Thanks to NERSC and Cray Inc. for help and support!

An Apache Spark

An Apl Interface

Kai Rothauge, Alex Gittens, Michael W. Mahoney

What is MPI?

- MPI = Message Passing Interface
- A specification for the developers and users of message passing libraries • Message-Passing Parallel Programming Model:
- - cooperative operations between processes
 - data moved from address space of one process to that of another
- Dominant model in **high-performance computing**
- Popular implementations: MPICH, Open MPI
- Generally regarded as "low-level" for purposes of distributed computing

More on MPI

- Efficient implementations of collective operations
- Works with distributed memory, shared memory, GPUs
- Requires installation of MPI implementation on system
- Communication between MPI processes:
 - via TCP/IP sockets, or
 - optimized for underlying interconnects (InfiniBand, Cray Aries, Intel Omni-Path, etc.)
- Communicator objects connect groups of MPI processors
- Con: No fault tolerance or elasticity

- Numerical linear algebra (NLA) using Spark vs. MPI
- Why do linear algebra in Spark?

National Energy Research Scientific Computing Center

analysis

- Spark for data-centric workloads and scientific
- Characterization of linear algebra in Spark
- Customers demand Spark; want to understand performance concerns

- Numerical linear algebra (NLA) using Spark vs. MPI
- Why do linear algebra in Spark?
 - **Pros**:
 - Faster development, easier reuse
 - Simple dataset abstractions (RDDs, DataFrames, DataSets)
 - An entire ecosystem that can be used before and after the NLA computations
 - Spark can take advantage of available local linear algebra codes
 - Automatic fault-tolerance, out-of-core support
 - **Con**:

Classical MPI-based linear algebra implementations will be faster and more efficient

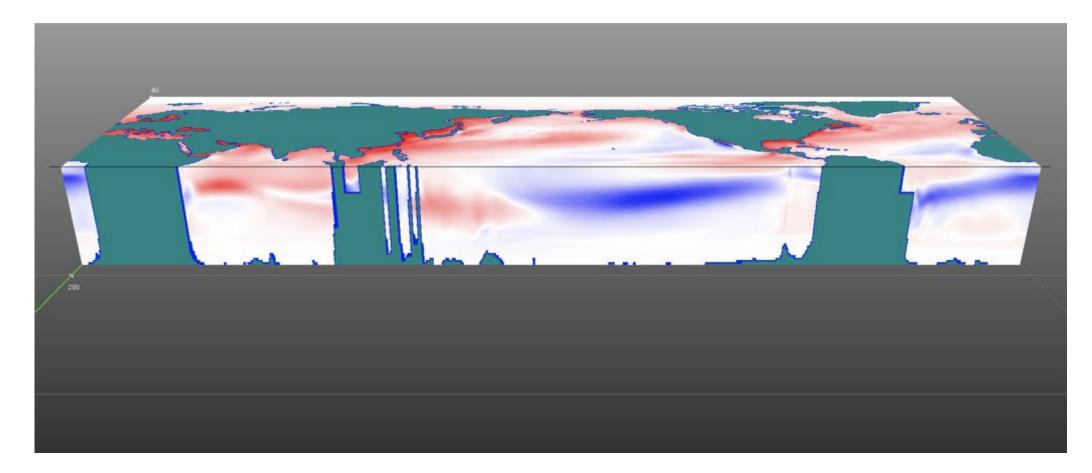
- Numerical linear algebra (NLA) using Spark vs. MPI
- XC40
 - 2,388 compute nodes
 - 128 GB RAM/node, 32 2.3GHz Haswell cores/node
 - Lustre storage system, Cray Aries interconnect

A. Gittens et al. "Matrix factorizations at scale: A comparison of scientific data analytics in Spark and C+MPI using three case studies", 2016 IEEE International Conference on Big Data (Big Data), pages 204–213, Dec 2016.

Computations performed on NERSC supercomputer Cori Phase 1, a Cray

- Numerical linear algebra (NLA) using Spark vs. MPI
- Matrix factorizations considered include truncated Singular Value Decomposition (SVD)
- Data sets include
 - Oceanic temperature data 2.2 TB
 - Atmospheric data 16 TB

