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Background (1 of 2)

Belkin et al., “Reconciling modern machine-learning practice
and the classical bias–variance trade-off,” PNAS (2019)

Zhang et al., “Understanding deep learning requires
rethinking generalization,” ICLR (2017)

. . .

. . .

Opper and Kinzel, “Statistical Mechanics of Generalization”
(1996); and many others (1990s)



Background (2 of 2)
Martin and Mahoney, Rethinking generalization requires revisiting old ideas, arxiv:1710.09553

Very Simple Deep Learning (VSDL) model:

DNN is a black box, load-like parameters α, & temperature-like parameters τ

Adding noise to training data decreases α

Early stopping increases τ
Nearly any non-trivial model1 exhibits “phase diagrams,” with qualitatively different
generalization properties, for different parameter values.

(a) Training/generalization error. (b) Learning phases in τ -α plane. (c) Noisifying data & adjusting

knobs.

1when analyzed via the Statistical Mechanics Theory of Generalization (SMToG)



Summary

Recent “deep learning” boom provides an
opportunity: current theory still does not reflect
observations.

Current popular theoretical frameworks appear to
be incapable of bridging this gap.

First: examine the data, meaning the models

By examining overparameterized models, we
develop a new information criterion for this task.

We also learn when ensembles really are
effective.



Examine the data (i.e., models)

You can “pip install weightwatcher”



Results of examining the data
Martin and Mahoney, “Implicit
Self-Regularization in Deep
Neural Networks: Evidence from
Random Matrix Theory and
Implications for Learning,” JMLR
2021.

Martin et al., “Predicting trends in
the quality of state-of-the-art
neural networks without access
to training or testing data,”
Nature Communications 2021.

Martin and Mahoney,
“Post-mortem on a deep learning
contest: a Simpson’s paradox
and the complementary roles of
scale metrics versus shape
metrics,” arXiv:2106.00734.

Y. Yang, et al., “Test accuracy vs
generalization gap: Model
selection in NLP without
accessing any training or testing
data,” KDD 2023.



Let’s try to develop theory ML
people will grok.





But the bound did not correlate with
real-world performance!

Options for Theoretical Framework:
PAC bounds (inadequate)
Mutual information approaches (unlikely)
PAC-Bayes framework (good, but hard)
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Where does it go wrong?



Parameterized Models
Consider a parameterized model class

(θ ∈ Rd, x ∈ X ) 7→ f (θ, x) ∈ Rm

where

n: number of samples

m: number of scalar outputs

d: number of parameters

(under)parameterized if d ≤mn
overparameterized if d > mn



Overparameterized Models

The most performant models are often
overparameterized.

(log10 scale)
Model Dataset nm d Test Accuracy
ResNet18 CIFAR-10 5.7 7.0 93%
WRN-28-10 SVHN 6.8 7.6 98%

ViT-E ImageNet-1k 9.1 9.6 91%
EFL SNLI 6.2 8.6 93%

ResNet34 Chaoyang (noisy) 4.4 7.8 83%
FiLM ETT (noisy) 4.0 6.0 —

...and have virtually zero error on training set.



Bias–Variance Tradeoff

AIC/BIC



Bias–Variance Tradeoff

AIC/BIC



“interpolating
fits... [are]
unlikely to

predict future
data well at all.”

pg. 37





Double Descent . . .

Random Fourier Features on MNIST Dataset: n = 500



. . . In Neural Networks

Nakkiran, Preetum, et al. Deep double descent: Where bigger models and more data hurt. Journal of
Statistical Mechanics: Theory and Experiment 2021.12 (2021): 124003.



Observation

Large class of interpolating solutions

PAC bounds (worst case error) will
often be vacuous in this regime.
The n→∞ limit is not relevant to
deep learning

Implicit Regularization



Implicit Regularization?

Explicit: Replace min f with min f + λg:
interpret heuristically or i.t.o. a Bayesian prior.

Implicit 1: min f is intractable→ so approximate it:
Thm 1: fapprox ≈ fopt
Thm 2: fapprox exactly solves min f + λg, for some λ,g.
“Approximate Computation and Implicit Regularization ...” Mahoney, PODS 2012.

