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Insider’s vs outsider’s views (1 of 2) 

Ques: Genetics vs molecular biology vs biochemistry vs biophysics:  
•   What’s the difference? 
 

 
 
 

 
 
 
 



Insider’s vs outsider’s views (1 of 2) 

Ques: Genetics vs molecular biology vs biochemistry vs biophysics:  
•   What’s the difference? 
 
 
 
Answer: Not much, (if you are a “methods” person*) 
•  they are all biology 
•  you get data from any of those areas, ignoring important domain 
details, and evaluate your method qua method 
•  your reviewers evaluate the methods and don’t care about the 
science 
•  ... 
 
 
*E.g., one who self-identifies as doing data analysis or machine learning or 
statistics or theory of algorithms or artificial intelligence or ... 

 
 
 
 



Insider’s vs outsider’s views (2 of 2) 

Ques: Data analysis vs machine learning vs statistics vs theory of 
algorithms vs artificial intelligence (vs scientific computing vs 
computational mathematics vs databases ...):  
•   What’s the difference? 
 
 

 
 
 
 



Insider’s vs outsider’s views (2 of 2) 

Ques: Data analysis vs machine learning vs statistics vs theory of 
algorithms vs artificial intelligence (vs scientific computing vs 
computational mathematics vs databases ...):  
•   What’s the difference? 
 
Answer: Not much, (if you are a “science” person*) 
•  they are all just tools 
•  you get a tool from any of those areas and bury details in a methods 
section 
•  your reviewers evaluate the science and don’t care about the 
methods 
•  ... 
 
 
*E.g., one who self identifies as doing genetics or molecular biology or 
biochemistry or biophysics or ...  

 
 
 
 



BIG data??? MASSIVE data???? 

NYT, Feb 11, 2012: “The Age of Big Data”   

•  “What is Big Data? A meme and a marketing term, for sure, but also shorthand 
for advancing trends in technology that open the door to a new approach to 
understanding the world and making decisions. …” 

Why are big data big?  

•  Generate data at different places/times and different resolutions 

•  Factor of 10 more data is not just more data, but different data 

 



BIG data??? MASSIVE data???? 

MASSIVE data:  

•  Internet, Customer Transactions, Astronomy/HEP = “Petascale” 

•  One Petabyte = watching 20 years of movies (HD) = listening to 20,000 
years of MP3 (128 kbits/sec) = way too much to browse or comprehend 

 

massive data:  

•  105 people typed at 106 DNA SNPs; 106 or 109 node social network; etc. 
 

 

In either case, main issues:  

•  Memory management issues, e.g., push computation to the data  

•  Hard to answer even basic questions about what data “looks like” 

 



Thinking about large-scale data 

Data generation is modern version of microscope/telescope:  
•  See things couldn't see before: e.g., fine-scale movement of people, fine-
scale clicks and interests; fine-scale tracking of packages; fine-scale 
measurements of temperature, chemicals, etc. 

•  Those inventions ushered new scientific eras and new understanding of the 
world and new technologies to do stuff 
 

Easy things become hard and hard things become easy:  
•  Easier to see the other side of universe than bottom of ocean 

•  Means, sums, medians, correlations is easy with small data 

Our ability to generate data far exceeds our 
ability to extract insight from data. 

 



How do we view BIG data? 



Algorithmic vs. Statistical Perspectives … 

Computer Scientists  
•  Data: are a record of everything that happened.  
•  Goal: process the data to find interesting patterns and associations. 
•  Methodology: Develop approximation algorithms under different models 
of data access since the goal is typically computationally hard. 
 
Statisticians (and Natural Scientists) 
•  Data: are a particular random instantiation of an underlying process 
describing unobserved patterns in the world. 
•  Goal: is to extract information about the world from noisy data. 
•  Methodology: Make inferences (perhaps about unseen events) by 
positing a model that describes the random variability of the data around 
the deterministic model.  