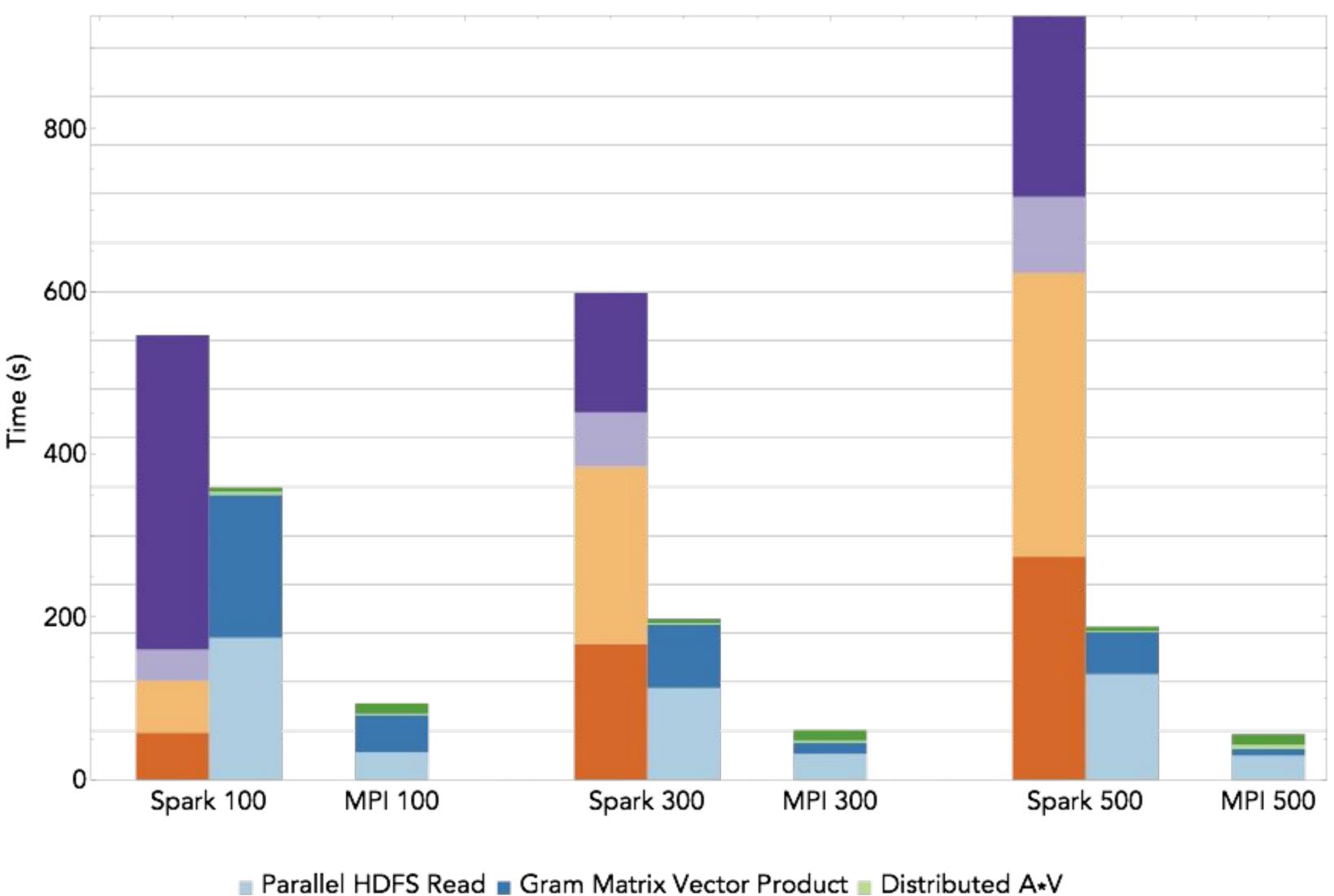
A. Gittens et al. "Matrix factorizations at scale: A comparison of scientific data analytics in Spark and C+MPI using three case studies", 2016 IEEE International Conference on Big Data (Big Data), pages 204–213, Dec 2016.



