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Background (1 of 2)

@ Belkin et al,, "“Reconciling modern machine-learning practice
and the classical bias—variance trade-off,” PNAS (2019)

@ Zhang et al,, “Understanding deep learning requires
rethinking generalization,” ICLR (2017)

@ Opper and Kinzel, “Statistical Mechanics of Generalization”
(1996); and many others (1990s)



S
Background (2 of 2)

Martin and Mahoney, Rethinking generalization requires revisiting old ideas, arxiv:1710.09553

Very Simple Deep Learning (VSDL) model:
@ DNN is a black box, load-like parameters «, & temperature-like parameters 7
@ Adding noise to training data decreases «

Q Early stopping increases

Nearly any non-trivial model' exhibits “phase diagrams,” with qualitatively different
generalization properties, for different parameter values.
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(a) Training/generalization error. (b) Learning phasesin T-a plane. (C) Noisifying data & adjusting
knobs.

Twhen analyzed via the Statistical Mechanics Theory of Generalization (SMToG)
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Summary

@ Recent “deep learning” boom provides an
opportunity: current theory still does not reflect
observations.

@ Current popular theoretical frameworks appear to
be incapable of bridging this gap.

@ First: examine the data, meaning the models

@ By examining overparameterized models, we
develop a new information criterion for this task.

@ We also learn when ensembles really are
effective.



Examine the data (i.e., models)

Analyzing DNN Weight matrices with WeightWatcher

1. Take a model
U £ v 2. Take a weight matrix
B 3. Do Spectral analysis
4. Histogram of eigenvalues
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You can “pip install weightwatcher”
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Results of examining the data

Martin and Mahoney, “Implicit
Self-Regularization in Deep
Neural Networks: Evidence from
Random Matrix Theory and
Implications for Learning,” IMLR
2021.

Martin et al., “Predicting trends in
the quality of state-of-the-art
neural networks without access
to training or testing data,”
Nature Communications 2021.

Martin and Mahoney,
“Post-mortem on a deep learning
contest: a Simpson’s paradox
and the complementary roles of
scale metrics versus shape
metrics,” arXiv:i2106.00734.

Y.Yang, et al,, “Test accuracy vs
generalization gap: Model
selection in NLP without
accessing any training or testing
data,” KDD 2023.
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Let's try to develop theory ML
people will grok.



Generalization Bounds using Lower Tail Exponents in Stochastic Optimizers

Liam Hodgkinson! Umut Simsekli?> Rajiv Khanna® Michael W. Mahoney !

Abstract

Despite the ubiquitous use of stochastic opti-
mization algorithms in machine learning, the
precise impact of these algorithms and their dy-
namics on generalization performance in realis-
tic non-convex settings is still poorly understood.
‘While recent work has revealed connections be-
tween generalization and heavy-tailed behavior in
stochastic optimization, this work mainly relied
on continuous-time approximations; and a rigor-
ous treatment for the original discrete-time itera-
tions is yet to be performed. To bridge this gap,
we present novel bounds linking generalization
to the lower tail exponent of the transition ker-
nel associated with the optimizer around a local
minimum, in both discrete- and continuous-time
settings. To achieve this, we first prove a data-
and algorithm-dependent generalization bound in
terms of the celebrated Fernique-Talagrand func-
tional applied to the trajectory of the optimizer.
Then, we specialize this result by exploiting the
Markovian structure of stochastic optimizers, and
derive bounds in terms of their (data-dependent)
transition kernels. We support our theory with em-
pirical results from a variety of neural networks,
showing ions between ization error

Brownian motion

05 >
»
00
>3

05 10 -1o 05 o0 05
yiw)=0.99 viw)=122

Lévy process

Figure 1: Discrete sample path approximations of a heavy-
tailed a-stable Lévy process (@ = 1.5), and standard
Brownian motion. Estimates of our normalized Fernique—
Talagrand functional 7} (-) is reported under each figure
(see Section 2.3). Observe this functional is reduced with
smaller tail index and “tighter clustering” of the trajectory.

surprising generalization ability of stochastic gradient de-
scent (SGD) and its various extensions for non-convex prob-
lems — most recently in the context of neural networks
and deep learning. Classical convex optimization-centric
approaches fail to explain this phenomenon.

There has been an increasing number of attempts for de-
veloping generalization bounds for non-convex learning
settings. This work has approached the problem from
different perspectives, such as information theory, com-

and lower tail exponents.