Lambert (2000), Mahoney (2010)   



... are VERY different paradigms 

Statistics, natural sciences, scientific computing, etc:  
•  Problems often involve computation, but the study of 
computation per se is secondary 
•  Only makes sense to develop algorithms for well-posed* 
problems 
•  First, write down a model, and think about computation later 
 
Computer science: 
•  Easier to study computation per se in discrete settings, e.g., 
Turing machines, logic, complexity classes  
•  Theory of algorithms divorces computation from data 
•  First, run a fast algorithm, and ask what it means later 

*Solution exists, is unique, and varies continuously with input data 



Anecdote 1:  
Randomized Matrix Algorithms 

How	  to	  “bridge	  the	  gap”?	  

• 	  decouple	  (implicitly	  or	  explicitly)	  randomization	  from	  linear	  algebra	  

• 	  importance	  of	  statistical	  leverage	  scores!	  

Theoretical origins 

•  theoretical computer science, 
convex analysis, etc. 

•  Johnson-Lindenstrauss 

•  Additive-error algs 

•  Good worst-case analysis 

•  No statistical analysis 

•  No implementations 

Practical	  applications	  

• 	  NLA,	  ML,	  statistics,	  data	  analysis,	  
genetics,	  etc	  

• 	  Fast	  JL	  transform	  

• 	  Relative-‐error	  algs	  

• 	  Numerically-‐stable	  algs	  

• 	  Good	  statistical	  properties	  
• 	  Beats	  LAPACK	  &	  parallel-‐

distributed	  implementations	  on	  
terabytes	  of	  data	  

Mahoney “Algorithmic and Statistical Perspectives on Large-Scale Data Analysis” (2010) 
Mahoney “Randomized Algorithms for Matrices and Data” (2011)   



Anecdote 2:  
Communities in large informatics graphs 

People imagine social 
networks to look like: 

Mahoney “Algorithmic and Statistical Perspectives on Large-Scale Data Analysis” (2010) 
Leskovec, Lang, Dasgupta, & Mahoney “Community Structure in Large Networks ...” (2009)   

How do we know this plot is “correct”?  

•  (since computing conductance is intractable) 

•  Lower Bound Result; Structural Result; Modeling Result; Etc. 

•  Algorithmic Result (ensemble of sets returned by different approximation 
algorithms are very different) 

•  Statistical Result (Spectral provides more meaningful communities than flow)  

Real social networks 
actually look like: 

Size-resolved conductance 
(degree-weighted 
expansion) plot looks like: 

Data are expander-like at 
large size scales !!! 

There do not exist good large 
clusters in these graphs !!! 



Anecdote 3:  
Approx. comp. and implicit regularization 

Mahoney “Approximate Computation and Implicit Regularization for Very Large-scale Data Analysis” (2012) 

Explicitly-imposed 
regularization 

•  Traditionally, 
regularization uses 
explicit norm 
constraint to make 
sure solution vector is 
“small” and not-too-
complex 

•  min ||f||+λ||g(x)||  
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Implicitly-imposed regularization 

•  Binning, pruning, early stopping, etc. 

•  Design decisions engineers make 

•   Approximation algorithms implicitly 
embed data in a “nice” metric/geometric 
place and then round the solution. 

Big question: Can we formalize the notion that/when approximate 
computation in and of itself can implicitly lead to “better” or “more 

regular” solutions than exact computation? (Short answer: yes!) 



Lessons from the anecdotes 

We are being forced to engineer a union between two very different 
worldviews on what are fruitful ways to view the data 
•  in spite of our best efforts not to 
 

The forcing function (generation of lots of valuable data) is forcing us to 
revisit old methods in a new light  
•  often reinventing, but the forcing function makes that acceptable 
 

Given existing forcing functions and disciplinary lines, many methods and 
approaches are “undervalued” for what non-foundational people want 
•  and it would be good not to loose them 
 

QUESTION: How can we bridge the gap between these two worldviews? 

QUESTION: What, if anything, does biomedicine have to offer? 

 



Application in: Human Genetics 

 Single Nucleotide Polymorphisms: the most common type of genetic variation in the 
genome across different individuals. 

 They are known locations at the human genome where two alternate nucleotide bases 
(alleles) are observed (out of A, C, G, T). 

SNPs 

in
di
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du
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 … AG CT GT GG CT CC CC CC CC AG AG AG AG AG AA CT AA GG GG CC GG AG CG AC CC AA CC AA GG TT AG CT CG CG CG AT CT CT AG CT AG GG GT GA AG …!
… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CT AA GG GG CC GG AA GG AA CC AA CC AA GG TT AA TT GG GG GG TT TT CC GG TT GG GG TT GG AA …!