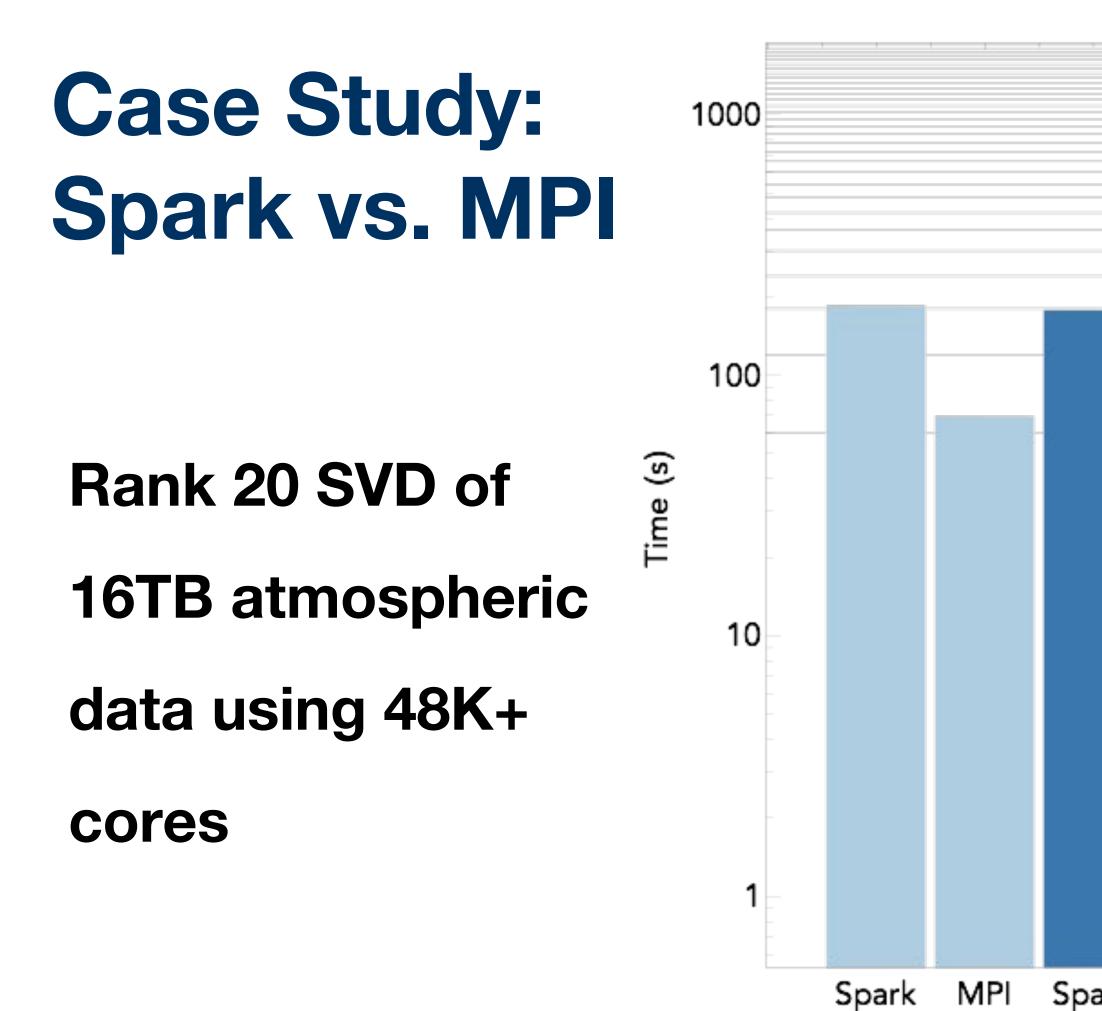
Rank 20 SVD of

2.2TB ocean

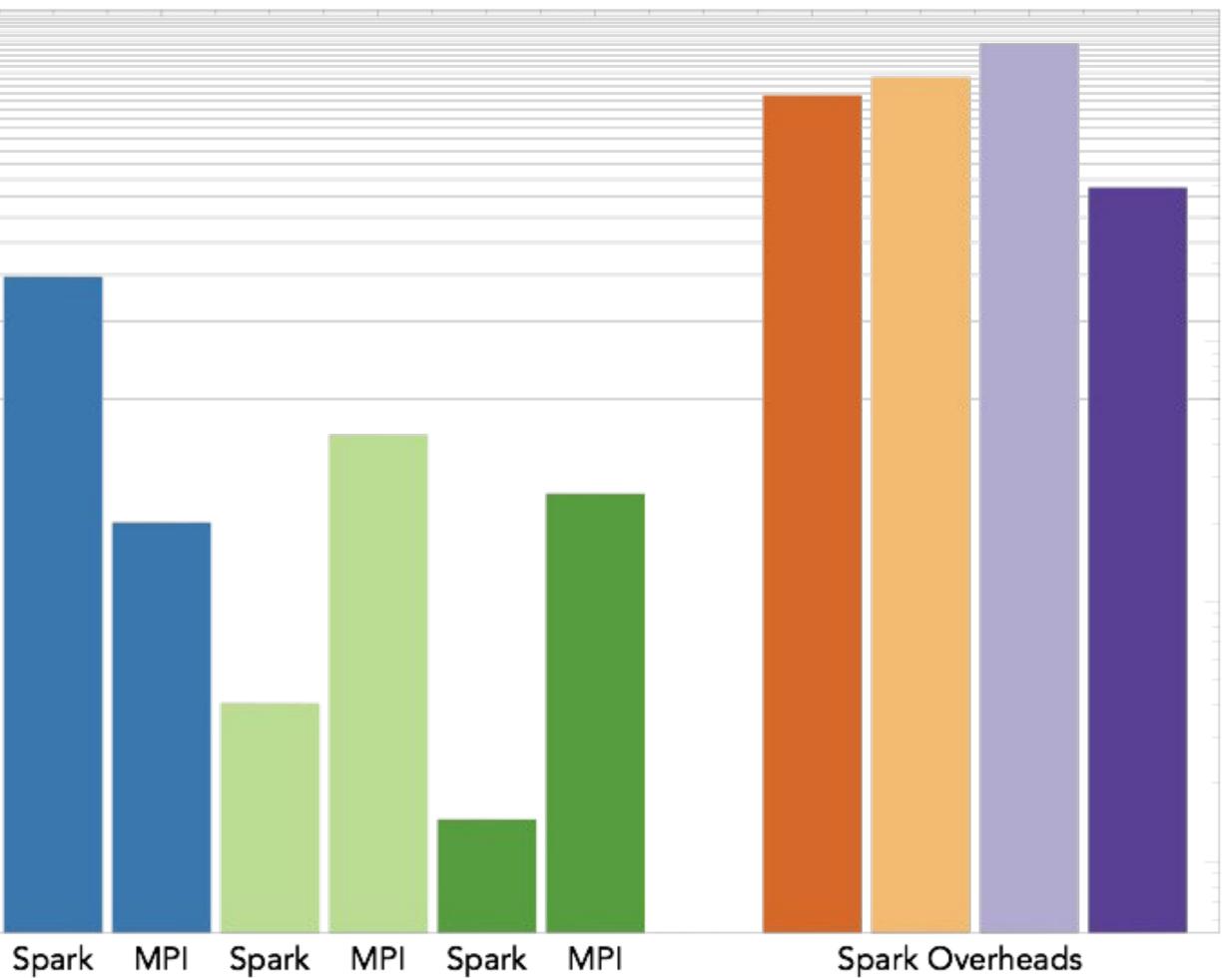
temperature data



Local SVD A*V Task Start Delay Scheduler Delay Task Overheads Time Waiting Until Stage End



Parallel HDFS Read Gram Matrix Vector Product Distributed A*V Local SVD A+V Task Start Delay Scheduler Delay Task Overheads Time Waiting Until Stage End



- With favorable data (tall and skinny) and well-adapted algorithms, linear algebra in Spark is 2x-26x slower than MPI when I/O is included
- Spark's overheads:
 - Orders of magnitude higher than the actual computation times
 - Anti-scale
- The gaps in performance suggest it may be better to interface with **MPI-based codes from Spark**

- Alchemist interfaces between Apache Spark and *existing* or *custom* MPI-based libraries for linear algebra, machine learning, *etc.*
- Goal:
 - Use Spark for regular data analysis workflow
 - When computationally intensive calculations are required, call relevant MPI-based codes from Spark using Alchemist, send results to Spark
- Combine high productivity of Spark with high performance of MPI

- Target users:
 - Scientific community: Use Spark for analysis of large scientific datasets by calling existing MPI-based libraries where appropriate
 - Machine learning practitioners and data analysts:
 - Better performance of a wide range of large-scale, computationally intensive ML and data analysis algorithms
 - For instance, SVD for principal component analysis, recommender systems, leverage scores, etc.