1. Introduction

or implicit (algorith-
mic) regularization (details to be provided in Section 1.2).
Among these approaches, a promising direction has been to
consider optimization trajectories, rather than single point
estimates obtained during (or at the end of) the optimiza-



But the bound did not correlate with
real-world performance!



But the bound did not correlate with
real-world performance!

Options for Theoretical Framework:
@ PAC bounds (inadequate)
@ Mutual information approaches (unlikely)
@ PAC-Bayes framework (good, but hard)



Where does it go wrong?
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Parameterized Models

Consider a parameterized model class
(0 €RY x € X) — f(h,x) € R™
where
@ n: number of samples

@ m: number of scalar outputs

@ d: number of parameters

(under)parameterized if d <mn
overparameterized if d> mn
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Overparameterized Models

The most performant models are often

overparameterized.

(log;o scale)
Model Dataset nm d Test Accuracy
ResNet18 CIFAR-10 57 7.0 93%
WRN-28-10 SVHN 6.8 7.6 98%
ViT-E ImageNet-1k 9.1 9.6 91%
EFL SNLI 62 86 93%
ResNet34 Chaoyang (noisy) 4.4 7.8 83%
FilLM ETT (noisy) 40 60 —

..and have virtually zero error on training set.



Bias-Variance Tradeoff
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Trevor Hastie

Robert Tibshirani “Interpolating
Jerome Friedman .
fits... [are]
unlikely to
predict future
data well at all.”

pg. 37

The Elements of
Statistical Learning

Second Edition

@ Springer
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SURPRISES IN HIGH-DIMENSIONAL RIDGELESS LEAST SQUARES
INTERPOLATION
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Interpolators—estimators that achieve zero training error—have at-
tracted growing attention in machine learning, mainly because state-of-the art
neural networks appear to be models of this type. In this paper, we study min-
imum £7 norm (“ridgeless”) interpolation least squares regression, focusing
on the high-dimensional regime in which the number of unknown parameters
p is of the same order as the number of samples n. We consider two dif-
ferent models for the feature distribution: a linear model, where the feature
vectors x; € RP are obtained by applying a linear transform to a vector of
ii.d. entries, x; = =1/ zzi (with z; € RP); and a nonlinear model, where the
feature vectors are obtained by passing the input through a random one-layer
neural network, x; = (Wz;) (with z; € R?, W € RP*4 3 matrix of i.id.
entries, and ¢ an activation function acting componentwise on Wz;). We



Double Descent...
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...In Neural Networks

Classical Regime: Modern Regime:
Bias-Variance Tradeoff Larger Model is Better
B
_05 " / Critical — Test
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Nakkiran, Preetum, et al. Deep double descent: Where bigger models and more data hurt. Journal of
Statistical Mechanics: Theory and Experiment 202112 (2021): 124003.
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Observation

Large class of interpolating solutions

o PAC bounds (worst case error) will
often be vacuous in this regime.

@ The n — o~ limit is not relevant to
deep learning

Implicit Regularization
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Implicit Regularization?

@ Explicit: Replace minf with minf + \g:
interpret heuristically or i.t.o. a Bayesian prior.

@ Implicit I: min f is intractable — so approximate it:
Thm 1 fcrpprox =~ Topt
Thm 2: fapprox €xactly solves minf + Ag, for some A, g.
“Approximate Computation and Implicit Regularization ...” Mahoney, PODS 2012.

@ Implicit 2: Do SGD for NN training and fiddle with knobs:
Every training knob de facto is a regularization knob.

“Regularization for Deep Learning: A Taxonomy,” Kukacka et al. 2017.

@ Implicit Self-Regularization: The training process itself
regularizes, depending on (correlated) properties of the data.
“Implicit Self-Regularization in Deep Neural Networks ..,” M&M, IMLR 2021.



INn practice, the error curve can exhibit
any form of multiple descent.

But something strange is going on:
no general theory seems to be able
to predict this (relies on MSE
calculations).