… GG TT TT GG TT CC CC CC CC GG AA AG AG AA AG CT AA GG GG CC AG AG CG AC CC AA CC AA GG TT AG CT CG CG CG AT CT CT AG CT AG GG GT GA AG …!
… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CC GG AA CC CC AG GG CC AC CC AA CG AA GG TT AG CT CG CG CG AT CT CT AG CT AG GT GT GA AG …!

… GG TT TT GG TT CC CC CC CC GG AA GG GG GG AA CT AA GG GG CT GG AA CC AC CG AA CC AA GG TT GG CC CG CG CG AT CT CT AG CT AG GG TT GG AA …!

… GG TT TT GG TT CC CC CG CC AG AG AG AG AG AA CT AA GG GG CT GG AG CC CC CG AA CC AA GT TT AG CT CG CG CG AT CT CT AG CT AG GG TT GG AA …!

… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA TT AA GG GG CC AG AG CG AA CC AA CG AA GG TT AA TT GG GG GG TT TT CC GG TT GG GT TT GG AA …!

Matrices including thousands of individuals and hundreds of thousands or millions 
(large for some people, small for other people) if SNPs are available. 

 

This can be written as a “matrix,” assume it’s been preprocessed properly, so let’s 
call black box matrix algorithms. 

 



Focus at a specific locus and assay the 
observed nucleotide bases (alleles). 
 
SNP: exactly two alternate alleles 
appear. 

Two copies of a chromosome 
(father, mother) 

C!

T!



SNPs 

in
di

vi
du
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… AG CT GT GG CT CC CC CC CC AG AG AG AG AG AA CT AA GG GG CC GG AG CG AC CC AA CC AA GG TT AG CT CG CG CG AT CT CT AG CT AG GG GT GA AG … 
… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CT AA GG GG CC GG AA GG AA CC AA CC AA GG TT AA TT GG GG GG TT TT CC GG TT GG GG TT GG AA … 
… GG TT TT GG TT CC CC CC CC GG AA AG AG AA AG CT AA GG GG CC AG AG CG AC CC AA CC AA GG TT AG CT CG CG CG AT CT CT AG CT AG GG GT GA AG … 
… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CC GG AA CC CC AG GG CC AC CC AA CG AA GG TT AG CT CG CG CG AT CT CT AG CT AG GT GT GA AG … 
… GG TT TT GG TT CC CC CC CC GG AA GG GG GG AA CT AA GG GG CT GG AA CC AC CG AA CC AA GG TT GG CC CG CG CG AT CT CT AG CT AG GG TT GG AA … 
… GG TT TT GG TT CC CC CG CC AG AG AG AG AG AA CT AA GG GG CT GG AG CC CC CG AA CC AA GT TT AG CT CG CG CG AT CT CT AG CT AG GG TT GG AA … 
… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA TT AA GG GG CC AG AG CG AA CC AA CG AA GG TT AA TT GG GG GG TT TT CC GG TT GG GT TT GG AA … 

Focus at a specific locus and 
assay the observed alleles. 
SNP: exactly two alternate 
alleles appear. 

Two copies of a chromosome 
(father, mother) 

C! T!

An individual could be: 
-  Heterozygotic (in our study, CT = TC) 



SNPs 
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… AG CT GT GG CT CC CC CC CC AG AG AG AG AG AA CT AA GG GG CC GG AG CG AC CC AA CC AA GG TT AG CT CG CG CG AT CT CT AG CT AG GG GT GA AG … 
… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CT AA GG GG CC GG AA GG AA CC AA CC AA GG TT AA TT GG GG GG TT TT CC GG TT GG GG TT GG AA … 
… GG TT TT GG TT CC CC CC CC GG AA AG AG AA AG CT AA GG GG CC AG AG CG AC CC AA CC AA GG TT AG CT CG CG CG AT CT CT AG CT AG GG GT GA AG … 
… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CC GG AA CC CC AG GG CC AC CC AA CG AA GG TT AG CT CG CG CG AT CT CT AG CT AG GT GT GA AG … 
… GG TT TT GG TT CC CC CC CC GG AA GG GG GG AA CT AA GG GG CT GG AA CC AC CG AA CC AA GG TT GG CC CG CG CG AT CT CT AG CT AG GG TT GG AA … 
… GG TT TT GG TT CC CC CG CC AG AG AG AG AG AA CT AA GG GG CT GG AG CC CC CG AA CC AA GT TT AG CT CG CG CG AT CT CT AG CT AG GG TT GG AA … 
… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA TT AA GG GG CC AG AG CG AA CC AA CG AA GG TT AA TT GG GG GG TT TT CC GG TT GG GT TT GG AA … 