Basic Framework

- Alchemist: Acts as bridge between Spark and MPI-based libraries
- Alchemist-Client Interface: API for user, communicates with Alchemist via TCP/IP sockets
- Alchemist-Library Interface: Shared object, imports MPI library, provides generic interface for Alchemist to communicate with library

Basic Framework

• Basic workflow:

- Spark application sends distributed dataset from RDD (IndexedRowMatrix) to Alchemist via TCP/IP sockets using ACI
- Spark application tells Alchemist what MPI-based code should be called
- Alchemist loads relevant MPI-based library, calls function, sends results to Spark

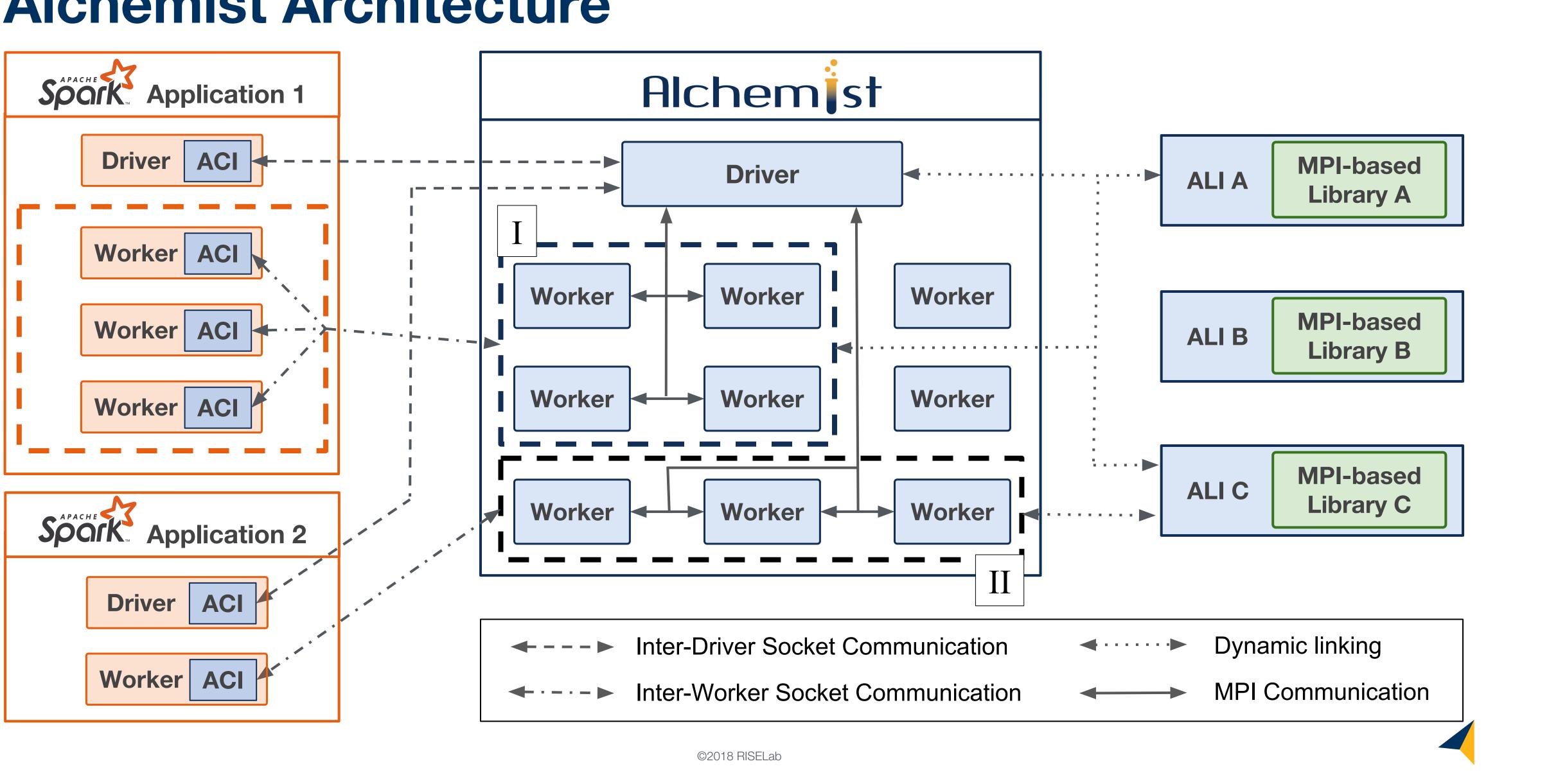
Basic Framework

- Alchemist can also load data from file
- used by MPI-based libraries:
 - Candidates: ScaLAPACK, Elemental, PLAPACK

Alchemist needs to store distributed data in appropriate format that can be

Alchemist currently uses Elemental, support for ScaLAPACK under development

Alchemist Architecture



Sample API

import alchemist. {Alchemist, AlMatrix} import alchemist.libA.QRDecomposition // libA is sample MPI lib

```
// other code here ...
```

// sc is instance of SparkContext val ac = new Alchemist.AlchemistContext(sc, numWorkers) ac.registerLibrary("libA", ALIlibALocation)

// maybe other code here ...

val alA = AlMatrix(A)

// routine returns QR factors of A as AlMatrix objects val (alQ, alR) = QRDecomposition(alA)

// send data from Alchemist to Spark once ready val Q = alQ.toIndexedRowMatrix() // convert AlMatrix alQ to RDD val R = alR.toIndexedRowMatrix()

// maybe other code here ...