Taxonomy for Model Quality

Yang et al. “Taxonomizing local versus global structure in neural network loss landscapes,” NeurlPS (2021).
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Figure 1: (Caricature of different types of loss landscapes). Globally well-connected versus globally
poorly-connected loss landscapes; and locally sharp versus locally flat loss landscapes. Globally well-connected
loss landscapes can be interpreted in terms of a global “rugged convexity”; and globally well-connected and
locally flat loss landscapes can be further divided into two sub-cases, based on the similarity of trained models.
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Observations

o Double descent cannot arise in the
large data limit n — oo (with other
things fixed)!

o Most successful predictions for
neural networks arise from
Bayesian approaches.

e Some form of duality taking place.
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Setup

Parameterized models are fitted using
empirical risk minimization:

manE f(o X, ) = L(F(0),y)

pred|ct|ons Iabel

Equivalently, maximum likelihood estimation
under Gibbs likelihood

PIx.0) o exp (—%L(Fw),y))
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Interpolators

In the overparameterized regime, solutions
are interpolators:

f(0",x;)) =y;foralli=1... n.

How do we uniquely identify 6*? Regularizers.

mein R(0)

subjectto f(6,x;) =y;foralli=1,....n.
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Interpolators

Example (Linear Regression)

min 16]|% subject to X0 = y.

Example (Stochastic Gradient Descent)

min E||V«f(8, X)||* subject to (8, x;) = y;.

@ Smith, Samuel L., et al. On the Origin of Implicit Regularization
in Stochastic Gradient Descent. ICLR 2020.




Note that

0* = argmin R(#) subjectto L(F(0),y)=0.
0

iIs not the same as

0" = argamin L(F(0),y) + vR(0)




S
Duality

Hard constraints exhibit duality, soft
constraints do not
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Duality

Hard constraints exhibit duality, soft
constraints do not

1
A(X) = supinf |R(0) + —L(F )+ > i (f(xi, 0
() = supint | R(6) + Z 20 =3)|.

Theorem (Augmented Lagrange Duality)

problem in RY problem in R"™
- ~ ——
inf  R(0) = sup A(N) .
fezero-loss AERMN
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Duality

Hard constraints exhibit duality, soft
constraints do not

1
A(X) = supinf |R(0) + —L(F )+ > i (f(xi, 0 :
() = supint | R(6) + Z +6) =)

Theorem (Augmented Lagrange Duality)

overparameterized underparameterized
7\

~ —
inf  R(0) = sup A(N)
fczero-loss AeRMN




Corollary

Any overparameterized model with a
regularizer R has a corresponding dual
underparameterized model with loss A.
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Going Bayes (1 of 2)

@ ERM is maximum likelihood estimation under
Gibbs likelihood

pU/x.0) x o (1 L(F0).1) ).

@ Encode the regularizer as a prior (the regularizer is
the log-prior)

o) o0 (1610

@ Interpolator: maximize prior over the set of MLEs.
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Going Bayes (2 of 2)

@ Two temperatures: v (likelihood) and 7 (prior)

@ The posterior distribution

pr0x) o0 (=L LF(0).) - RO))

concentrates about the interpolator as

v — Ot and then T — Ot

@ So we can measure the error by examining the
posterior under this limit.
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Marginal Likelihood

A powerful measure of model quality:

2z, = / p(yIx,0)m(8)d0

@ Connections to cross-validation

Fong and Holmes. On the marginal likelihood and cross-validation. Biometrika (2020).

@ Integrates into the PAC-Bayes framework

Germain et al. PAC-Bayesian theory meets Bayesian inference. NIPS (2016).
@ The only challenging part of the PAC-Bayes bound depends

on the marginal likelihood.
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Bayesian Information Criterion

The marginal likelihood is
approximated using Laplace’s
method when n — oc.

Fails in the overparameterized
setting



Bayesian Duality

There is an underparameterized dual model
with the same marginal likelihood:

/R PO = [ plyiz)r(2)iz

Rmn

Under some regularity conditions,
@ p*islog-concave; and
@ 71*is smooth.
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The Key Technical Trick

Recall the method of integrating in polar
coordinates:

» f(0)do = /ooo (/Hxnzr f(X)dX) dr.

This is an example of the coarea formula

Idea: Integrate over the level sets of the model
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Consequences of Bayesian
Duality

The roles of sample size and
model size alternate in the
overparameterized setting!

. d<mn d>mn
Sample size good penalized
Model size 1 | penalized good
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Interpolating Information
Criterion?

What if we apply the same
techniques used to derive BIC
on the dual model?

Concentrate likelihood first, then
concentrate the prior.