C C

Focus at a specific locus and 
assay the observed alleles. 
SNP: exactly two alternate 
alleles appear. 

Two copies of a chromosome 
(father, mother) 

An individual could be: 
-  Heterozygotic (in our studies, CT = TC) 
-  Homozygotic at the first allele, e.g., C 
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… AG CT GT GG CT CC CC CC CC AG AG AG AG AG AA CT AA GG GG CC GG AG CG AC CC AA CC AA GG TT AG CT CG CG CG AT CT CT AG CT AG GG GT GA AG … 
… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CT AA GG GG CC GG AA GG AA CC AA CC AA GG TT AA TT GG GG GG TT TT CC GG TT GG GG TT GG AA … 
… GG TT TT GG TT CC CC CC CC GG AA AG AG AA AG CT AA GG GG CC AG AG CG AC CC AA CC AA GG TT AG CT CG CG CG AT CT CT AG CT AG GG GT GA AG … 
… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CC GG AA CC CC AG GG CC AC CC AA CG AA GG TT AG CT CG CG CG AT CT CT AG CT AG GT GT GA AG … 
… GG TT TT GG TT CC CC CC CC GG AA GG GG GG AA CT AA GG GG CT GG AA CC AC CG AA CC AA GG TT GG CC CG CG CG AT CT CT AG CT AG GG TT GG AA … 
… GG TT TT GG TT CC CC CG CC AG AG AG AG AG AA CT AA GG GG CT GG AG CC CC CG AA CC AA GT TT AG CT CG CG CG AT CT CT AG CT AG GG TT GG AA … 
… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA TT AA GG GG CC AG AG CG AA CC AA CG AA GG TT AA TT GG GG GG TT TT CC GG TT GG GT TT GG AA … 

T! T!

Focus at a specific locus and 
assay the observed alleles. 
SNP: exactly two alternate 
alleles appear. 

Two copies of a chromosome 
(father, mother) 

An individual could be: 
-  Heterozygotic (in our studies, CT = TC) 
-  Homozygotic at the first allele, e.g., C 
-  Homozygotic at the second allele, e.g., T 

à  Encode as 0 
à  Encode as +1 
à  Encode as -1 



SNPs 

In
di

vi
du

al
s … AG CT GT GG CT CC CC CC CC AG AG AG AG AG AA CT AA GG GG CC GG AG CG AC CC AA CC AA GG TT AG CT CG CG CG AT CT CT AG CT AG GG GT GA AG … 

… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CT AA GG GG CC GG AA GG AA CC AA CC AA GG TT AA TT GG GG GG TT TT CC GG TT GG GG TT GG AA … 
… GG TT TT GG TT CC CC CC CC GG AA AG AG AA AG CT AA GG GG CC AG AG CG AC CC AA CC AA GG TT AG CT CG CG CG AT CT CT AG CT AG GG GT GA AG … 
… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CC GG AA CC CC AG GG CC AC CC AA CG AA GG TT AG CT CG CG CG AT CT CT AG CT AG GT GT GA AG … 
… GG TT TT GG TT CC CC CC CC GG AA GG GG GG AA CT AA GG GG CT GG AA CC AC CG AA CC AA GG TT GG CC CG CG CG AT CT CT AG CT AG GG TT GG AA … 
… GG TT TT GG TT CC CC CG CC AG AG AG AG AG AA CT AA GG GG CT GG AG CC CC CG AA CC AA GT TT AG CT CG CG CG AT CT CT AG CT AG GG TT GG AA … 
… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA TT AA GG GG CC AG AG CG AA CC AA CG AA GG TT AA TT GG GG GG TT TT CC GG TT GG GT TT GG AA … 