Implicit 2: Do SGD for NN training and fiddle with knobs:
Every training knob de facto is a regularization knob.
“Regularization for Deep Learning: A Taxonomy,” Kukacka et al. 2017.

Implicit Self-Regularization: The training process itself
regularizes, depending on (correlated) properties of the data.
“Implicit Self-Regularization in Deep Neural Networks ...,” M&M, JMLR 2021.



In practice, the error curve can exhibit
any form of multiple descent.

But something strange is going on:
no general theory seems to be able
to predict this (relies on MSE
calculations).



Taxonomy for Model Quality
Yang et al. “Taxonomizing local versus global structure in neural network loss landscapes,” NeurIPS (2021).



Observations

Double descent cannot arise in the
large data limit n→∞ (with other
things fixed)!
Most successful predictions for
neural networks arise from
Bayesian approaches.
Some form of duality taking place.



Setup

Parameterized models are fitted using
empirical risk minimization:

min
θ

n∑
i=1

`( f (θ, xi)︸ ︷︷ ︸
predictions

, yi︸︷︷︸
label

) =: L(F(θ), y)

Equivalently, maximum likelihood estimation
under Gibbs likelihood

p(y|x, θ) ∝ exp

(
− 1
γ

L(F(θ), y)

)



Interpolators

In the overparameterized regime, solutions
are interpolators:

f (θ∗, xi) = yi for all i = 1, . . . ,n.

How do we uniquely identify θ∗? Regularizers.

min
θ

R(θ)

subject to f (θ, xi) = yi for all i = 1, . . . ,n.



Interpolators

Example (Linear Regression)

min
θ
‖θ‖2 subject to Xθ = y.

Example (Stochastic Gradient Descent)

min
θ

E‖∇xf (θ,X)‖2 subject to f (θ, xi) = yi.

Smith, Samuel L., et al. On the Origin of Implicit Regularization
in Stochastic Gradient Descent. ICLR 2020.



Note that

θ? = arg min
θ

R(θ) subject to L(F(θ), y) = 0.

is not the same as

θ? = arg min
θ

L(F(θ), y) + γR(θ)



Duality

Hard constraints exhibit duality, soft
constraints do not

Λ(λ) = sup
γ>0

inf
θ

[
R(θ) +

1
γ

L(F(θ), y) +
n∑

i=1

λi · (f (xi, θ)− yi)

]
.

Theorem (Augmented Lagrange Duality)
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problem in Rd︷ ︸︸ ︷

inf
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R(θ) =

problem in Rnm︷ ︸︸ ︷
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λ∈Rmn

Λ(λ) .



Duality

Hard constraints exhibit duality, soft
constraints do not

Λ(λ) = sup
γ>0

inf
θ

[
R(θ) +

1
γ

L(F(θ), y) +
n∑

i=1

λi · (f (xi, θ)− yi)

]
.

Theorem (Augmented Lagrange Duality)
overparameterized︷ ︸︸ ︷

inf
θ∈zero-loss

R(θ) =

underparameterized︷ ︸︸ ︷
sup
λ∈Rmn

Λ(λ) .



Corollary

Any overparameterized model with a
regularizer R has a corresponding dual
underparameterized model with loss Λ.



Going Bayes (1 of 2)

ERM is maximum likelihood estimation under
Gibbs likelihood

p(y|x, θ) ∝ exp

(
− 1
γ

L(F(θ), y)

)
.

Encode the regularizer as a prior (the regularizer is
the log-prior)

π(θ) ∝ exp

(
− 1
τ

R(θ)

)
.

Interpolator: maximize prior over the set of MLEs.



Going Bayes (2 of 2)

Two temperatures: γ (likelihood) and τ (prior)

The posterior distribution

ργ,τ (θ|x, y) ∝ exp

(
− 1
γ

L(F(θ), y)− 1
τ

R(θ)

)
concentrates about the interpolator as

γ → 0+ and then τ → 0+.

So we can measure the error by examining the
posterior under this limit.



Marginal Likelihood

A powerful measure of model quality:

Zn =

∫
Rd

p(y|x, θ)π(θ)dθ

Connections to cross-validation

Fong and Holmes. On the marginal likelihood and cross-validation. Biometrika (2020).