Central PAC-Bayes Bound

Theorem

Under mild conditions, if the loss is
o?-subgaussian, the expected test error in a
neighbourhood of the interpolating solution is
bounded above by

%uc + 02+ n~log(67") + const. + O(n~2),

with probability at least 1 — 9, where IIC is our
Interpolating Information Criterion.




Interpolating Information
Criterion!

Each of these terms corresponds to and generalized popular heuristics

IIC = —logn
1 1
+ log[R(6) — mein R(9)] + - logdet(NTK)  + - log K7,(07)
N ~ ) N ~~ S N —— —
Log-regulariser Sharpness Curvature

train

o



MSE, BIC, and IIC on RFF model
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Uses of the lIC

Lots!
@ Model selection: like with AIC, BIC, ...
@ PAC-Bayes bounds: on arXiv soon
@ Improvements from ensembling
@ Basis for HTSR-bsed semi-empirical theory
o
o

UQ: especially in scientific/engineering ML
Regression diagnostics: on NN models
Qo ..

Hodgkinson et al,, “The Interpolating Information Criterion for Overparameterized Models,” 2023

Hodgkinson et al,, “Monotonicity and Double Descent in Uncertainty Estimation with Gaussian Processes,” 2022



Taxonomy for Model Quality

Yang et al. “Taxonomizing local versus global structure in neural network loss landscapes,” NeurlPS (2021).
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Figure 1: (Caricature of different types of loss landscapes). Globally well-connected versus globally
poorly-connected loss landscapes; and locally sharp versus locally flat loss landscapes. Globally well-connected
loss landscapes can be interpreted in terms of a global “rugged convexity”; and globally well-connected and
locally flat loss landscapes can be further divided into two sub-cases, based on the similarity of trained models.




Ensembling: background

Ensembling has a rich history in ML, with many
impactful applications, e.g., random forests,
XGBoost

Many approaches for ensembling NNs have
been proposed:
o Deep ensembles (ensembling many NNs
trained from independent initialization),
Bayesian NNs, etc.

Simple and Scalable Predictive Uncertainty
Recently, additional use cases of ensembling: E using Deep Ensembl

o Robustness, uncertainty quantification

Balaji Lakshminarayanan _Alexander Pritzel Charles Blundell

cepMi
{belajiln,apritzel, cblundell}Ogoogle. con




Ensembling: context

In theory:

large literature on ensembling;

most is either specialized to particular
settings (like random forests),

or is too weak to even guarantee that
ensembling can help at all,

much less accurately quantify how much it
can help

In practice:

wide variety of (often contradictory) results
especially for “deep ensembles”

some work suggests ensembling is highly
beneficial,

other work suggests it is less so,

and in particular that it is unnecessary for
large modern models

Deep Ensembles Work, But Are They Necessary?

Taiga Abe' E. Kelly Buchanan™! Geoff Pleiss Richard Zemel!

John P. Cunningham'
“Columbia University
(282507, k02154, mp2162, Jpc2ist) dcoluabia. od
e10cs. columbia

Theoretical question: Can we characterize
when, and by how much, ensembling benefits?

Empirical question: When can we expect
ensembling to help significantly in practice?

Broader question: How does this relate to
classical statistics versus modern ML/NNs?




When are ensembles really effective?




Ensembling: setup

Focus on ensembles of classifiers h ~ p, where p

could represent, e.g.:

1. Adistribution over parameters obtained from
independent runs of SGD, from either
dependent (e.g. fine-tuning) or independent
initializations

2. Afinite set of classifiershy, . . ., by with
weights 21, ..., PMm

3. A Bayesian posterior distribution over classifiers

We focus on the widely used majority-vote classifier:

hav(z) = arg m;mx Epp[1(h(z) = y)]

We measure performance with the standard
misclassification rate: L(h) = Exy[1(h(X) # Y)]

We are interested in characterizing how
much ensembling improves performance
relative to the performance of any one
classifier, on average:

Ensemble improvement rate
Improvement vs the average error rate
|

_ Enep[LOD] = L(han)'

EIR =
L Eh~p [L (h)]

Relative to the average error rate




Theory: The Competence Assumption

Intuitively: “it is more likely that s/ightly more
classifiers are correct than slightly less”

The competence assumption:

Rules out pathological cases that limit previous
theoretical analyses of ensembling

Easy to check if assumption holds in practice
Assumption holds broadly for a variety of
datasets, ensembling methods

Competent ensembles

Let W, = E,,[1(h(X) # Y)] be the fraction of
classifiers that predict incorrectly on a pair (X,Y).
We say the ensemble p is competent if forall 0 < t <
1/2,

