finite-N
Global shape
ρN (λ)

Limiting
Global shape
ρ(λ), N →∞

Bulk edge
Local stats
λ ≈ λ+

(far) Tail
Local stats
λ ≈ λmax

Basic MP Gaussian MP
distribution MP TW No tail.

Spiked-
Covariance

Gaussian,
+ low-rank
perturbations

MP +
Gaussian
spikes

MP TW Gaussian

Heavy tail,
4 < µ

(Weakly)
Heavy-Tailed

MP +
PL tail MP Heavy-Tailed∗ Heavy-Tailed∗

Heavy tail,
2 < µ < 4

(Moderately)
Heavy-Tailed

(or “fat tailed”)

PL∗∗

∼ λ−(aµ+b)
PL

∼ λ−( 12 µ+1) No edge. Frechet

Heavy tail,
0 < µ < 2

(Very)
Heavy-Tailed

PL∗∗

∼ λ−( 12 µ+1)
PL

∼ λ−( 12 µ+1) No edge. Frechet

Basic MP theory, and the spiked and Heavy-Tailed extensions we use, including known, empirically-observed, and conjectured

relations between them. Boxes marked “∗” are best described as following “TW with large finite size corrections” that are likely

Heavy-Tailed, leading to bulk edge statistics and far tail statistics that are indistinguishable. Boxes marked “∗∗” are

phenomenological fits, describing large (2 < µ < 4) or small (0 < µ < 2) finite-size corrections on N →∞ behavior.



RMT-based 5+1 Phases of Training (in pictures)

(a) Random-like. (b) Bleeding-out. (c) Bulk+Spikes.

(d) Bulk-decay. (e) Heavy-Tailed. (f) Rank-collapse.

Figure: The 5+1 phases of learning we identified in DNN training.
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Bulk+Spikes: Small Models ∼ Tikhonov regularization

Low-rank perturbation

Wl 'Wrand
l + ∆large

Perturbative correction

λmax = σ2
(

1
Q + |∆|2

N

)(
1 + N

|∆|2

)
|∆| > (Q)−

1
4

λ+

simple scale threshold

x =
(
X̂ + αI

)−1
ŴTy

eigenvalues > α (Spikes)
carry most of the
signal/information

Bulk → Spikes
↙

Smaller, older models like LeNet5 exhibit traditional regularization and can
be described perturbatively with Gaussian RMT
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Heavy-tailed Self-regularization

W is strongly-correlated and highly non-random
We model strongly-correlated systems by heavy-tailed random matrices
We model signal (not noise) by heavy-tailed random matrices

Then RMT/MP ESD will also have heavy tails.
The eigenvalues are heavy-tailed; the weights are NOT.

“All” larger, modern DNNs exhibit novel Heavy-tailed self-regularization
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Watching weights with WeightWatcher
https://github.com/CalculatedContent/WeightWatcher

“pip install weightwatcher”

Mahoney (UC Berkeley) WeightWatcher April 2022 25 / 50
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Using the theory

Different ways one could use a theory.
Perform diagnostics for model validation, to develop hypotheses, etc.∗

Make predictions about model quality, generalization, transferability, etc.∗

Did post-training modifications damage my model?∗

Will buying more data help?∗

Will training longer help?∗

Will quantizing or distilling help?∗

Construct a regularizer to do model training.∗∗

∗Ideally, by peeking at very little or no data.
∗∗If you have lots of data, lots of GPUs, etc.
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Predicting test accuracies ... lots of metrics ...
Average log norm (a VC-like data-dependent capacity metric):

〈log ‖W‖〉 = 1
N
∑
l,i

log ‖Wl,i‖ = 1
N
∑
l,i

log(λmax
l,i )

Average alpha (also data-dependent, from HT-SR theory):

α = 1
N
∑
l,i
αl,i

Combine the two into a weighted average (weighted to compensate for
different size and scale of feature maps):

α̂ = 1
N
∑
l,i

log(λmax
l,i )αl,i

In a special case (α ≈ 2), for each layer:
PL–Norm Relation: α log λmax ≈ log ‖W‖2F .

