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Least-squares and solving least-squares

Consider an n x d least squares problem (A, b), where n > d:

Lw) =) (a]w — b))’ = |[Aw — |

=1

Goal: Find (exactly or approximately) the optimum solution:

w* = argmin L(w) = A'b.

w
Many ways to solve this:
o Direct methods: normal equations; via QR; via the SVD
o Iterative methods: LSQR, Chebyshev semi-iterative, etc.

o Randomized Numerical Linear Algebra sketching methods
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RandNLA Sketching

F(A) =~ F(A)
Sketching matrix S x | Data A | = |Sketch A

e QI: How to construct the sketch?

e Q2: How to use the sketch to solve the problem?
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Q1: How to construct the sketch?

Data oblivious methods.

e Random orthogonal matrix

Entries i.i.d. Gaussian (*)

Hadamard/Fourier-like construction (*)

(]

Entries i.i.d. Rademacher / sub-Gaussian (*)
e Sparse CountSketch and extensions (*)
Data aware methods.
e Approximate leverage scores (*)
i-th leverage score = (P),;, where P = proj(span(A))
“condition number” for sampling algorithms
o Leverage-like sketches
Data oblivious + data aware methods.

e Sparse LESS embeddings (*)
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Q2: How to use the sketch to solve the problem?

o Sketch-and-solve.
o Get a sketch; solve subproblem; return answer
@ Sketch-and-precondition.
o Get a sketch; construct a preconditioner; call traditional
iterative algorithm
o Sketch-and-regularize.
o Get a sketch; solve regularized subproblem; process and

return answer
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Sketch-and-solve

Sketch-and-solve.
e Sketch with any of the sketching methods.

o Slightly “oversample” with any data-oblivious projection or

data-aware leverage sampling method.
@ Solve the LS problem on the sketched problem.
o With any black box solver.
@ Return the solution.

o Get “relative error” on objective and solution.
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@ Original LS problem:

AlAx =Dl 1)
= ()b 2)

Xopt = argmin

Thus, b = Pb, where P = A(ATA)"1AT.
e Sketched LS problem:

Xopt = argming||Z(Ax —b)l[2 (3)
= (ZA)'Zb (4)

Le., premultiply A and b with some arbitrary matrix Z

(e.g., random sketch S, left singular vectors U, etc.).
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Basic Structural Theorem

Theorem

If Z satisfies certain structural conditions, then

b= AZopill: < (1+€)llb— Axopllo and  (5)
%opt = Kopillz < Ve (R(AIWVTZ=1) IIxopill2,  (6)

where k(A) is the condition number and v = ||Pbl|2/||b]|2.

For this result, Z can be deterministic or randomized.

All the sketching methods construct S to satisfy these
structural conditions, if you set parameters right.?

2 All the papers you read focus on the details of this.
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Subspace embeddings

Structural (subspace embedding) conditions.
2
|T-(Z2UA)"(ZU4)|, < 1/2 (7)
€
(ZUA)" Zb" — Uab™|l; < J[|Axop —bI[5  (8)

e First used by [DMMO06] with sampling;
then used with projections by [Sar06, DMMS11];
then popularized and extended by [Wool4].
@ Acute perturbations.
o “Johnson-Lindenstrauss in a Euclidean space.”
e “Morally necessary and sufficient” for worst-case analysis.?

o Neither necessary nor sufficient for NLA, statistics, etc.

*but see [CI18, CI20) 9/25



Sketch-and-precondition

Sketch-and-precondition.
@ Sketch with any of the sketching methods.?
@ Use the sketch to construct a preconditioner.

o Call a traditional iterative algorithm.

4Sketch in the same way as with Sketch-and-solve.
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Comments on Sketch-and-precondition

Idea: If the sketch is reasonable, it can be used to construct a
preconditioner; e.g., do QR of SA rather than A
e Introduced by [RT08];
Blendenpik beat LAPACK [AMT10];
LSRN in parallel/distributed [MSM14]
@ Subspace embedding is overkill: a low-rank perturbation of
a good preconditioner is still a good preconditioner
o Convergence guarantees follow from spectral control and

the iterative method (better w.r.t. error parameter ¢)
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Statistical issues

Conditional expectation/variance for Sketch-and-solve:

Egqata [(Ws|bl =Wois + Egata [Rs]s
Vargaia [Wslb] = (ATA)"1AT [Diag {&} Diag {i }Diag {é}] AATA)T 4 Vargy, [Rs],
where € = b — Aw,s, Ry is the remainder, and S specifies the
sampling probability distribution.

MSE, AMSE, EAMSE [MMY15, MZX*20]

Must control small (not large) leverage scores

@ Other notions of optimal sampling

Random projections tends to uniformize all of these

o OK to not be a subspace embedding—that just introduces

some bias.
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Inversion Bias

Task: Estimate F/((ATA)™"), where F is a linear function

o (ATA)_lb least squares, second-order optimization
o x' (ATA)_lx statistical leverage scores
o tr(j([XT}X)_l uncertainty quantification, optimal design

Inversion bias: E[(ATA)™'] # (ATA)™!
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Correcting the inversion bias

Simple correction for a Gaussian sketch A of size m x d:

E[(vATA) '] = (ATA)™! for y= T

Dense Gaussian sketch:
e unbiased Newton step;
@ strong problem-independent convergence;

@ etc.

- Not true for other sketching methods!

- What if we slightly relax the notion of unbiasedness?
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LESS Embeddings: Fast Gaussian-like Sketches

Leverage Score Sparsified (LESS) Embeddings [DLDM20]:
Leverage Score Sampling +  Sparse Embedding Matrices

n d

randomly sparsified
Y Sparsiie Data A
sub-gaussian entries

T n

sampled using
leverage scores

e Easy to make sub-Gaussian embeddings (e, §)-unbiased.

e LESS makes very sparse embeddings (¢, d)-unbiased.
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Newton-LESS: Sparsification without Trade-offs

Second order optimization with LESS sketches [DLPM21]

o Random sketching: trade-off between cost of sketching and

convergence rate

o LESS sketches: dramatically sparsify without affecting

convergence (versus dense Gaussian)

e Corollary: SOTA convergence for iterative LS solver®

%in theory; but that’s what other sketching methods were 15 years ago ...
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Randomized Sketching as a Computational Model

for Statistical Inference

Sketch-and-solve Random design

No assumptions! Gaussian assumptions

Large dataset Population
aussianizing!
Sketch Sample

Statistical model
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Sketch-and-regularize

Sketch-and-regularize.
o Sketch with any of the sketching methods.
@ Solve the regularized LS problem on the sketched problem.

W) = argmin | Xw — y|* + Xl|w]|?
w
= (XTX +AI) Xy
= (ATSTSA + \I)"'ATSTSb.
@ Return the solution.
o Based on statistical intuition, we expect that

L(wy) < L(w) forsome \>0,

where L(w) = ||[Aw — b||? is the unregularized objective.

Stay tuned ...
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Low-rank matrix approximation: structural result

Lemma

Let Vi, € R™* be the top k right singular vectors of A € R™X™,
Let Z € R™ " (r > k) be any matriz such that VLZ has full

rank. Then, for any unitarily invariant norm &,

A - PazAll < 1A = A+ |2 (VEL2) (VI2)')|

(]

Used by [BMDO09] for Column Subset Selection.

(]

Used by [HMT11] for low-rank approximation.

(]

See [MD16] for discussion.

As with LS, various extensions and refinements.
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RandNLA Reviews
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