Pyy (W €[£,0.5 )) > Pyy(W, €[05,1 - t])

REANIST RE/Mhyrold RFQSAR m.,pr aserbie) Beop Ensembie)

Bk

= 1w,e[: ) - ‘w,euru 0




Theory

New bounds on the majority-vote error rate
(assuming competence holds)

Theorem 1 (first-order bound) First of its kind to actually guarantee ensembling
EIR>0 ‘ cannot hurt performance

It cannot be used to quantify how much ensembling

improves performance (since it only uses first-order

information) @

“Naive” first-order bound, widely known in the literature, only guarantees that
L(hyy) < 2E[L(R)]

implying the significantly weaker result
EIR = -1

Comparison to prior results




Theory

Characterizing the ensemble improvement rate with
the disagreement-error ratio

Def: Model disagreement rate

D(h,h") = Px(h(X) # h'(X))

Theorem 2 (second-order bound)
20K-1) 3K — 4
Def: Disagreement-error ratio DER 2 EIR 2 K DER — K

_ En,h’~p[D(h- r)]
DR = L]

Two regimes:

1. Ensembles improve performance when DER is large, disagreement > average error
2. Ensembles do not improve performance by much when DER is small, disagreement < average error




Theory

Corollary: new bounds on the majority-vote error rate
(assuming competence holds)

Rearranging the previous theorem, new bound on the error rate of the MV classifier

Theorem 3 (Corollary of Theorem 2)

L) = 22D 6, 1) - 2B, D6, )

Analytically it generalizes and improves on a prior bound (Masegosa et al 2020) in the special
case of binary classification by a factor of 2




Theory

Corollary: new bounds on the majority-vote error rate
(assuming competence holds)

Empirically, Theorem 3 is often significantly sharper than best-known C-bound on the MV
classifier, given by
L(hyy) < 1—E[M, ] JE[M3]

where M, (X,Y) = E[1(h(X) =Y)] - r}]f;(E[l(h(X) = j)] is the margin.

[
04 E=3 Ourboud
= MV Error

niLhhLL

mmm m v TesneCIEAR 10




Theory

Corollary: refinement in the case of finite ensembles with many classes

One weakness of Theorem 3 comes in the case of poor scaling

@~ MV Error

with many classes (see figure on MNIST the right) R S
g0z
£0is
Forfinite ensembles, where # classifiers < # classes (e.g., ImageNet Gowo

with 1000 classes), we can prove a refined version of Theorem 3

4 5 & 7 8
# MNIST Classes

Theorem 4
Let M = min(K, N) (K = #classes, N = #classifiers), then

4(M —

L) < 2 B L)~ 2, DO, OD




Empirical results (1 of 3)

Ensemble improvement, DER become small
beyond the interpolation threshold

Thyroid QSAR

Bagged Random Feature classifiers
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Ensembling becomes less useful for
large models which can easily
interpolate the training data (i.e.,
obtain zero training error)

This corresponds to the fact that the
disagreement-error ratio gets small in
this regime




Empirical results (2 of 3)

An counterexample: random forests

MNIST Thyroid QSAR

15
." 1.0 DOOOOCO0O
1.0 10 jo¥
HOO0000

05 )‘(\- o i roouooeeco 02 booooo0o
0.0 0.0 ¥ 0.0 b0000000

10% 10t 10% 10 10% 10*

Max Leaf Nodes Max Leaf Nodes Max Leaf Nodes

-0~ DER -0~ EIR -0 Avg. Train Error

In contrast to other model classes,
random forests do not undergo a
transition at the interpolation threshold

This is because once zero training error
is achieved, trees cannot continue to
grow (e.g., Gini impurity = 0)

Implication: trees are uniquely well-
suited to ensembling




Empirical results (3 of 3)

Large language models fine-tuned Deep Bayesian ensembles by design
on small datasets easily interpolate, have high disagreement, expectedly
ensembling doesn’t help much ensembling is very beneficial

1.2

12
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Conclusions

Each term in the IIC coincides with a known heuristic
for model performance in deep learning.

@ Objective: Computing the IIC at scale.

@ Prior Choice: Implicit regularization / incorporating
the universal prior (compression).

@ Analogue of the AIC?

Better diagnostics for SOTA NN models?
Better ensembling / UQ for SOTA NN models?