“pip install weightwatcher”
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(The first) large-scale study (meta-analysis) of hundreds of
SOTA pretrained models ‡

Different metrics on pre-trained VGG.

Summary statistics: VGG; ResNet; DenseNet.

Summary statistics: hundreds of models.

Lots more plots to prove we can “predict trends . . . without access . . . ”
‡“Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data,” Martin,

Peng, and Mahoney, arXiv:2002.06716, Nature Communications, 2021.
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Using a theory: on SOTA models
Analyzing pre-trained models: properties of VGG vs ResNet vs DenseNet

leads to the idea of correlation flow.

Alpha versus depth: VGG, ResNet, DenseNet.
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Using a theory: on SOTA models
Analyzing pre-trained models: properties of GPTx series

leads to the idea of scale collapse.

Histogram and depth plots of αl,i and λmax
l,i .
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Using a theory: easy to break popular SLT metrics

Easy to “break” popular SLT metrics:
they are not validated counterfactually
(but they drive the development of models)

Intel’s distillation “broke” their models.

GPTx series: how does a model trained to “bad”
data differ from one trained to “good” data?
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Using a theory: leads to predictions

Based on analyzing hundreds of pre-trained SOTA models:
“Correlation flow”:

I “Shape” of ESD of adjacent layers, as well as overlap between
eigenvectors of adjecent layers, should be well-aligned.

“Scale collapse”:
I “Size” of ESD of one or more layers changes dramatically, while the size

of other layers changes very little, as a function of some perturbation of
a model, during training (or post-training modification).

“Correlation traps”:
I Spuriously large eigenvalues§ may appear, and they may even be

important for model convergence.

We can measure these quantities with Weightwatcher—so can you!

§Eigenvalues not due to signal in the data—we have theorems-style theory for Hessians (“Hessian Eigenspectra of More
Realistic Nonlinear Models,” Liao and Mahoney, https://arxiv.org/abs/2103.01519), but it’s still open for Weights.

Mahoney (UC Berkeley) WeightWatcher April 2022 33 / 50
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Understanding the mechanism of large dimensional machine learning

large learning
systems of size N

large dimensional data
x1, . . . , xn ∈ Rp I Big Data era: exploit large n, p, N

I counterintuitive phenomena when n 6� p, e.g., the
“curse of dimensionality”

I complete change of understanding of many ML
algorithms

I RMT provides the tools!

M. W. Mahoney (UC Berkeley) RMT4ML June 24, 2022 8 / 33



From low to high dimensional machine learning

O(
√

p)

O(1)

Figure: Visual representation of classification in (left) small and
(right) large dimensions.

I low dimension: data vectors
xi ∈ Rp, p = 2, 3, gathered in different
“groups” can be classified using
distance-based approach

I high dimension:
(i) easy or trivial scenario where low

dimensional intuition holds and a
pairwise distance-based classification
approach via, e.g.,
Johnson–Lindenstrauss lemma, is
efficient;

(ii) hard or non-trivial scenario where
such intuition collapses: data vectors
at approximately the same Euclidean
distance, regardless their arising from
same or different classes.
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Non-trivial high dimensional classification beyond the JL regime

In the high dimensional regime where data dimension p and sample size n both large, a dual phenomenon:

(i) data points not pairwise classifiable: Euclidean distance between any two data points xi ∈ Ca and xj ∈ Cb

approximately constant ≈ τ = O(1) independent of their classes Ca, Cb: ‖xi − xj‖2/p = τ + o(1) as
n, p→ ∞ and data pairs neither close nor far from each other;

(ii) classification remains possible by exploiting the spectral information of large Euclidean distance matrix
E = {‖xi − xj‖2/p}n

i,j=1, thanks to a collective behavior of all data belonging to same (and large) classes.
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E =




v2 =

[ ]
(a) p = 5

E =




v2 =

[ ]
(b) p = 250

Figure: Euclidean distance matrices E, the histogram of the entries of E, and the second top eigenvectors v2, for small (left,
p = 5) and large (right, p = 250) dimensional data X = [x1, . . . , xn] ∈ Rp×n with x1, . . . , xn/2 ∈ C1 and xn/2+1, . . . , xn ∈ C2 for
n = 5 000 and different values of p.
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Sample covariance matrix in the large n, p regime

I For xi ∼ N (0, C), estimate population covariance C ∈ Rp×p from n data samples X = [x1, . . . , xn] ∈ Rp×n.