SNPs 
 0  0  0  1  0 -1  1  1  1  0  0  0  0  0  1  0  1 -1 -1  1 -1  0  0  0  1  1  1  1 -1 -1  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  
-1 -1 -1  1 -1 -1  1  1  1 -1  1  0  0  0  1  0  1 -1 -1  1 -1  1 -1  1  1  1  1  1 -1 -1  1 -1 -1 -1 -1 -1 -1  1 -1 -1 -1  1 -1 -1  1  
-1 -1 -1  1 -1 -1  1  1  1 -1  1  0  0  1  0  0  1 -1 -1  1  0  0  0  0  1  1  1  1 -1 -1  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  
-1 -1 -1  1 -1 -1  1  1  1 -1  1  0  0  0  1  1 -1  1  1  1  0 -1  1  0  1  1  0  1 -1 -1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  
-1 -1 -1  1 -1 -1  1  1  1 -1  1 -1 -1 -1  1  0  1 -1 -1  0 -1  1  1  0  0  1  1  1 -1 -1 -1  1  0  0  0  0  0  0  0  0  0  1 -1 -1  1  
-1 -1 -1  1 -1 -1  1  0  1  0  0  0  0  0  1  0  1 -1 -1  0 -1  0  1 -1  0  1  1  1 -1 -1  0  0  0  0  0  0  0  0  0  0  0  1 -1 -1  1  
-1 -1 -1  1 -1 -1  1  1  1 -1  1  0  0  0  1 -1  1 -1 -1  1  0  0  0  1  1  1  0  1 -1 -1  1 -1 -1 -1 -1 -1 -1  1 -1 -1 -1  0 -1 -1  1 

Our SNP data as a matrix 
In

di
vi

du
al

s 



The average genome (~2x3 billion base pairs) contains: 
•  3-4 million single nucleotide variations, compared to the reference sequence 

(Single Nucleotide Polymorphisms – SNPs) 
•  ~0.4 million small insertions or deletions ‘indels’ (1-100bp) 
•  ~5,000 larger insertions or deletions (>100bp) 

!

We are quite similar, but we are different … 

Variation across all (~23,000) genes - the ‘exome’ 
•  ~18,000 variant 
•  ~8-9,000 functional variant 
•  ~95% of variants are commo 
•  ~500-1000 genes with new mutation 
•  ~100-200 knock-out mutations 
 

Genetic variation shaped by evolutionary forces 
•  Mutation 
•  Genetic drift 
•  Population structure (inbreeding, mating patterns, etc.) 
•  Gene flow and admixture 
•  Natural selection 
 

Great application domain to stress test novel methods … 



    Early Homo sapiens sapiens 
in Africa 

150,000 to 100,000 BP 

http://info.med.yale.edu/genetics/kkidd/point.html 



    

~100,000 BP 

Homo sapiens sapiens 

Colonizing south west Asia 

http://info.med.yale.edu/genetics/kkidd/point.html 



Homo sapiens sapiens 
   

~40,000 BP 

   

http://info.med.yale.edu/genetics/kkidd/point.html 



HGDP data 

•  1,033 samples 

•  7 geographic regions 

•  52 populations 

Cavalli-Sforza (2005) Nat Genet Rev 

Rosenberg et al. (2002) Science 

Li et al. (2008) Science 

The International HapMap Consortium 
(2003, 2005, 2007) Nature 

Apply SVD/PCA on the 
(joint) HGDP and HapMap 

Phase 3 data. 

 

Matrix dimensions: 

2,240 subjects (rows) 

447,143 SNPs (columns) 

 

Dense matrix:  

over one billion entries 

The Human Genome Diversity Panel (HGDP) 

ASW, MKK, LWK, 
& YRI 

CEU 

TSI 
JPT, CHB, & CHD 

GIH 

MEX 

HapMap Phase 3 data 

•  1,207 samples 

•  11 populations 

HapMap Phase 3 
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5 Let the blue circles represent m data 
points in a 2-D Euclidean space. 
 
Then, the SVD of the m-by-2 matrix of 
the data will return …   

The Singular Value Decomposition (SVD) 
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points in a 2-D Euclidean space. 
 