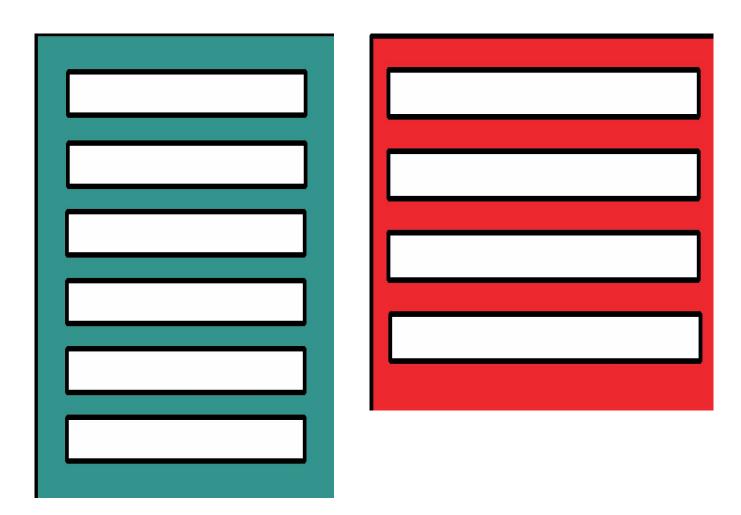
ac.stop()

// A is IndexedRowMatrix

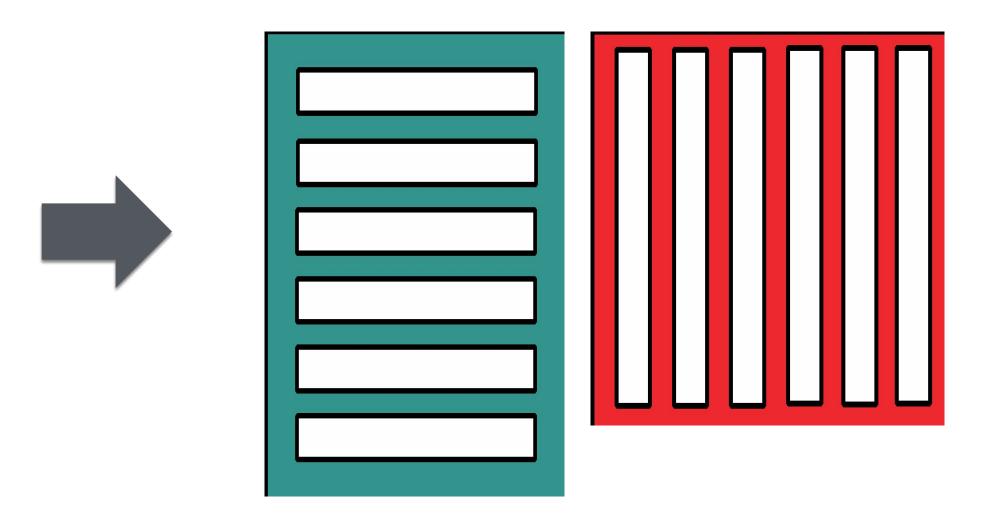
// convert AlMatrix alR to RDD

// release resources once no longer required

Example: Matrix Multiplication



- Requires expensive shuffles in Spark, which is impractical:
 - Matrices/RDDs are row-partitioned
 - one matrix must be converted to be column-partitioned
 - Requires an all-to-all shuffle that often fails once the matrix is distributed