I Maximum likelihood sample covariance matrix with entry-wise convergence

Ĉ =
1
n

n

∑
i=1

xix
T
i =

1
n

XXT ∈ Rp×p, [Ĉ]ij → [C]ij

almost surely as n→ ∞: optimal for n� p (or, for p “small”).

I In the regime n ∼ p, conventional wisdom breaks down:
for C = Ip with n < p, Ĉ has at least p− n zero eigenvalues.

‖Ĉ−C‖ 6→ 0, n, p→ ∞

⇒ eigenvalue mismatch and not consistent! ⇒matrix norms not equivalent in large dimensions!
I due to ‖A‖∞ ≤ ‖A‖ ≤ p‖A‖∞ for A ∈ Rp×p and ‖A‖∞ ≡ maxij |Aij|.
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Quantitative spectral characterization of sample covariance

Theorem (Concentration of sample covariance, [Ver18, Theorem 4.6.1])

Let X ∈ Rp×n be a random matrix with i.i.d. sub-gaussian columns xi ∈ Rp such that E[xi] = 0 and E[xixT
i ] = Ip, one

has, with probability at least 1− 2 exp(−t2) for any t ≥ 0 that

‖Ĉ− Ip‖ ≤ C1 max(δ, δ2), δ = C2(
√

p/n + t/
√

n) (1)

for some constants C1, C2 > 0 independent of n, p.

I non-asymptotic and high probability characterization
I however, not precise in the p ∼ n regime, since δ = O(

√
p/n) = O(1)

Theorem (Marc̆enko-Pastur law, [MP67])

Under the same setting of Theorem 1, as n, p→ ∞ with p/n→ c ∈ (0, ∞), with probability one, the empirical spectral
measure µĈ ≡

1
p ∑

p
i=1 δλi(Ĉ) of Ĉ ≡ 1

n XXT converges weakly to a probability measure µ given explicitly by

µ(dx) = (1− c−1)+δ0(x) +
1

2πcx

√
(x− E−)+(E+ − x)+ dx (2)

where E± = (1±
√

c)2 and (x)+ = max(0, x), and is known as the Marc̆enko-Pastur law.
M. W. Mahoney (UC Berkeley) RMT4ML June 24, 2022 14 / 33



Two ways of spectral characterization of sample covariance

I matrix concentration-type characterization

‖Ĉ− Ip‖ ≤ C1 max(δ, δ2), δ = C2(
√

p/n + t/
√

n)

⇒ non-asymptotic characterization of small dimensional intuition: how Ĉ concentrates around Ip;
I random matrix-type characterization of precise eigenvalue distribution

µ(dx) = (1− c−1)+δ(x) +
1

2πcx

√
(x− E−)+(E+ − x)+dx

⇒ asymptotic characterization (as n, p→ ∞) of large dimensional intuition: how Ĉ differs from Ip!
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Figure: Histogram of the eigenvalues of Ĉ (blue) versus the Marc̆enko-Pastur law (red), for X having standard Gaussian
entries in different settings: (left: small versus large dimensional intuition) p = 20, n = 1 000p versus p = 20, n = 100p; and
(right: non-asymptotic versus asymptotic MP law) p = 20, n = 100p versus p = 500, n = 100p.
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When is one in the random matrix regime? Almost always!

What about n = 100p? For C = Ip, as n, p→ ∞ with p/n→ c ∈ (0, ∞): the Marc̆enko–Pastur law

µ(dx) = (1− c−1)+δ(x) +
1

2πcx

√
(x− E−)+(E+ − x)+dx

where E− = (1−
√

c)2, E+ = (1 +
√

c)2 and (x)+ ≡ max(x, 0). Close match!

