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Least-squares and solving least-squares

Consider an n× d least squares problem (A,b), where n� d:

L(w) =

n∑
i=1

(a>
i w − bi)2 = ‖Aw − b‖2

Goal: Find (exactly or approximately) the optimum solution:

w∗ = argmin
w

L(w) = A†b.

Many ways to solve this:

Direct methods: normal equations; via QR; via the SVD

Iterative methods: LSQR, Chebyshev semi-iterative, etc.

Randomized Numerical Linear Algebra sketching methods
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RandNLA Sketching

Sketching matrix S × Data A

F (A)

= Sketch Ã

F (Ã)≈

Q1: How to construct the sketch?

Q2: How to use the sketch to solve the problem?
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Q1: How to construct the sketch?

Data oblivious methods.

Random orthogonal matrix

Entries i.i.d. Gaussian (*)

Hadamard/Fourier-like construction (*)

Entries i.i.d. Rademacher / sub-Gaussian (*)

Sparse CountSketch and extensions (*)

Data aware methods.

Approximate leverage scores (*)

i-th leverage score = (P)ii, where P = proj(span(A))

“condition number” for sampling algorithms

Leverage-like sketches

Data oblivious + data aware methods.

Sparse LESS embeddings (*)
4 / 25



Q2: How to use the sketch to solve the problem?

Sketch-and-solve.

Get a sketch; solve subproblem; return answer

Sketch-and-precondition.

Get a sketch; construct a preconditioner; call traditional

iterative algorithm

Sketch-and-regularize.

Get a sketch; solve regularized subproblem; process and

return answer
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Sketch-and-solve

Sketch-and-solve.

Sketch with any of the sketching methods.

Slightly “oversample” with any data-oblivious projection or

data-aware leverage sampling method.

Solve the LS problem on the sketched problem.

With any black box solver.

Return the solution.

Get “relative error” on objective and solution.
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Setup

Original LS problem:

xopt = argminx||Ax− b||2 (1)

= (A)†b (2)

Thus, b̂ = Pb, where P = A(ATA)−1AT .

Sketched LS problem:

x̃opt = argminx||Z(Ax− b)||2 (3)

= (ZA)† Zb (4)

I.e., premultiply A and b with some arbitrary matrix Z

(e.g., random sketch S, left singular vectors UA, etc.).
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Basic Structural Theorem

Theorem

If Z satisfies certain structural conditions, then

||b−Ax̃opt||2 ≤ (1 + ε)||b−Axopt||2 and (5)

||xopt − x̃opt||2 ≤
√
ε
(
κ(A)

√
γ−2 − 1

)
||xopt||2, (6)

where κ(A) is the condition number and γ = ||Pb||2/||b||2.

For this result, Z can be deterministic or randomized.

All the sketching methods construct S to satisfy these
structural conditions, if you set parameters right.2

2All the papers you read focus on the details of this.
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Subspace embeddings

Structural (subspace embedding) conditions.∥∥I− (ZUA)T (ZUA)
∥∥2
2
≤ 1/2 (7)

||(ZUA)TZb⊥ −UAb⊥||22 ≤
ε

2
||Axopt − b||22 (8)

First used by [DMM06] with sampling;

then used with projections by [Sar06, DMMS11];

then popularized and extended by [Woo14].

Acute perturbations.

“Johnson-Lindenstrauss in a Euclidean space.”

“Morally necessary and sufficient” for worst-case analysis.3

Neither necessary nor sufficient for NLA, statistics, etc.

3but see [CI18, CI20] 9 / 25



Sketch-and-precondition

Sketch-and-precondition.

Sketch with any of the sketching methods.4

Use the sketch to construct a preconditioner.

Call a traditional iterative algorithm.