Then, the SVD of the m-by-2 matrix of 
the data will return …   

1st (right) 
singular vector 

1st (right) singular vector:  
 
direction of maximal variance, 

The Singular Value Decomposition (SVD) 



4.0 4.5 5.0 5.5 6.0
2

3

4

5 Let the blue circles represent m data 
points in a 2-D Euclidean space. 
 
Then, the SVD of the m-by-2 matrix of 
the data will return …   

1st (right) 
singular vector 

1st (right) singular vector:  
 
direction of maximal variance, 

2nd (right) 
singular vector 

2nd (right) singular vector: 
 
direction of maximal variance, after 
removing the projection of the data 
along the first singular vector. 

The Singular Value Decomposition (SVD) 
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1st (right) 
singular vector 

2nd (right) 
singular vector 

Singular values 

σ1: measures how much of the data variance 
is explained by the first singular vector. 
 
σ2: measures how much of the data variance 
is explained by the second singular vector. 

σ1 

σ2 

Principal Components Analysis (PCA) is done via the 
computation of the Singular Value Decomposition 
(SVD) of a (mean-centered) covariance matrix. 
 
Typically, a small constant number (say k) of the top 
singular vectors and values are kept. 



SVD: formal definition 

ρ: rank of A 
U (V): orthogonal matrix containing the left (right) singular vectors of A. 
S: diagonal matrix containing the singular values of A. 

    Let σ1 , σ2 , … , σρ be the entries of Σ. 
 Exact computation of the SVD takes O(min{mn2 , m2n}) time.  
 The top k left/right singular vectors/values can be computed faster using 
iterative methods. 

0!

0!
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Rank-k  approximations via the SVD 



Rank-k approximations (Ak) 

Uk (Vk): orthogonal matrix containing the top k  left (right) singular vectors of A. 
Σ k: diagonal matrix containing the top k  singular values of A. 

PCA (Principal Components Analysis) essentially amounts to the 
computation of the SVD of a mean-centered covariance matrix. 
 
SVD is the algorithmic tool behind MultiDimensional Scaling 
(MDS). Factor Analysis, etc. 



Africa 

Middle East 

South Central 
Asia 

Europe 

Oceania 

East Asia 

America 

Gujarati 
Indians 

Mexicans 

•  Top two Principal Components (PCs or eigenSNPs)  
(Lin and Altman (2005) Am J Hum Genet) 

•  The figure renders visual support to the “out-of-Africa” hypothesis. 

•  Mexican population seems out of place: we move to the top three PCs. 

Paschou, et al (2010) J Med Genet 



Africa 
Middle East 

S C Asia & 
Gujarati Europe Oceania 

East Asia 

America 

•  Not altogether satisfactory: the principal components are linear combinations of 
all SNPs, and – of course – can not be assayed! 

•  Can we find actual SNPs that capture the information in the singular vectors? 

•  Relatedly, can we compute them and/or the truncated SVD “efficiently.” 

Paschou, et al. (2010) J Med Genet 



  
 

Two related issues with eigen-analysis 
Computing large SVDs: computational time 
•   In commodity hardware (e.g., a 4GB RAM, dual-core laptop), using MatLab 7.0 (R14), 
the computation of the SVD of the dense 2,240-by-447,143 matrix A takes ca 20 minutes. 

•   Computing this SVD is not a one-liner, since we can not load the whole matrix in RAM 
(runs out-of-memory in MatLab). 

•   Instead, compute the SVD of AAT. 

•   In a similar experiment, compute 1,200 SVDs on matrices of dimensions (approx.) 1,200-
by-450,000 (roughly, a full leave-one-out cross-validation experiment) (DLP2010) 

 

Selecting actual columns that “capture the structure” of the top PCs 
•   Combinatorial optimization problem; hard even for small matrices.  

•   Often called the Column Subset Selection Problem (CSSP). 

•   Not clear that such “good” columns even exist. 

•   Avoid “reification” problem of “interpreting” singular vectors! 

•  (Solvable in “random projection time” with CX/CUR decompositions! (PNAS, MD09)) 



CUR matrix decompositions 

Goal. Solve the following problem:  

“While very efficient basis vectors, the (singular) vectors themselves are completely artificial 
and do not correspond to actual (DNA expression) profiles.  . . . Thus, it would be interesting to 
try to find basis vectors for all experiment vectors, using actual experiment vectors and not 
artificial bases that offer little insight.” Kuruvilla et al. (2002) 
 

Theorem:  

Given an arbitrary matrix, call a black box that I won’t describe.   