0.8 1 1.2
0

2

4

E− E+

D
en

si
ty

Empirical eigenvalues of Ĉ

Marc̆enko-Pastur law

Population eigenvalue

Figure: Eigenvalue distribution of Ĉ versus Marc̆enko-Pastur law, p = 500, n = 50 000.

I eigenvalues span on [E− = (1−
√

c)2, E+ = (1+
√

c)2].
I for n = 100p, on a range of ±2

√
c = ±0.2 around the population eigenvalue 1.
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Beyond eigenvalue distribution: a modern RMT approach via the resolvent

This change-of-intuition leads to very different behavior for small- versus large-dimensional ML:
I linear models: low-rank approximation, spectral classification/clustering, and linear least squares

regression in high dimensions different from their small dimensional counterparts
I as well as more involved nonlinear models: kernel spectral clustering, nonlinear neural nets, etc.

Technical challenges:
I classical RMT focuses on eigenvalue distribution
I ML applications need eigenvectors and more complex matrix functionals!

Figure: Different objects of interest and their corresponding technical tools for “old” and “new school” RMT.
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“Curse of dimensionality”: loss of relevance of Euclidean distance

I Binary Gaussian mixture classification x ∈ Rp:

C1 : x ∼ N (µ1, C1), versus C2 : x ∼ N (µ2, C2);

I Neyman-Pearson test: classification is possible only when [CLM18]

‖µ1 − µ2‖ ≥ Cµ, or ‖C1 −C2‖ ≥ CC · p−1/2

for some constants Cµ, CC > 0.
I In this non-trivial setting, for xi ∈ Ca, xj ∈ Cb:

max
1≤i 6=j≤n

{
1
p
‖xi − xj‖2 − 2

p
tr C◦

}
a.s.−→ 0

as n, p→ ∞ (i.e., n ∼ p), for C◦ ≡ 1
2 (C1 + C2), regardless of the classes Ca, Cb! (In fact even for n = pm.)

⇒ Direct consequence to various distance-based machine learning methods (e.g., kernel spectral clustering)!

1Romain Couillet, Zhenyu Liao, and Xiaoyi Mai. “Classification asymptotics in the random matrix regime”. In: 2018 26th European Signal Processing Conference
(EUSIPCO). IEEE. 2018, pp. 1875–1879
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Reminder on kernel spectral clustering

Two-step classification of n data points based on distance kernel matrix K ≡ {f (‖xi − xj‖2/p)}n
i,j=1:

0 isolated eigenvalues

⇓ Top eigenvectors ⇓

Ei
ge

nv
.1

Ei
ge

nv
.2
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Reminder on kernel spectral clustering

Ei
ge

nv
.1

Ei
ge

nv
.2

⇓ K-dimensional representation ⇓

Eigenvector 1
Ei

ge
nv

ec
to

r
2

⇓
EM or k-means clustering.

(Three classes/clusters in this example.)
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Visualization of kernel matrices for large dimensional Gaussian data

Objective: “cluster” Gaussian data x1, . . . , xn ∈ Rp into C1 or C2.
Consider Gaussian kernel matrix Kij = exp(−‖xi − xj‖2/2p) and the second top eigenvectors v2 for small
(left) and large (right) dimensional data.

(a) p = 5, n = 500

K =




v2 =

[ ]

(b) p = 250, n = 500

K =




v2 =

[ ]
Figure: Kernel matrices K and the second top eigenvectors v2 for small (left, p = 5, n = 500) and large (right,
p = 250, n = 500) dimensional data.
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Kernel matrices for large dimensional real-world data

(a) MNIST

K =




v2 =

[ ]

(b) Fashion-MNIST

K =




v2 =

[ ]
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A spectral viewpoint of large kernel matrices in large dimensions

I “local” linearization of nonlinear kernel matrices in large dimensions, e.g., Gaussian kernel matrix
Kij = exp(−‖xi − xj‖2/2p) with C1 = C2 = Ip (e.g., C1 : xi = µ1 + zi versus C2 : xj = µ2 + zj) so that