Example: Matrix Multiplication

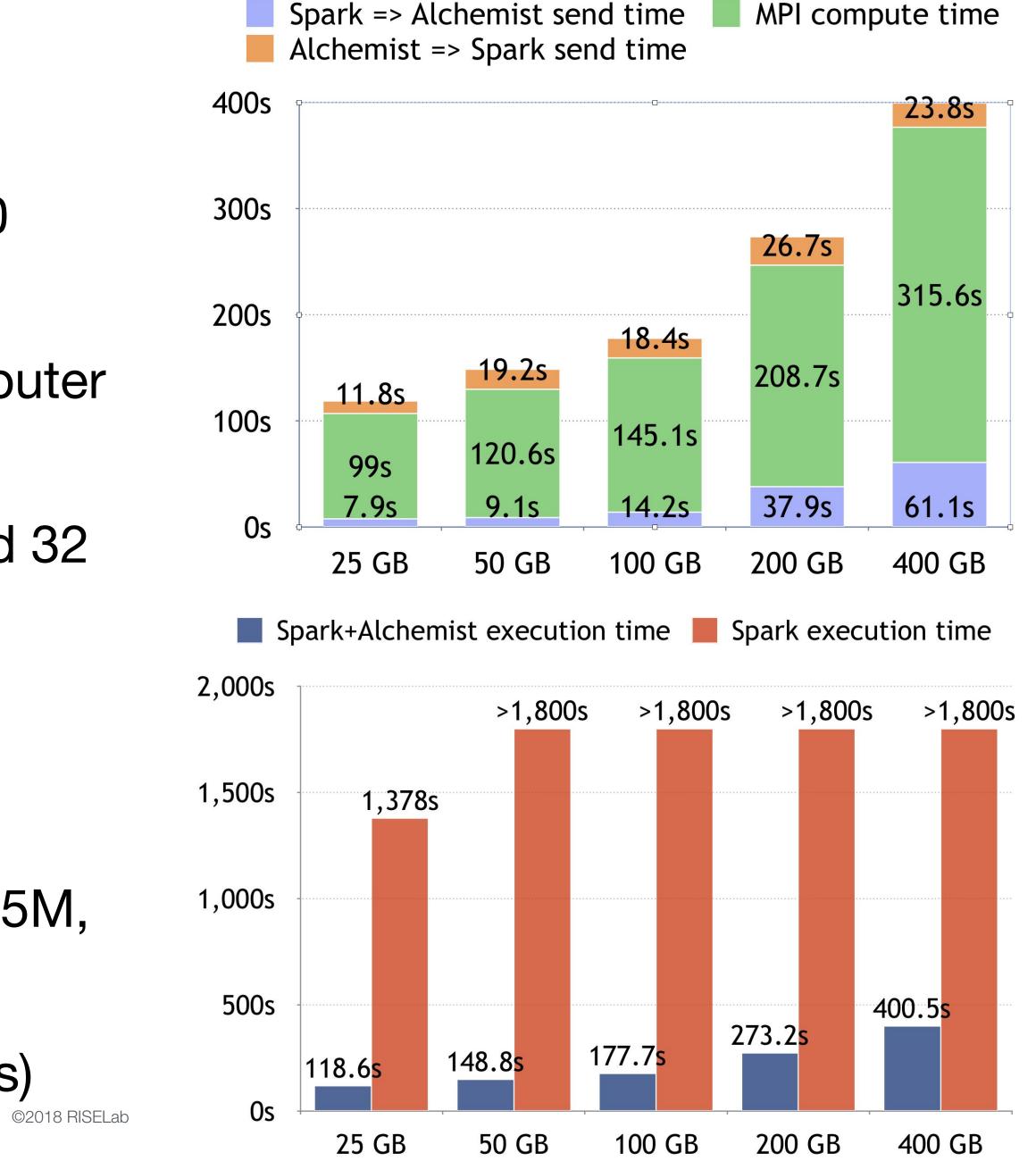
GB/nodes	Spark+Alchemist				Spark
	Send (s)	Multiplication (s)	Receive (s)	Total (s)	Total (s)
0.8/1	5.90±2.17	6.60±0.07	2.19±0.58	14.68±2.69	160.31±8.89
12/1	16.66 ± 0.88	75.69±0.42	19.43±0.45	111.78±1.26	809.31±51.9
56/2	32.50±2.88	178.68±24.8	55.83±0.37	267.02±27.38	-Failed-
144/4	69.40±1.85	171.73±0.81	66.80±3.46	307.94±4.57	-Failed-

- nodes
- Take-away: Spark's matrix multiply is slow even on one executor, and unreliable once there are more

Generated random matrices and used same number of Spark and Alchemist

Example: Truncated SVD

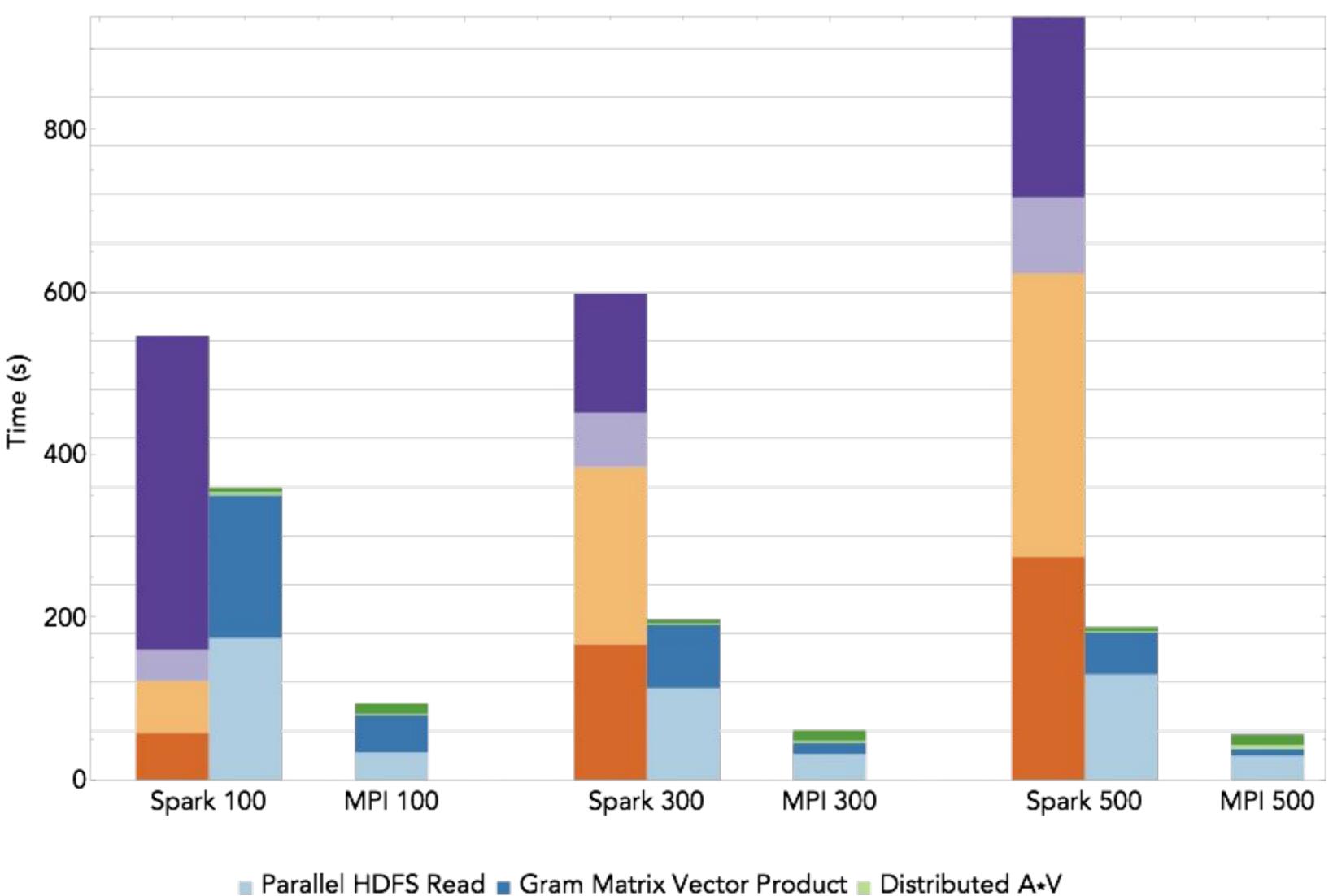
- Use Alchemist and MLlib to get rank 20 truncated SVD
- Experiments run on NERSC supercomputer
 Cori
- Each node of Cori has 128GB RAM and 32 cores
- **Experiment Setup**
- Spark: 22 nodes; Alchemist: 8 nodes
- A: m-by-10K, where m = 5M, 2.5M, 1.25M, 625K, 312.5K
- Ran jobs for at most 30 minutes (1800 s)