Integrates into the PAC-Bayes framework

Germain et al. PAC-Bayesian theory meets Bayesian inference. NIPS (2016).

The only challenging part of the PAC-Bayes bound depends

on the marginal likelihood.



Bayesian Information Criterion

The marginal likelihood is
approximated using Laplace’s

method when n→∞.

Fails in the overparameterized
setting



Bayesian Duality

Theorem
There is an underparameterized dual model
with the same marginal likelihood:∫

Rd
p(y|x, θ)π(θ)dθ =

∫
Rmn

p∗(y|z)π∗(z)dz.

Under some regularity conditions,
p∗ is log-concave; and
π∗ is smooth.



The Key Technical Trick

Recall the method of integrating in polar
coordinates:∫

Rd
f (θ)dθ =

∫ ∞
0

(∫
‖x‖=r

f (x)dx
)

dr.

This is an example of the coarea formula

Idea: Integrate over the level sets of the model



Consequences of Bayesian
Duality

The roles of sample size and
model size alternate in the
overparameterized setting!

d < mn d > mn
Sample size ↑ good penalized
Model size ↑ penalized good



Interpolating Information
Criterion?

What if we apply the same
techniques used to derive BIC

on the dual model?

Concentrate likelihood first, then
concentrate the prior.



Central PAC-Bayes Bound

Theorem
Under mild conditions, if the loss is
σ2-subgaussian, the expected test error in a
neighbourhood of the interpolating solution is
bounded above by

m
2

IIC + σ2 + n−1 log(δ−1) + const. +O(n−2),

with probability at least 1− δ, where IIC is our
Interpolating Information Criterion.



Interpolating Information
Criterion!
Each of these terms corresponds to and generalized popular heuristics

IIC = − log n
+ log[R(θ∗)−min

θ
R(θ)]︸ ︷︷ ︸ +

1
n

log det(NTK)︸ ︷︷ ︸ +
1
n

logKπM(θ∗)︸ ︷︷ ︸
Log-regulariser Sharpness Curvature

θ0

θ∗

θ0

θ∗

θ0

θ∗

θ0

θ∗

train
test

train
test

vs.



MSE, BIC, and IIC on RFF model
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Uses of the IIC
Lots!

Model selection: like with AIC, BIC, ...
PAC-Bayes bounds: on arXiv soon
Improvements from ensembling
Basis for HTSR-bsed semi-empirical theory
UQ: especially in scientific/engineering ML
Regression diagnostics: on NN models
...

Hodgkinson et al., “The Interpolating Information Criterion for Overparameterized Models,” 2023

Hodgkinson et al., “Monotonicity and Double Descent in Uncertainty Estimation with Gaussian Processes,” 2022



Taxonomy for Model Quality
Yang et al. “Taxonomizing local versus global structure in neural network loss landscapes,” NeurIPS (2021).



● Ensembling has a rich history in ML, with many 
impactful applications, e.g., random forests, 
XGBoost

● Many approaches for ensembling NNs have 
been proposed: 

○ Deep ensembles (ensembling many NNs 
trained from independent initialization), 
Bayesian NNs, etc.

● Recently, additional use cases of ensembling:

○ Robustness, uncertainty quantification 

Ensembling: background



Ensembling: context

Theoretical question: Can we characterize 
when, and by how much, ensembling benefits?

Empirical question:  When can we expect 
ensembling to help significantly in practice?

Broader question:  How does this relate to 
classical statistics versus modern ML/NNs?

In theory:
• large literature on ensembling; 
• most is either specialized to particular 

settings (like random forests), 
• or is too weak to even guarantee that 

ensembling can help at all, 
• much less accurately quantify how much it 

can help

In practice:
• wide variety of (often contradictory) results 
• especially for “deep ensembles” 
• some work suggests ensembling is highly 

beneficial, 
• other work suggests it is less so,
• and in particular that it is unnecessary for 

large modern models



When are ensembles really effective?