‖xi − xj‖2/p a.s.−→ 2, and K = exp
(
−2

2

)(
1n1T

n +
1
p

ZTZ
)
+ g(‖µ1 − µ2‖)

1
p

jjT + ∗+ o‖·‖(1)

with Gaussian matrix Z = [z1, . . . , zn] ∈ Rp×n and j = [1n/2;−1n/2], the class-information vector
I accumulated effect of small “hidden” statistical information (‖µ1 − µ2‖ in this case)

Therefore
I entry-wise:

Kij = exp(−1)
(

1 +
1
p

zT
i zj︸ ︷︷ ︸

O(p−1/2)

)
± 1

p
g(‖µ1 − µ2‖)︸ ︷︷ ︸

O(p−1)

+∗, so that
1
p

g(‖µ1 − µ2‖)�
1
p

zT
i zj,

I spectrum-wise: (i) ‖K− exp(−1)1n1T
n ‖ 6→ 0; (ii) ‖ 1

p ZTZ‖ = O(1) and ‖g(‖µ1 − µ2‖) 1
p jjT‖ = O(1)!

I Same phenomenon as the sample covariance example: [Ĉ−C]ij → 0 6⇒ ‖Ĉ−C‖ → 0!

⇒With modern RMT, we understand kernel spectral clustering (eigenvectors!) for large dimensional data!
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Reminder on random features and neural networks

I kernel matrices K ∈ Rn×n from pairwise comparison of n data points: expansive for n large
I idea: find easy-to-compute K̂ to approximate K, e.g., ‖K̂−K‖ is small
I example: random Fourier feature [RR08] ΣT = [cos(WX)T, sin(WX)T] ∈ R2N×n of data

X = [x1, . . . , xn] ∈ Rp×n with standard Gaussian W ∈ RN×p, i.e., Wij ∼ N (0, 1)

I approximates Gaussian kernel exp(‖xi − xj‖2/2): entry-wise convergence of RFF Gram
1
N [ΣTΣ]ij → [KGauss]ij Gaussian kernel matrix as number of features N → ∞

I proof: (strong) law of large numbers:

1
N
[ΣTΣ]ij =

1
N

N

∑
k=1

cos(xT
i wk) cos(wT

k xj) + sin(xT
i wk) sin(wT

k xj)

→ Ew∼N (0,Ip)[cos(xT
i w) cos(wTxj) + sin(xT

i w) sin(wTxj)] = [Kcos + Ksin]ij = [KGauss]ij

for Kcos = e−
1
2 (‖xi‖2+‖xj‖2) cosh(xT

i xj) and Ksin = e−
1
2 (‖xi‖2+‖xj‖2) sinh(xT

i xj).

3Ali Rahimi and Benjamin Recht. “Random Features for Large-Scale Kernel Machines”. In: Advances in Neural Information Processing
Systems. Vol. 20. NIPS‘08. Curran Associates, Inc., 2008, pp. 1177–1184
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Random features-based ridge regression and neural networks

X ∈ Rp×n

X̂ ∈ Rp×n̂

sin

cos

ΣT
X = ΣT = [cos(WX)T, sin(WX)T]

ΣT
X̂ = [cos(WX̂)T, sin(WX̂)T]

W ∈ RN×p β ∈ R2N in (3)

Figure: Illustration of random Fourier features regression model.

I RFF ridge regressor β ∈ R2N given by, for regularization penalty γ ≥ 0,

β ≡ 1
n

Σ(
1
n

ΣTΣ + γIn)
−1y · 12N>n + ( 1

n ΣΣT + γI2N)
−1 1

n Σ y · 12N<n. (3)

I Performance: training and test Mean Squared Error (MSE): Etrain = 1
n‖y− ΣT

X β‖2 and
Etest =

1
n̂‖ŷ− ΣT

X̂ β‖2, with ΣT
X̂ ∈ Rn̂×2N RFFs of a test set (X̂, ŷ) of size n̂.