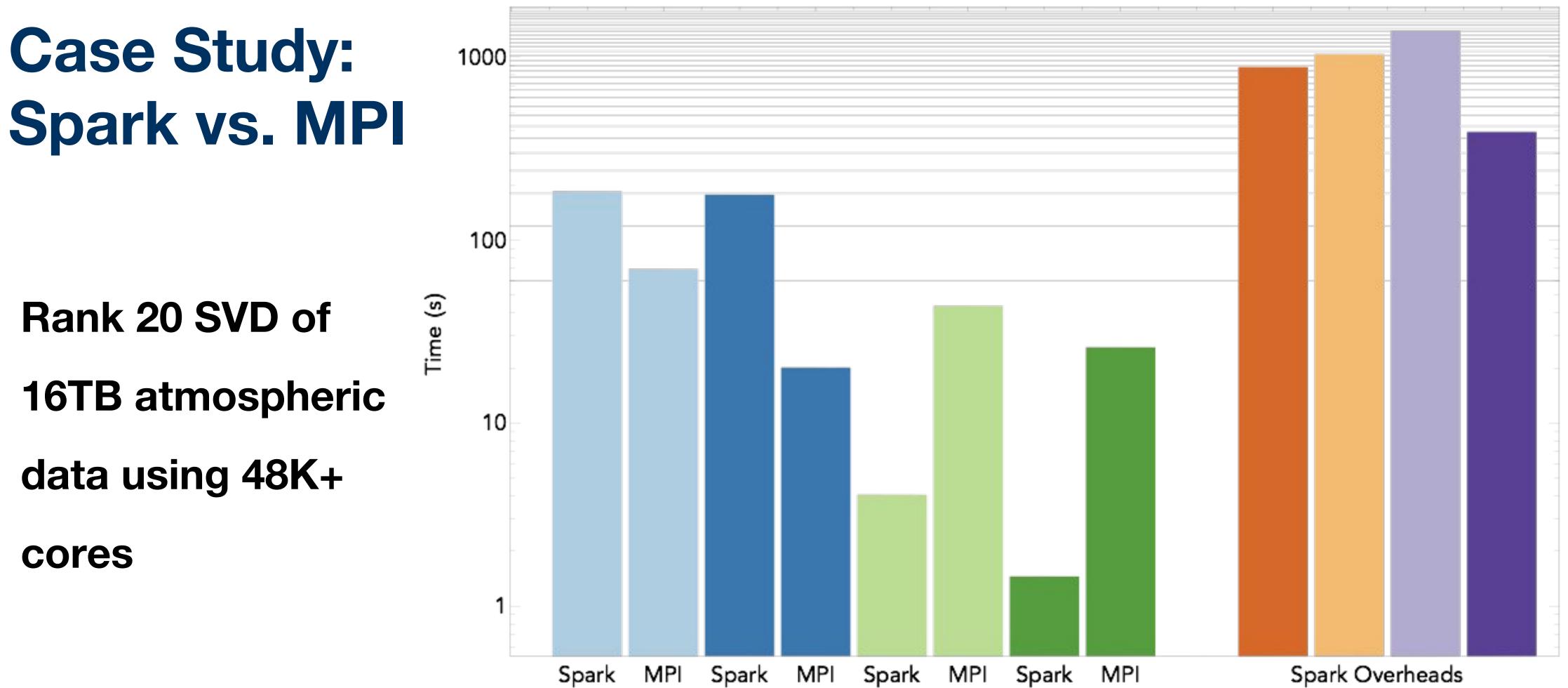
Rank 20 SVD of

2.2TB ocean

temperature data



Local SVD A*V Task Start Delay Scheduler Delay Task Overheads Time Waiting Until Stage End