Focus on ensembles of classifiers               , where     
could represent, e.g.:

Ensembling: setup

1. A distribution over parameters obtained from 
independent runs of SGD, from either 
dependent (e.g. fine-tuning) or independent 
initializations

2. A finite set of classifiers                          with 
weights

3. A Bayesian posterior distribution over classifiers

We focus on the widely used majority-vote classifier:

We measure performance with the standard 
misclassification rate: 𝐿 ℎ = 𝐸!,#[1 ℎ 𝑋 ≠ 𝑌 ]

We are interested in characterizing how 
much ensembling improves performance 
relative to the performance of any one 
classifier, on average:

Ensemble improvement rate

𝐸𝐼𝑅 =
𝐸!∼# 𝐿 ℎ − 𝐿 ℎ$%

𝐸!∼# 𝐿 ℎ

Improvement vs the average error rate

Relative to the average error rate



Theory: The Competence Assumption 

The competence assumption:

● Rules out pathological cases that limit previous 

theoretical analyses of ensembling

● Easy to check if assumption holds in practice

● Assumption holds broadly for a variety of 

datasets, ensembling methods

Competent ensembles

𝑃!,# 𝑊$ ∈ 𝑡, 0.5 ≥ 𝑃!,# 𝑊$ ∈ 0.5, 1 − 𝑡

Let 𝑊! = 𝐸"∼![1 ℎ 𝑋 ≠ 𝑌) be the fraction of 
classifiers that predict incorrectly on a pair (𝑋, 𝑌). 
We say the ensemble 𝜌 is competent if for all 0 ≤ 𝑡 ≤
1/2,  

Intuitively: “it is more likely that slightly more 

classifiers are correct than slightly less”



New bounds on the majority-vote error rate 
(assuming competence holds)

Theorem 1 (first-order bound)

Theory

𝐸𝐼𝑅 ≥ 0
First of its kind to actually guarantee ensembling

cannot hurt performance

It cannot be used to quantify how much ensembling

improves performance (since it only uses first-order 

information)

“Naïve” first-order bound, widely known in the literature, only guarantees that 
𝐿 ℎ%& ≤ 2𝐸 𝐿 ℎ

implying the significantly weaker result

Comparison to prior results

𝐸𝐼𝑅 ≥ −1



Characterizing the ensemble improvement rate with 
the disagreement-error ratio

Theory

Def: Disagreement-error ratio

Two regimes:

1. Ensembles improve performance when DER is large, disagreement > average error
2. Ensembles do not improve performance by much when DER is small, disagreement < average error

Theorem 2 (second-order bound)

𝐷𝐸𝑅 =
𝐸!,!!∼$ 𝐷 ℎ, ℎ′
𝐸!∼$ 𝐿 ℎ

𝐷𝐸𝑅 ≥ 𝐸𝐼𝑅 ≥
2 𝐾 − 1

𝐾 𝐷𝐸𝑅 −
3𝐾 − 4
𝐾

Def: Model disagreement rate

𝐷 ℎ, ℎ& = 𝑃'(ℎ 𝑋 ≠ ℎ& 𝑋 )



Theorem 3 (Corollary of Theorem 2)

Theory

𝐿 ℎ%& ≤
4 𝐾 − 1

𝐾 (𝐸'∼$ 𝐿 ℎ −
1
2𝐸','

$∼$ [𝐷 ℎ, ℎ) ])

Rearranging the previous theorem, new bound on the error rate of the MV classifier 

Analytically it generalizes and improves on a prior bound (Masegosa et al 2020) in the special 

case of binary classification by a factor of 2 

Corollary: new bounds on the majority-vote error rate 
(assuming competence holds)



Theory

Empirically, Theorem 3 is often significantly sharper than best-known C-bound on the MV 

classifier, given by

𝐿 ℎ"# ≤ 1 − 𝐸 𝑀$
%
/𝐸[𝑀$%]

where 𝑀$ 𝑋, 𝑌 = 𝐸 1 ℎ 𝑋 = 𝑌 −max
&'(

𝐸 1 ℎ 𝑋 = 𝑗 is the margin.

Corollary: new bounds on the majority-vote error rate 
(assuming competence holds)











Conclusions
Each term in the IIC coincides with a known heuristic
for model performance in deep learning.

Objective: Computing the IIC at scale.

Prior Choice: Implicit regularization / incorporating
the universal prior (compression).

Analogue of the AIC?

Better diagnostics for SOTA NN models?

Better ensembling / UQ for SOTA NN models?