I single-hidden-layer neural network with cos+ sin activations, connected to neural tangent kernel (NTK)
3Arthur Jacot, Franck Gabriel, and Clément Hongler. “Neural Tangent Kernel: Convergence and Generalization in Neural Networks”. In:

Advances in Neural Information Processing Systems. Vol. 31. NIPS’18. Curran Associates, Inc., 2018, pp. 8571–8580
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Random Fourier features approximate Gaussian kernel, but in which sense?

I [RR08]: entry-wise convergence of RFF Gram 1
N [ΣTΣ]ij → [KGauss]ij Gaussian kernel matrix as N → ∞

I again, not true in spectral norm sense, i.e., ‖ΣTΣ/N−KGauss‖ 6→ 0 unless N � n
− e.g., ΣTΣ ∈ Rn×n of rank at most N if N ≤ n, while KGauss of rank n (for distinct xi)
− significant impact on various RFF-based algorithms
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Figure: Training MSEs of RFF ridge regression on MNIST data (class 3 versus 7) as a function of regression penalty λ.

I effective kernel can be derived with RMT in the large n, p, N regime
I provides precise training and test performances of RFF for any ratio N/n, more practical and more

flexible, recover Gaussian kernel result with N/n→ ∞
I data-dependent theory with no strong assumption on data
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Sharp analysis of RFF ridge regression performance via RMT
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Figure: MSEs of RFF ridge regression on Fashion- (left two) and Kannada-MNIST (right two).
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Figure: Test MSEs of RFF regression as a function of the ratio N/n, on MNIST data set.
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“Recap” for double descent phenomenon for over-parameterized models

Risk

Model complexity

best tradeoff

(a) Classical U-shaped risk

Risk

Model complexity

phase transition

(b) Modern “double descent”risk

Figure: Comparison between training risk (blue) and true/test risk (red).

I empirically observed for various large-scale machine learning models, e.g., RF-based methods, decision
trees, ensemble methods, and deep NNs

I proved here for RFF on real-world data!
I phase transition from under- to over-param of resolvent (ΣTΣ + λIn)−1 in the ridgeless λ→ 0 limit

4Mikhail Belkin et al. “Reconciling modern machine-learning practice and the classical bias–variance trade-off”. In: Proceedings of the
National Academy of Sciences 116.32 (2019), pp. 15849–15854

5Trevor Hastie et al. “Surprises in High-Dimensional Ridgeless Least Squares Interpolation”. In: arXiv (2019). eprint: 1903.08560
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Take-away messages and references

Take-away messages:
I RF methods: classical statistical learning theory provides performance guarantee for N � n, p
I here we derive (limiting) kernel in the more practical large n, p, N regime
I fast tuning of regularization parameter λ

I double descent theory for novel understanding of over-parameterized neural networks

References:
I Zhenyu Liao, Romain Couillet, and Michael W Mahoney. “A random matrix analysis of random Fourier features: beyond the Gaussian kernel, a precise

phase transition, and the corresponding double descent”. In: Advances in Neural Information Processing Systems (NeurIPS). vol. 33. Curran Associates, Inc., 2020,
pp. 13939–13950

I Cosme Louart, Zhenyu Liao, and Romain Couillet. “A random matrix approach to neural networks”. In: Annals of Applied Probability 28.2 (2018),
pp. 1190–1248

I Song Mei and Andrea Montanari. “The Generalization Error of Random Features Regression: Precise Asymptotics and the Double Descent Curve”. In:
Communications on Pure and Applied Mathematics (2021)

I Zhenyu Liao and Michael W. Mahoney. “Hessian Eigenspectra of More Realistic Nonlinear Models”. In: Advances in Neural Information Processing Systems
(NeurIPS). 2021
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RMT for machine learning: from theory to practice!

Random matrix theory (RMT) for machine learning:
I change of intuition from small to large dimensional learning paradigm!
I better understanding of existing methods: why they work if they do, and what the issue is if they do not
I improved novel methods with performance guarantee!

Thank you! Q & A?
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