4Sketch in the same way as with Sketch-and-solve.
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Comments on Sketch-and-precondition

Idea: If the sketch is reasonable, it can be used to construct a

preconditioner; e.g., do QR of SA rather than A

Introduced by [RT08];

Blendenpik beat LAPACK [AMT10];

LSRN in parallel/distributed [MSM14]

Subspace embedding is overkill: a low-rank perturbation of

a good preconditioner is still a good preconditioner

Convergence guarantees follow from spectral control and

the iterative method (better w.r.t. error parameter ε)
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Statistical issues

Conditional expectation/variance for Sketch-and-solve:

Edata [w̃S |b] = ŵols + Edata [RS ] ;

Vardata [w̃S |b] = (A
T
A)
−1

A
T

[
Diag {ê}Diag

{
1

rπ

}
Diag {ê}

]
A(A

T
A)
−1

+ Vardata [RS ] ,

where ê = b−Aŵols, RW is the remainder, and S specifies the
sampling probability distribution.

MSE, AMSE, EAMSE [MMY15, MZX+20]

Must control small (not large) leverage scores

Other notions of optimal sampling

Random projections tends to uniformize all of these

OK to not be a subspace embedding—that just introduces

some bias.
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Inversion Bias

Task: Estimate F
(
(A>A)−1

)
, where F is a linear function

(A>A)−1b least squares, second-order optimization

x>(A>A)−1x statistical leverage scores

trC(A>A)−1 uncertainty quantification, optimal design

Inversion bias: E
[
(Ã>Ã)−1

]
6= (A>A)−1
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Correcting the inversion bias

Simple correction for a Gaussian sketch Ã of size m× d:

E
[
(γÃ>Ã)−1

]
= (A>A)−1 for γ = m

m−d−1

Dense Gaussian sketch:

unbiased Newton step;

strong problem-independent convergence;

etc.

- Not true for other sketching methods!

- What if we slightly relax the notion of unbiasedness?
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LESS Embeddings: Fast Gaussian-like Sketches

Leverage Score Sparsified (LESS) Embeddings [DLDM20]:

Leverage Score Sampling + Sparse Embedding Matrices

randomly sparsified

sub-gaussian entries
m

n

sampled using
leverage scores

× Data A

n

d

Easy to make sub-Gaussian embeddings (ε, δ)-unbiased.

LESS makes very sparse embeddings (ε, δ)-unbiased.
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Newton-LESS: Sparsification without Trade-offs

Second order optimization with LESS sketches [DLPM21]

Random sketching: trade-off between cost of sketching and

convergence rate

LESS sketches: dramatically sparsify without affecting

convergence (versus dense Gaussian)

Corollary: SOTA convergence for iterative LS solver5

5in theory; but that’s what other sketching methods were 15 years ago ...
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Randomized Sketching as a Computational Model
for Statistical Inference

Sketch-and-solve Random design

Large dataset Population

No assumptions! Gaussian assumptions

Sketch Sample

Gaussianizing!

Statistical model
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Sketch-and-regularize

Sketch-and-regularize.

Sketch with any of the sketching methods.

Solve the regularized LS problem on the sketched problem.

ŵλ = argmin
w

‖Xw − y‖2 + λ‖w‖2

= (X>X + λI)−1X>y

= (A>S>SA + λI)−1A>S>Sb.

Return the solution.

Based on statistical intuition, we expect that

L(ŵλ) < L(ŵ) for some λ > 0,

where L(w) = ‖Aw − b‖2 is the unregularized objective.

Stay tuned . . .
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Low-rank matrix approximation: structural result

Lemma

Let Vk ∈ Rn×k be the top k right singular vectors of A ∈ Rm×n.

Let Z ∈ Rn×r (r ≥ k) be any matrix such that VT
k Z has full

rank. Then, for any unitarily invariant norm ξ,

‖A− PAZA‖ξ ≤ ‖A−Ak‖ξ +
∥∥∥Σk,⊥

(
VT
k,⊥Z

) (
VT
k Z
)†∥∥∥

ξ
.

Used by [BMD09] for Column Subset Selection.

Used by [HMT11] for low-rank approximation.

See [MD16] for discussion.

As with LS, various extensions and refinements.
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RandNLA Reviews

[Mah11]: general overview, ML perspective.

[HMT11]: framewok for low-rank approximation.

[Woo14]: sketching, especially TCS perspective.

[DM16]: ACM review/overview.

[DM18]: PCMI lecture notes chapter.

[KV17]:

[MT20]:

[DM21]:

. . .
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