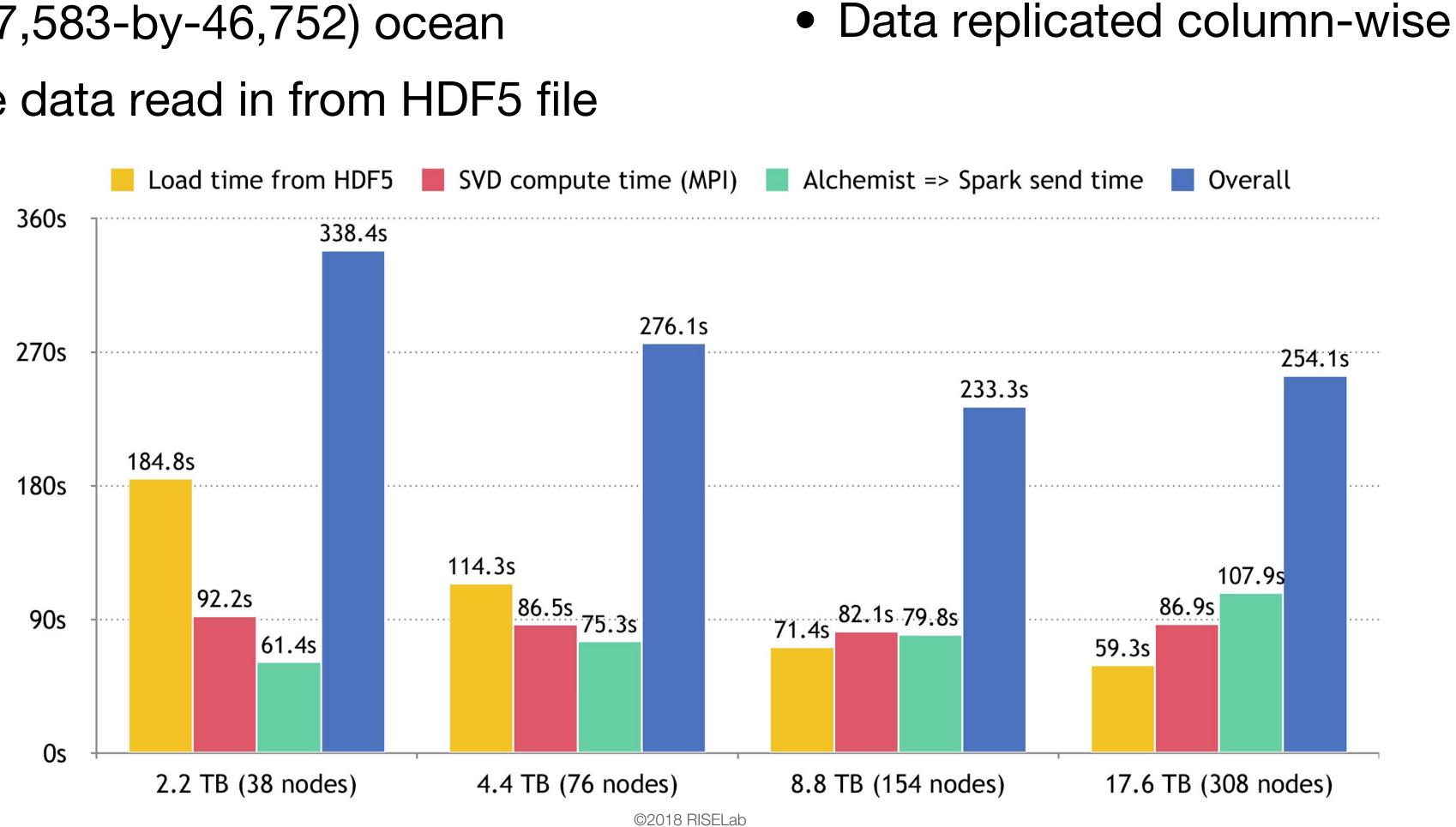
Parallel HDFS Read Gram Matrix Vector Product Distributed A*V Local SVD A+V Task Start Delay Scheduler Delay Task Overheads Time Waiting Until Stage End

Example: Truncated SVD

Experiment Setup

• 2.2TB (6,177,583-by-46,752) ocean

temperature data read in from HDF5 file



Upcoming Features

PySpark, SparkR ⇔ MPI Interface

- Interface for Python => PySpark support
- Future work: Interface for R
- More Functionality
 - Support for sparse matrices
 - Support for MPI-based libraries built on ScaLAPACK

Alchemist and Containers

- Alchemist running in Docker and Kubernetes
- Will enable Alchemist on clusters and the cloud

Limitations and Constraints

- Two copies of data in memory, more during a relayout during computation
- Data transfer overhead between Spark and Alchemist when data on different nodes
 - Subject to network disruptions and overload
- MPI is not fault tolerant or elastic
- Lack of MPI-based libraries for machine learning
 - No equivalent to MLlib currently available, closest is MaTEx
- On Cori, need to run Alchemist and Spark on separate nodes -> more data transfer over interconnects -> larger overheads

Future Work

- - Cray Chapel, Apache REEF)
- Reduce communication costs
 - Exploit locality
 - Reduce number of messages
- Run as network service
- MPI computations with (basic) fault tolerance and elasticity

Interest in connecting Spark with other libraries for distributed computing (e.g.

Use communication protocols designed for underlying network infrastructure

Thanks to Cray Inc., DARPA and **NSF for financial support**

github.com/project-alchemist/

References

- A. Gittens, K. Rothauge, M. W. Mahoney, et al., "Alchemist: Accelerating Large-Scale Data Analysis by offloading to High-Performance Computing Libraries", 2018, Proceedings of the 24th ACM SIGKDD International Conference, Aug 2018, to appear
- A. Gittens, K. Rothauge, M. W. Mahoney, et al., "Alchemist: An Apache Spark ⇔ MPI Interface", 2018, to appear in CCPE Special Issue on Cray User Group Conference 2018

Kai Rothauge kai.rothauge@berkeley.edu github.com/kai-rothauge/alchemist