•  You get a small number of actual columns/rows that are only marginally worse than the 
truncated PCA/SVD.   

•  The black box runs faster than computing a truncated PCA/SVD for arbitrary input.   

•  It’s very robust to heuristic modifications.  
 

Corollary:  

We can use the same methods to approximate the PCA/SVD. 

  

 

 

 

 

Mahoney and Drineas “CUR Matrix Decompositions for Improved Data Analysis” (PNAS, 2009)   
Mahoney, "Randomized Algorithms for Matrices and Data," FnTML, 2011  
Drineas and Mahoney, "RandNLA: Randomized Numerical Linear Algebra," CACM, 2016  
 



CUR matrix decompositions and RandNLA 

One of many methods from Randomized (Numerical) Linear Algebra (RandNLA):  
•   Interdisciplinary research area 

•   Exploits randomization as a computational resource to develop improved algorithms for large-scale 
linear algebra problems 

Mahoney and Drineas “CUR Matrix Decompositions for Improved Data Analysis” (PNAS, 2009)  
Mahoney, "Randomized Algorithms for Matrices and Data," FnTML, 2011  
Drineas and Mahoney, "RandNLA: Randomized Numerical Linear Algebra," CACM, 2016  

Qua methods, 
RandNLA: 

•  Roots in theoretical 
computer science (TCS) 

•  Deep connections to 
mathematics and applied 
mathematics 

•  Statistical interpretation 
that complement 
bootstrapping, etc. 

 

Qua applications, 
RandNLA: 

•  Vital new tool for machine 
learning, statistics, and data 
analysis 

•  Solved state-of-the-art 
problems in genetics, 
astronomy, mass spec 
imaging, etc. 

Qua implementations, 
RandNLA:  

•  Outperform highly-
optimized software 
(LAPACK) 

•  Scalability in parallel and 
distributed environments 

•  Terabyte-scale PCA in 
Spark/Alchemist 

Promises sound algorithmic and statistical foundation for modern large-scale data analysis. 
 



SNPs by chromosomal order 
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* top 30 PCA-correlated SNPs 

Africa 

Europe 

Asia 

America 

Africa 

Europe 

Asia 

America 

Selecting PCA SNPs for individual assignment to four continents  
(Africa, Europe, Asia, America) 

Mahoney and Drineas (2009) PNAS 

Paschou et al (2007; 2008) PLoS Genetics 

Paschou et al (2010) J Med Genet 

Drineas et al (2010) PLoS One 

Javed et al (2011) Annals Hum Genet 

•  Data analysis and machine learning and statistics and 
theory of algorithms and scientific computing ... and 
genetics and astronomy and mass spectrometry and ... 
likes this---but each for different reasons!  

•  Good “hydrogen atom” for methods development!  



Bioinformatics: a cautionary tale? 

•  How did/does bioinformatics relate to computer science, statistics, and 
applied mathematics, “technically” and “sociologically”? 
 
•  How did NIH choose to fund graduate students and postdocs in the 
budget expansion of the 90s? 
 
•  What effect did this have on the number of American/foreign going 
into biomedical research? 
 
•  How will the pay structure of biomedical researchers effect which cs/
stats “data scientists” engage you in your efforts? 
 
•  What effect does med schools deciding not to do joint faculty hires 
with cs departments have on bioinformatics and big biomedical data?  
 
•  How is this Big Biomedical Data phenomenon similar to and different 
than the Bioinformatics experience? 

 
 



Big changes in the past ... and future 
Consider the creation of:  

•  Modern Physics 

•  Computer Science 

•  Molecular Biology 

 

These were driven by new measurement techniques and 
technological advances, but they led to:  

•  big new (academic and applied) questions 

•  new perspectives on the world 

•  lots of downstream applications  

We are in the middle of a similarly big shift! 
 

QUESTION: What, if anything, does biomedicine have to offer? 

 

  

•  OR and Management Science 

•  Transistors and Microelectronics 

•  Biotechnology 

 


